• No results found

Cover Page

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page"

Copied!
25
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/138247 holds various files of this Leiden

University dissertation.

Author: Ultee, E.

Title: Structural characterization of the cell envelope in Actinobacteria under changing

environments

(2)
(3)

References

1. Lane, N. The unseen World: Reflections on Leeuwenhoek (1677) Concerning little animals.

Philos. Trans. R. Soc. B Biol. Sci. 370, (2015).

2. Popescu, A. & Doyle, R. J. The Gram stain after more than a century. Biotech.

Histo-chem. 71, 145–151 (1996).

3. Beveridge, T. J. Use of the Gram stain in microbiology. Biotech. Histochem. 76,

111–118 (2001).

4. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–71 (1987).

5. Janda, J. M. & Abbott, S. L. 16S rRNA gene sequencing for bacterial identifica-tion in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45,

2761–2764 (2007).

6. Bertelli, C. & Greub, G. Rapid bacterial genome sequencing: methods and applica-tions in clinical microbiology. Clin. Microbiol. Infect. 19, 803–813 (2013).

7. Radkov, A. D., Hsu, Y., Booher, G. & Van Nieuwenhze, M. S. Imaging bacterial cell wall biosynthesis. Annu. Rev. Biochem. 87, 991–1014 (2018).

8. Popham, D. L. Visualizing the production and arrangement of peptidoglycan in Gram-positive cells. Mol. Microbiol. 88, 645–649 (2013).

9. Turner, R. D., Mesnage, S., Hobbs, J. K. & Foster, S. J. Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat.

Commun. 9, 1263 (2018).

10. Viljoen, A., Foster, S. J., Fantner, G. E., Hobbs, J. K. & Dufrêne, Y. F. Scratching the surface: bacterial cell envelopes at the nanoscale. MBio 11, 1–12 (2020).

11. Höltje, J. V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181–203 (1998).

12. Margolin, W. Sculpting the Bacterial Cell. Curr. Biol. 19, R812–R822 (2009).

13. Pichoff, S. & Lutkenhaus, J. Overview of cell shape: cytoskeletons shape bacterial cells.

Curr. Opin. Microbiol. 10, 601–605 (2007).

14. Kawai, Y., Asai, K. & Errington, J. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBHp in cell morphogenesis of Bacillus subtilis. Mol. Microbiol. 73,

719–731 (2009).

15. Mazza, P. et al. MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol. Microbiol. 60, 838–

852 (2006).

16. Gray, D. I., Gooday, G. W. & Prosser, J. I. Apical hyphal extension in Streptomyces

coeli-color A3(2). J. Gen. Microbiol. 136, 1077–1084 (2009).

17. Hempel, A. M., Wang, S. B., Letek, M., Gil, J. A. & Flärdh, K. Assemblies of DivIVA mark sites for hyphal branching and can establish new zones of cell wall growth in

Streptomy-ces coelicolor. J. Bacteriol. 190, 7579–7583 (2008).

18. Holmes, N. A. et al. Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces. Proc. Natl. Acad. Sci. U. S.

(4)

19. Fuchino, K. et al. Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth. Proc. Natl. Acad. Sci. 110, E1889–

E1897 (2013).

20. Flärdh, K. Cell polarity and the control of apical growth in Streptomyces. Curr. Opin.

Micro-biol. 13, 758–765 (2010).

21. Hempel, A. M. et al. The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc. Natl. Acad. Sci. 109, E2371–

E2379 (2012).

22. van der Aart, L. T. et al. High-resolution analysis of the peptidoglycan composition in

Strep-tomyces coelicolor. J. Bacteriol. 200, JB.00290-18 (2018).

23. Barka, E. A. et al. Taxonomy, physiology, and natural products of Actinobacteria.

Mi-crobiol. Mol. Biol. Rev. 80, 1–43 (2016).

24. van Dissel, D., Claessen, D. & van Wezel, G. P. Morphogenesis of Streptomyces in sub-merged cultures. Advances in Applied Microbiology 89, (Elsevier Inc., 2014).

25. van Dissel, D., Claessen, D., Roth, M. & Van Wezel, G. P. A novel locus for mycelial aggre-gation forms a gateway to improved Streptomyces cell factories. Microb. Cell Fact. 14,

1–10 (2015).

26. Xu, H., Chater, K. F., Deng, Z. & Tao, M. A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in Streptomyces. J. Bacteriol. 190,

4971–4978 (2008).

27. Petrus, M. L. C. & Claessen, D. Pivotal roles for Streptomyces cell surface poly-mers in morphological differentiation, attachment and mycelial architecture.

Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 106, 127–139 (2014).

28. Ramijan, K. et al. Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes. Nat. Commun. 9, 5164 (2018).

29. Claessen, D. & Errington, J. Cell wall deficiency as a coping strategy for stress.

Trends Microbiol. 27, 1025–1033 (2019).

30. Errington, J., Mickiewicz, K., Kawai, Y. & Wu, L. J. L-form bacteria, chronic diseases and the origins of life. Philos. Trans. R. Soc. B Biol. Sci. 371, (2016).

31. Kawai, Y., Mickiewicz, K. & Errington, J. Lysozyme counteracts β-Lactam antibi-otics by promoting the emergence of L-form bacteria. Cell 172, 1038-1049.e10

(2018).

32. Caccamo, P. D. & Brun, Y. V. The molecular basis of noncanonical bacterial morphology.

Trends Microbiol. 26, 191–208 (2018).

33. Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70,

660–703 (2006).

34. Walsby, A. E. A square bacterium. Nature 283, 69–71 (1980).

35. Fang, F. C., Frawley, E. R., Tapscott, T. & Vázquez-Torres, A. Bacterial stress responses during host infection. Cell Host Microbe 20, 133–143 (2016).

36. Ewert, M. & Deming, J. W. Bacterial responses to fluctuations and extremes in tem-perature and brine salinity at the surface of Arctic winter sea ice. FEMS Microbiol.

Ecol. 89, 476–489 (2014).

37. Trastoy, R. et al. Mechanisms of bacterial tolerance and persistence in the gastroin-testinal and respiratory environments. Clin. Microbiol. Rev. 31, 1–46 (2018).

38. Justice, S. S., Hunstad, D. A., Cegelski, L. & Hultgren, S. J. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 6, 162–168 (2008).

(5)

39. Kysela, D. T., Randich, A. M., Caccamo, P. D. & Brun, Y. V. Diversity takes shape: under-standing the mechanistic and adaptive basis of bacterial morphology. PLoS Biol. 14,

1– 15 (2016).

40. Yang, D. C., Blair, K. M. & Salama, N. R. Staying in shape: the impact of cell shape on bac-terial survival in diverse environments. Microbiol. Mol. Biol. Rev. 80, 187–203 (2016).

41. Silhavy, T., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect.

Biol. 2, 1–16 (2010).

42. Rojas, E. R. et al. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559, 617–621 (2018).

43. Raetz, C. R. H. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71,

635– 700 (2002).

44. Swoboda, J. G., Campbell, J., Meredith, T. C. & Walker, S. Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem 11, 35–45 (2010).

45. Höltje, J.-V. V. Growth of the stress-bearing and shape-maintaining murein sac-culus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181–203 (1998).

46. Vollmer, W., Blanot, D. & De Pedro, M. A. Peptidoglycan structure and architecture.

FEMS Microbiol. Rev. 32, 149–167 (2008).

47. Cava, F. & de Pedro, M. A. Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr. Opin.

Micro-biol. 18, 46–53 (2014).

48. Barreteau, H. et al. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol.

Rev. 32, 168–207 (2008).

49. Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of pepti-doglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10,

123–136 (2012).

50. Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

51. Ruiz, N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl. Acad. Sci. 105, 15553–15557 (2008).

52. Sham, L.-T. et al. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis.

Science 345, 220–222 (2014).

53. Meeske, A. J. et al. MurJ and a novel lipid II flippase are required for cell wall biogenesis in

Bacillus subtilis. Proc. Natl. Acad. Sci. 112, 6437–6442 (2015).

54. Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A. & Charlier, P. The penicillin-binding pro-teins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32,

234–258 (2008).

55. Vollmer, W. & Bertsche, U. Murein (peptidoglycan) structure, architecture and biosynthe-sis in Escherichia coli. Biochim. Biophys. Acta - Biomembr. 1778, 1714–1734 (2008).

56. Leclercq, S. et al. Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci. Rep. 7, 1–13 (2017).

57. Meeske, A. J. et al. SEDS proteins are a widespread family of bacterial cell wall polymeras-es. Nature 537, 634–638 (2016).

58. Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-Autonomously. Nat. Microbiol. 1, (2016).

59. Emami, K. et al. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2,

(6)

1–8 (2017).

60. Den Blaauwen, T., De Pedro, M. A., Nguyen-Distèche, M. & Ayala, J. A. Morphogenesis of rod- shaped sacculi. FEMS Microbiol. Rev. 32, 321–344 (2008).

61. Egan, A. J. F., Cleverley, R. M., Peters, K., Lewis, R. J. & Vollmer, W. Regulation of bacterial cell wall growth. FEBS J. 284, 851–867 (2017).

62. Dominguez-Escobar, J. et al. Processive Movement of MreB-associated cell wall biosyn-thetic complexes in bacteria. Science 333, 225–228 (2011).

63. Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).

64. Van Teeffelen, S. & Gitai, Z. Rotate into shape: MreB and bacterial morphogenesis. EMBO J.

30, 4856–4857 (2011).

65. van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl. Acad. Sci. 108, 15822–15827 (2011).

66. Wu, L. J. & Errington, J. Coordination of cell division and chromosome segre-gation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925

(2004).

67. Bernhardt, T. G. & De Boer, P. A. J. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18,

555–564 (2005).

68. Dajkovic, A., Lan, G., Sun, S. X., Wirtz, D. & Lutkenhaus, J. MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr. Biol. 18,

235–244 (2008).

69. Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthe-sis and bacterial cell division. Science 355, 739–743 (2017).

70. van Teeffelen, S. & Renner, L. D. Recent advances in understanding how rod-like bacteria stably maintain their cell shapes. F1000Research 7, 241 (2018).

71. Yao, Q. et al. Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis. EMBO J. 36, 1577–1589 (2017).

72. Errington, J., Daniel, R. A. & Scheffers, D.-J. D.-J. Cytokinesis in bacteria. Microbiol. Mol.

Biol. Rev. 67, 52–65 (2003).

73. Hale, C. A. & De Boer, P. A. J. Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 88, 175–185

(1997).

74. Jensen, S. O., Thompson, L. S. & Harry, E. J. Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-ring assem-bly. J. Bacteriol. 187, 6536–6544 (2005).

75. Pichoff, S. & Lutkenhaus, J. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol. Microbiol. 55, 1722–

1734 (2005).

76. Natale, P., Pazos, M. & Vicente, M. The Escherichia coli divisome: born to divide.

Environ. Microbiol. 15, 3169–3182 (2013).

77. Heidrich, C. et al. Involvement of N -acetylmuramyl- L -alanine amidases in cell sepa-ration and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41, 167–178

(2001).

78. Morlot, C., Uehara, T., Marquis, K. A., Bernhardt, T. G. & Rudner, D. Z. A highly coordi-nated cell wall degradation machine governs spore morphogenesis in Bacillus

(7)

79. Priyadarshini, R., Popham, D. L. & Young, K. D. Daughter cell separation by penicil-lin-binding proteins and peptidoglycan amidases in Escherichia coli. J. Bacteriol. 188,

5345–5355 (2006).

80. Hussain, S. et al. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. Elife 7, e32471 (2018).

81. Kawazura, T. et al. Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth. Mol. Microbiol. 104, 472–486 (2017).

82. Ursell, T. S. et al. Rod-like bacterial shape is maintained by feedback between cell cur-vature and cytoskeletal localization. Proc. Natl. Acad. Sci. 111, E1025–E1034 (2014).

83. Billings, G. et al. De novo morphogenesis in L-forms via geometric control of cell growth.

Mol. Microbiol. 93, 883–896 (2014).

84. Flärdh, K. Growth polarity and cell division in Streptomyces. Curr. Opin. Microbiol. 6,

564–571 (2003).

85. Flärdh, K. Essential role of DivIVA in polar growth and morphogenesis in

Strep-tomyces coelicolor A3(2). Mol. Microbiol. 49, 1523–1536 (2003).

86. Lenarcic, R. et al. Localisation of DivIVA by targeting to negatively curved membranes.

EMBO J. 28, 2272–2282 (2009).

87. Letek, M. et al. DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J. Bacteriol. 190,

3283–3292 (2008).

88. Edwards, D. H. Promiscuous targeting of Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. EMBO J. 19, 2719–2727 (2000).

89. Ausmees, N. Coiled coil cytoskeletons collaborate in polar growth of Streptomyces.

Bioar-chitecture 3, 110–112 (2013).

90. Ausmees, N., Kuhn, J. R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an inter-mediate filament-like function in cell shape. Cell 115, 705–713 (2003).

91. Cabeen, M. T. et al. Bacterial cell curvature through mechanical control of cell growth.

EMBO J. 28, 1208–1219 (2009).

92. Wolgemuth, C. W. et al. How to make a spiral bacterium. Phys. Biol. 2, 189–199 (2005).

93. Huang, K. C., Mukhopadhyay, R., Wen, B., Gitai, Z. & Wingreen, N. S. Cell shape and cell-wall organization in Gram-negative bacteria. Proc. Natl. Acad. Sci. 105, 19282–

19287 (2008).

94. Meyer, P., Gutierrez, J., Pogliano, K. & Dworkin, J. Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis. Mol. Microbiol.

76, 956–970 (2010).

95. Dame, R. T. & Tark-Dame, M. Bacterial chromatin: converging views at different scales.

Curr. Opin. Cell Biol. 40, 60–65 (2016).

96. Travers, A. & Muskhelishvili, G. DNA supercoiling - a global transcriptional regu-lator for enterobacterial growth? Nat. Rev. Microbiol. 3, 157–169 (2005).

97. Dame, R. T. The role of nucleoid-associated proteins in the organization and compac-tion of bacterial chromatin. Mol. Microbiol. 56, 858–870 (2005).

98. Dame, R. T., Kalmykowa, O. J. & Grainger, D. C. Chromosomal macrodomains and as-sociated proteins: Implications for DNA organization and replication in gram negative bacteria. PLoS Genet. 7, (2011).

99. Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid struc-ture and gene expression. Nat. Rev. Microbiol. 8, 185–195 (2010).

(8)

100. Dorman, C. J. Genome architecture and global gene regulation in bacteria: making progress towards a unified model? Nat. Rev. Microbiol. 11, 349–355 (2013).

101. Luijsterburg, M. S., Noom, M. C., Wuite, G. J. L. & Dame, R. T. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J. Struct. Biol. 156, 262–272 (2006).

102. Boccard, F., Esnault, E. & Valens, M. Spatial arrangement and macrodomain organiza-tion of bacterial chromosomes. Mol. Microbiol. 57, 9–16 (2005).

103. Lioy, V. S. et al. Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172, 771-783.e18 (2018).

104. Marbouty, M. et al. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution Imaging. Mol. Cell 59,

588–602 (2015).

105. Wang, X. et al. Condensin promotes the juxtaposition of DNA flanking its loading site in

Bacillus subtilis. Genes Dev. 29, 1661–1675 (2015).

106. Le, T. B. K., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013).

107. Val, M. E. et al. A checkpoint control orchestrates the replication of the two chromo-somes of Vibrio cholerae. Sci. Adv. 2, 1–14 (2016).

108. Trussart, M. et al. Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae. Nat. Commun. 8, 14665 (2017).

109. Postow, L., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–1779 (2004).

110. Deng, S., Stein, R. A. & Higgins, N. P. Transcription-induced barriers to supercoil diffu-sion in the Salmonella typhimurium chromosome. Proc. Natl. Acad. Sci. U. S. A. 101,

3398–3403 (2004).

111. Higgins, N. P., Yang, X., Fu, Q. & Roth, J. R. Surveying a supercoil domain by using the γδ resolution system in Salmonella typhimurium. J. Bacteriol. 178, 2825–2835 (1996).

112. Le, T. B. & Laub, M. T. Transcription rate and transcript length drive for-mation of chromosomal interaction domain boundaries. EMBO J. 35,

1582–1595 (2016).

113. Drlica, K. & Rouviere-Yaniv, J. Histone-like proteins of bacteria. Microbiol. Rev. 51,

301–319 (1987).

114. Dorman, C. J. Function of nucleoid-associated proteins in chromosome struc-turing and transcriptional regulation. J. Mol. Microbiol. Biotechnol. 24, 316–331

(2014).

115. Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. Growth phase-depen-dent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181,

6361–6370 (1999).

116. Ishihama, A. et al. Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J. Bacteriol. 196,

2718–2727 (2014).

117. Luijsterburg, M. S., White, M. F., Van Driel, R. & Th. Dame, R. The major architects of chromatin: Architectural proteins in bacteria, archaea and eukaryotes. Crit. Rev.

Biochem. Mol. Biol. 43, 393–418 (2008).

118. Dame, R. T. H-NS mediated compaction of DNA visualised by atomic force microscopy.

Nucleic Acids Res. 28, 3504–3510 (2000).

(9)

looped domain formation in the bacterial chromosome. Curr. Biol. 17, 913–914 (2007).

120. Skoko, D., Wong, B., Johnson, R. C. & Marko, J. F. Micromechanical analysis of the binding of DNA-bending proteins HMGB1, NHP6A, and HU reveals their ability to form highly stable DNA- protein complexes. Biochemistry 43, 13867–13874 (2004).

121. Van Noort, J., Verbrugge, S., Goosen, N., Dekker, C. & Dame, R. T. Dual architectural roles of HU: Formation of flexible hinges and rigid filaments. Proc. Natl. Acad. Sci. U. S.

A. 101, 6969– 6974 (2004).

122. Hirano, T. Condensin-based chromosome organization from bacteria to vertebrates. Cell

164, 847–857 (2016).

123. Gruber, S. Shaping chromosomes by DNA capture and release: gating the SMC rings. Curr. Opin. Cell Biol. 46, 87–93 (2017).

124. Hassler, M., Shaltiel, I. A. & Haering, C. H. Towards a unified model of SMC complex func-tion. Curr. Biol. 28, R1266–R1281 (2018).

125. Nichols, M. H. & Corces, V. G. A tethered-inchworm model of SMC DNA transloca-tion. Nat. Struct. Mol. Biol. 25, 906–910 (2018).

126. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science. 360,

102–105 (2018).

127. Dame, R. T., Tark-Dame, M. & Schiessel, H. A physical approach to segregation and fold-ing of the Caulobacter crescentus genome. Mol. Microbiol. 82, 1311–1315 (2011).

128. Hong, S. H. & McAdams, H. H. Compaction and transport properties of newly replicated Caulobacter crescentus DNA. Mol. Microbiol. 82, 1349–1358 (2011).

129. Smits, W. K. & Grossman, A. D. The transcriptional regulator Rok binds A+T-rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis. PLoS

Genet. 6, (2010).

130. Tendeng, C., Soutourina, O. A., Danchin, A. & Bertin, P. N. MvaT proteins in

Pseu-domonas spp.: A novel class of H-NS-like proteins. Microbiology 149, 3047–3050

(2003).

131. Gordon, B. R. G., Imperial, R., Wang, L., Navarre, W. W. & Liu, J. Lsr2 of

My-cobacterium represents a novel class of H-NS-like proteins. J. Bacteriol. 190,

7052–7059 (2008).

132. Badrinarayanan, A., Le, T. B. K. & Laub, M. T. Bacterial chromosome organiza-tion and segregaorganiza-tion. Annu. Rev. Cell Dev. Biol. 31, 171–199 (2015).

133. Reyes-Lamothe, R., Nicolas, E. & Sherratt, D. J. Chromosome replication and segrega-tion in bacteria. Annu. Rev. Genet. 46, 121–143 (2012).

134. Jun, S. & Wright, A. Entropy as the driver of chromosome segregation. Nat. Rev.

Micro-biol. 8, 600–607 (2010).

135. Jensen, R. B. & Shapiro, L. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc. Natl. Acad. Sci. U. S. A. 96,

10661–10666 (1999).

136. Ben-Yehuda, S. et al. Defining a centromere-like element in Bacillus subtilis by iden-tifying the binding sites for the chromosome-anchoring protein RacA. Mol. Cell 17,

773–782 (2005).

137. Fogel, M. A. & Waldor, M. K. Distinct segregation dynamics of the two Vibrio

cholerae chromosomes. Mol. Microbiol. 55, 125–136 (2005).

138. Nielsen, H. J., Ottesen, J. R., Youngren, B., Austin, S. J. & Hansen, F. G. The Escherichia

coli chromosome is organized with the left and right chromosome arms in separate

(10)

139. Wang, X., Liu, X., Possoz, C. & Sherratt, D. J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20, 1727–1731 (2006).

140. Berkmen, M. B. & Grossman, A. D. Subcellular positioning of the origin region of the

Bacillus subtilis chromosome is independent of sequences within oriC, the site of

replica-tion initiareplica-tion, and the replicareplica-tion initiator DnaA. Mol. Microbiol. 63, 150–165 (2007).

141. Teleman, A. A., Graumann, P. L., Lin, D. C. H., Grossman, A. D. & Losick, R. Chro-mosome arrangement within a bacterium. Curr. Biol. 8, 1102–1109 (1998).

142. Jordan, S., Hutchings, M. I. & Mascher, T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol. Rev. 32, 107–146 (2008).

143. Raivio, T. L. Envelope stress responses and Gram-negative bacterial pathogene-sis. Mol. Microbiol. 56, 1119–1128 (2005).

144. Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction.

Annu. Rev. Biochem. 69, 183–215 (2000).

145. Delhaye, A., Collet, J. F. & Laloux, G. Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. MBio 7, 1–10

(2016).

146. Hunke, S., Keller, R. & Müller, V. S. Signal integration by the Cpx-envelope stress system.

FEMS Microbiol. Lett. 326, 12–22 (2012).

147. Rowley, G., Spector, M., Kormanec, J. & Roberts, M. Pushing the envelope: extracy-toplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol. 4, 383–394

(2006).

148. Bernal-Cabas, M., Ayala, J. A. & Raivio, T. L. The Cpx envelope stress response modi-fies peptidoglycan cross-linking via the L,D-transpeptidase LdtD and the novel pro-tein YgaU. J. Bacteriol. 197, 603–614 (2015).

149. Möker, N., Reihlen, P., Krämer, R. & Morbach, S. Osmosensing properties of the histidine protein kinase MtrB from Corynebacterium glutamicum. J. Biol. Chem.

282, 27666–27677 (2007).

150. Möker, N. et al. Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol.

Microbiol. 54, 420– 438 (2004).

151. Möker, N., Krämer, J., Unden, G., Krämer, R. & Morbach, S. In vitro analysis of the two-component system MtrB-MtrA from Corynebacterium glutamicum. J. Bacteriol.

189, 3645– 3649 (2007).

152. Helmann, J. D. Bacillus subtilis extracytoplasmic function (ECF) sigma factors and de-fense of the cell envelope. Curr. Opin. Microbiol. 30, 122–132 (2016).

153. Cao, M. & Helmann, J. D. The Bacillus subtilis extracytoplasmic-function σX factor

regulates modification of the cell envelope and resistance to cationic antimicrobial peptides. J. Bacteriol. 186, 1136–1146 (2004).

154. Perego, M. et al. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis: identification of genes and regulation. Journal of Biological

Chemistry 270, 15598–15606 (1995).

155. Nilsson, L. et al. FIS-dependent trans activation of stable RNA operons of

Esche-richia coli under various growth conditions. J. Bacteriol. 174, 921–929 (1992).

156. Ross, W., Thompson, J. F., Newlands, J. T. & Gourse, R. L. E.coli Fis protein activates ribo-somal RNA transcription in vitro and in vivo. EMBO J. 9, 3733–42 (1990).

(11)

Micro-biol. 51, 395–405 (2004).

158. Wolf, S. G. et al. DNA protection by stress-induced biocrystallization. Nature 400,

83–85 (1999).

159. Karas, V. O., Westerlaken, I. & Meyer, A. S. The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses. J. Bacteriol. 197,

3206–3215 (2015).

160. Zhao, G. et al. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. J. Biol. Chem. 277, 27689–27696 (2002).

161. Setlow, P. Small, Acid-Soluble Spore Proteins of Bacillus Species: Structure, Synthesis, Genetics, Function, and Degradation. Annu. Rev. Microbiol. 42,

319–338 (1988).

162. Sussman, M. D. & Setlow, P. Cloning, nucleotide sequence, and regulation of the Bacillus

subtilis gpr gene, which codes for the protease that initiates degradation of small,

ac-id-soluble proteins during spore germination. J. Bacteriol. 173, 291–300 (1991).

163. Traag, B. A., Pugliese, A., Setlow, B., Setlow, P. & Losick, R. A conserved ClpP-like protease involved in spore outgrowth in Bacillus subtilis. Mol. Microbiol. 90, 160–

166 (2013).

164. Ross, M. A. & Setlow, P. The Bacillus subtilis Hbsu protein modifies the effects of α/β-type, small acid-soluble spore proteins on DNA. J. Bacteriol. 182, 1942–1948

(2000).

165. Klieneberger, E. The natural occurrence of pleuropneumonia-like organism in apparent symbiosis with Streptobacillus moniliformis and other bacteria. J. Pathol. Bacteriol. 40,

93–105 (1935).

166. Onwuamaegbu, M. E., Belcher, R. A. & Soare, C. Cell wall-deficient bacteria as a cause of infections: a review of the clinical significance. J. Int. Med. Res. 33, 1–20 (2005).

167. Ferguson, C. M. J., Booth, N. A. & Allan, E. J. An ELISA for the detection of Bacillus

subtilis L- form bacteria confirms their symbiosis in strawberry. Lett. Appl. Microbiol.

31, 390–394 (2000).

168. Allan, E. J., Hoischen, C. & Gumpert, J. Bacterial L-forms. Advances in applied

microbiolo-gy 68, (Elsevier Inc., 2009).

169. Errington, J. L-form bacteria, cell walls and the origins of life. Open Biol. 3, 120143 (2013).

170. Leaver, M., Domínguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 457, 849–853 (2009).

171. Mercier, R., Kawai, Y. & Errington, J. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria. Elife 3, 1–14 (2014).

172. Ramijan, K. et al. Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes. Nat. Commun. 9, 5164 (2018).

173. Briers, Y. et al. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS One 7, (2012).

174. Cambré, A. et al. Metabolite profiling and peptidoglycan analysis of transient cell wall- deficient bacteria in a new Escherichia coli model system. Environ.

Microbiol. (2014). doi:10.1111/1462-2920.12594

175. Dell’Era, S. et al. Listeria monocytogenes l-forms respond to cell wall deficiency by modifying gene expression and the mode of division. Mol. Microbiol. 73, 306–322

(2009).

176. Koonin, E. V & Mulkidjanian, A. Y. Evolution of cell division: from shear mechanics to complex molecular machineries. Cell 152, 942–4 (2013).

(12)

177. Mercier, R., Domínguez-Cuevas, P. & Errington, J. Crucial role for membrane fluidity in proliferation of primitive cells. Cell Rep. 1, 417–423 (2012).

178. Studer, P. et al. Proliferation of Listeria monocytogenes L-form cells by formation of internal and external vesicles. Nat. Commun. 7, 13631 (2016).

179. Mercier, R., Kawai, Y. & Errington, J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152, 997–1007 (2013).

180. Slavchev, G., Michailova, L. & Markova, N. Stress-induced L-forms of Mycobacterium

bovis: a challenge to survivability. New Microbiol. 36, 157–166 (2013).

181. Prashar, A. et al. Mechanism of invasion of lung epithelial cells by filamentous

Legionella pneumophila. Cell. Microbiol. 14, 1632–1655 (2012).

182. Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic

Esche-richia coli in urinary tract pathogenesis. Proc. Natl. Acad. Sci. 101, 1333–1338 (2004).

183. Gudas, L. J. & Pardee, a B. Model for regulation of Escherichia coli DNA repair functions.

Proc. Natl. Acad. Sci. U. S. A. 72, 2330–2334 (1975).

184. Little, J. W. & Mount, D. W. The SOS regulatory system of Escherichia coli. Cell 29,

11–22 (1982).

185. Cox, M. M. The bacterial RecA protein as a motor protein. Annu. Rev. Microbiol. 57,

551–577 (2003).

186. Menetsk, J. P. & Kowalczykowski, S. C. Enhancement of Escherichia coli RecA protein enzymatic function by dATP. Biochemistry 28, 5871–5881 (1989).

187. Horii, T. et al. Regulation of SOS functions: purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein. Cell 27,

515–522 (1981).

188. Little, J. W. Autodigestion of lexA and phage λ repressors. Proc. Natl. Acad. Sci. 81,

1375–1379 (1984).

189. Erill, I., Campoy, S. & Barbé, J. Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol. Rev. 31, 637–656 (2007).

190. Janion, C. Some aspects of the SOS response system--a critical survey. Acta Biochim.

Pol. 48, 599–610 (2001).

191. Mukherjee, A., Cao, C. & Lutkenhaus, J. Inhibition of FtsZ polymerization by SulA, an in-hibitor of septation in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 95, 2885–90 (1998).

192. Trusca, D., Scott, S., Thompson, C. & Bramhill, D. Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J. Bacteriol. 180, 3946–53

(1998).

193. Justice, S. S., Hunstad, D. A., Seed, P. C. & Hultgren, S. J. Filamentation by

Escherich-ia coli subverts innate defenses during urinary tract infection. Proc. Natl. Acad. Sci.

103, 19884– 19889 (2006).

194. Horvath, D. J. et al. Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli. Microbes Infect. 13, 426–437 (2011).

195. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. D. Unravelling the bi-ology of macrophage infection by gene expression profiling of intracellular Salmonella

enterica. Mol. Microbiol. 47, 103–118 (2003).

196. Rosenberger, C. M. & Brett Finlay, B. Macrophages inhibit Salmonella typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J. Biol.

Chem. 277, 18753–18762 (2002).

(13)

fila-mentous and deficient in FtsZ rings. J. Bacteriol. 188, 1856–65 (2006).

198. Wortinger, M. A., Quardokus, E. M. & Brun, Y. V. Morphological adaptation and inhibi-tion of cell division during stainhibi-tionary phase in Caulobacter crescentus. Mol. Microbiol.

29, 963–973 (1998).

199. Ghaffar, N. M., Connerton, P. L. & Connerton, I. F. Filamentation of Campylobacter in broth cultures. Front. Microbiol. 6, 1–9 (2015).

200. Thomas, C., Hill, D. & Mabey, M. Morphological changes of synchronized Campylobacter

jejuni populations during growth in single phase liquid culture. Lett. Appl. Microbiol. 28,

194–198 (1999).

201. Jones, T. H., Vail, K. M. & McMullen, L. M. Filament formation by foodborne bacteria under sublethal stress. Int. J. Food Microbiol. 165, 97–110 (2013).

202. Chen, K., Sun, G. W., Chua, K. L. & Gan, Y. Modified virulence of antibiotic-induced

Burk-holderia pseudomallei filaments. Antimicrob. Agents Chemother. 49, 1002–9 (2005).

203. Bos, J. et al. Emergence of antibiotic resistance from multinucleated bacterial filaments.

Proc. Natl. Acad. Sci. 112, 178–183 (2015).

204. Pinto, D., Santos, M. A. & Chambel, L. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit. Rev. Microbiol. 41, 61–76 (2015).

205. Xu, H.-S. et al. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8, 313–323 (1982).

206. Oliver, J. D. The viable but nonculturable state in bacteria. J. Microbiol. 43 Spec No,

93–100 (2005).

207. Brenzinger, S., Aart, L. T. Van Der, Wezel, G. P. Van, Lacroix, J. & Glatter, T. Structural and proteomic changes in viable but non-culturable Vibrio cholerae. (2018).

208. Chaiyanan, S. et al. Ultrastructure of coccoid viable but non-culturable Vibrio cholerae.

Environ. Microbiol. 9, 393–402 (2007).

209. Pianetti, A. et al. Morphological changes of Aeromonas hydrophila in response to osmotic stress. Micron 40, 426–433 (2009).

210. Krebs, S. J. & Taylor, R. K. Nutrient-dependent, rapid transition of Vibrio cholerae to coccoid morphology and expression of the toxin co-regulated pilus in this form.

Micro-biology 157, 2942–2953 (2011).

211. Azevedo, N. F. et al. Coccoid form of Helicobacter pylori as a morphological manifes-tation of cell adapmanifes-tation to the environment. Appl. Environ. Microbiol. 73, 3423–3427

(2007).

212. Mizoguchi, H. et al. Diversity in protein synthesis and viability of Helicobacter pylori coccoid forms in response to various stimuli. Infect. Immun. 66, 5555–60 (1998).

213. Costa, K. et al. The morphological transition of Helicobacter pylori cells from spiral to coccoid is preceded by a substantial modification of the cell wail. J. Bacteriol. 181,

3710–3715 (1999).

214. Chaput, C. et al. Role of AmiA in the morphological transition of Helicobacter pylori and in immune escape. PLoS Pathog. 2, 0844–0852 (2006).

215. Signoretto, C. et al. Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl. Environ. Microbiol. 66, 1953–1959 (2000).

216. Day, A. P. & Oliver, J. D. Changes in membrane fatty acid composition during entry of Vibrio

vulnificus into the viable but nonculturable state. J. Microbiol. 42, 69–73 (2004).

217. Klančnik, A., Vučković, D., Jamnik, P., Abram, M. & Možina, S. S. Stress response and viru-lence of heat-stressed Campylobacter jejuni. Microbes Environ. 29, 338–345 (2014).

(14)

218. Klančnik, A., Vučković, D., Plankl, M., Abram, M. & Smole Možina, S. In Vivo Modulation of Campylobacter jejuni virulence in response to environmental stress. Foodborne

Pa-thog. Dis. 10, 566–572 (2013).

219. Kusumoto, A., Asakura, H. & Kawamoto, K. General stress sigma factor RpoS influenc-es time required to enter the viable but non-culturable state in Salmonella enterica.

Microbiol. Immunol. 56, 228–237 (2012).

220. Boaretti, M., Lleò, M. D. M., Bonato, B., Signoretto, C. & Canepari, P. Involvement of

rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environ. Microbiol. 5, 986–996 (2003).

221. Gangaiah, D., Kassem, I. I., Liu, Z. & Rajashekara, G. Importance of polyphosphate kinase 1 for Campylobacter jejuni viable-but-nonculturable cell formation, natural transforma-tion, and antimicrobial resistance. Appl. Environ. Microbiol. 75, 7838–7849 (2009).

222. Darcan, C., Özkanca, R., Iḑ iļ, Ö. & Flint, K. P. Viable but non-culturable state (VBNC) of

Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress

in sea water. Polish J. Microbiol. 58, 307–317 (2009).

223. Pinto, D., Almeida, V., Almeida Santos, M. & Chambel, L. M. M. Resuscitation of

Esch-erichia coli VBNC cells depends on a variety of environmental or chemical stimuli. J. Appl. Microbiol. 110, 1601–1611 (2011).

224. Vilhena, C. et al. Importance of pyruvate sensing and transport for the resuscitation of viable but nonculturable Escherichia coli K-12. J. Bacteriol. (2018). doi:10.1128/JB.00610-18

225. Kearns, D. B. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8,

634–644 (2010).

226. Verstraeten, N. et al. Living on a surface: swarming and biofilm formation. Trends

Microbiol. 16, 496–506 (2008).

227. Daniels, R., Vanderleyden, J. & Michiels, J. Quorum sensing and swarming mi-gration in bacteria. FEMS Microbiol. Rev. 28, 261–289 (2004).

228. Partridge, J. D. & Harshey, R. M. Swarming: flexible roaming plans. J. Bacteriol. 195,

909–918 (2013).

229. Harshey, R. M. & Matsuyama, T. Dimorphic transition in Escherichia coli and

Salmo-nella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc. Natl. Acad. Sci. U. S. A. 91, 8631–8635 (1994).

230. Belas, M. R. & Colwell, R. R. Scanning electron microscope observation of the swarming phenomenon of Vibrio parahaemolyticus. J. Bacteriol. 150, 956–959

(1982).

231. Belas, R., Simon, M. & Silverman, M. Regulation of lateral flagella gene-transcription in

Vibrio parahaemolyticus. J Bacteriol 167, 210–218 (1986).

232. McCarter, L. & Silverman, M. Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol. Microbiol. 4, 1057–62 (1990).

233. Shinoda, S. & Okamoto, K. Formation and function of Vibrio

parahaemolyti-cus lateral flagella. J. Bacteriol. 129, 1266–1271 (1977).

234. Kawagishi, I., Imagawa, M., Imae, Y., McCarter, L. & Homma, M. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol. Microbiol. 20, 693–699 (1996).

235. Belas, R. & Suvanasuthi, R. The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J. Bacteriol. 187,

(15)

236. Rather, P. N. Swarmer cell differentiation in Proteus mirabilis. Environ. Microbiol. 7,

1065– 1073 (2005).

237. Wang, Q., Suzuki, A., Mariconda, S., Porwollik, S. & Harshey, R. M. Sensing wetness: a new role for the bacterial flagellum. EMBO J. 24, 2034–2042 (2005).

238. Belas, R., Goldman, M. & Ashliman, K. Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J. Bacteriol. 177, 823–828 (1995).

239. Little, K., Tipping, M. J. & Gibbs, K. A. Swarmer cell development of the bacterium

Pro-teus mirabilis requires the conserved enterobacterial common antigen biosynthesis

gene rffG. J. Bacteriol. 200, 1–17 (2018).

240. Howery, K. E., Clemmer, K. M., Şimşek, E., Kim, M. & Rather, P. N. Regulation of the Min cell division inhibition complex by the Rcs phosphorelay in Proteus mirabilis. J.

Bacteriol. 197, 2499–2507 (2015).

241. Jiang, C., Brown, P. J. B., Ducret, A. & Brun, Y. V. Sequential evolution of bacterial mor-phology by co-option of a developmental regulator. Nature 506, 489–493 (2014).

242. Lawler, M. L. & Brun, Y. V. Advantages and mechanisms of polarity and cell shape determination in Caulobacter crescentus. Curr. Opin. Microbiol. 10,

630–637 (2007).

243. Stove Poindexter, J. L. & Cohen-Bazire, G. The fine structure of stalked bacteria belonging to the family caulobacteraceae. J. Cell Biol. 23, 587–607 (1964).

244. Curtis, P. D. & Brun, Y. V. Getting in the Loop: Regulation of development in

Caulo-bacter crescentus. Microbiol. Mol. Biol. Rev. 74, 13–41 (2010).

245. Schmidt, J. M. & Stanier, R. Y. The development of cellular stalks in bacteria. J. Cell

Biol. 28, 423–436 (1966).

246. Gonin, M., Quardokus, E. M., O’Donnol, D., Maddock, J. & Brun, Y. V. Regulation of stalk elongation by phosphate in Caulobacter crescentus. J. Bacteriol. 182,

337–347 (2000).

247. Wagner, J. K., Setayeshgar, S., Sharon, L. A., Reilly, J. P. & Brun, Y. V. A nutrient uptake role for bacterial cell envelope extensions. Proc. Natl. Acad. Sci. U. S. A. 103, 11772–11777

(2006).

248. Schlimpert, S. et al. General protein diffusion barriers create compartments within bacterial cells. Cell 151, 1270–1282 (2012).

249. Hernando-Pérez, M. et al. Layered structure and complex mechanochemistry underlie strength and versatility in a bacterial adhesive. MBio 9, 5764–5768

(2018).

250. Tsang, P. H., Li, G., Brun, Y. V., Freund, L. B. & Tang, J. X. Adhesion of single bacterial cells in the micronewton range. Proc. Natl. Acad. Sci. 103, 5764–5768 (2006).

251. Merker, R. I. & Smit, J. Characterization of the adhesive holdfast of marine and fresh-water Caulobacters. Appl. Environ. Microbiol. 54, 2078–2085 (1988).

252. Wagner, J. K. & Brun, Y. V. Out on a limb: How the Caulobacter stalk can boost the study of bacterial cell shape. Mol. Microbiol. 64, 28–33 (2007).

253. Persat, A., Stone, H. A. & Gitai, Z. The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nat. Commun. 5, 1–9 (2014).

254. Curtis, P. D. Stalk formation of Brevundimonas and how it compares to

Cau-lobacter crescentus. PLoS One 12, 1–24 (2017).

255. Cserti, E. et al. Dynamics of the peptidoglycan biosynthetic machinery in the stalked budding bacterium Hyphomonas neptunium. Mol. Microbiol. 103, 875–895 (2017).

(16)

256. Gould, G. W. History of science - Spores: Lewis B Perry memorial lecture 2005.

J. Appl. Microbiol. 101, 507–513 (2006).

257. Henriques, A. O. & Moran, Jr., C. P. Structure, assembly, and function of the spore surface layers. Annu. Rev. Microbiol. 61, 555–588 (2007).

258. Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. & Van Wezel, G. P. Bac-terial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies.

Nat. Rev. Microbiol. 12, 115–124 (2014).

259. Glaser, P. et al. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11, 1160–1168 (1997).

260. Bylund, J. E., Haines, M. A., Piggot, P. J. & Higgins, M. L. Axial filament formation in

Bacil-lus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol

to exponential-phase cultures approaching stationary phase. J. Bacteriol. 175, 1886–1890

(1993).

261. Ben-Yehuda, S., Rudner, D. Z. & Losick, R. RacA, a bacterial protein that anchors chromo-somes to the cell poles. Science 299, 532–536 (2003).

262. Bath, J., Ling Juan Wu, Errington, J. & Wang, J. C. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290,

995–997 (2000).

263. Shin, J. Y. et al. Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum. Elife 4, 1–22 (2015).

264. Lopez-Garrido, J. et al. Chromosome translocation inflates Bacillus forespores and impacts cellular morphology. Cell 172, 758-770.e14 (2018).

265. Tocheva, E. I. et al. Peptidoglycan transformations during Bacillus subtilis sporulation.

Mol. Microbiol. 88, 673–686 (2013).

266. Ojkic, N., López-Garrido, J., Pogliano, K. & Endres, R. G. Cell-wall remod-eling drives engulfment during Bacillus subtilis sporulation. Elife 5, 1–30

(2016).

267. Popham, D. L. & Bernhards, C. B. Spore peptidoglycan. Microbiol. Spectr. 3, 1–21 (2015).

268. Henriques, A. O. & Moran, C. P. Structure and assembly of the bacterial endospore coat.

Methods 20, 95–110 (2000).

269. Foster, S. J. Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis. J. Bacteriol.

174, 464– 470 (1992).

270. van der Meij, A., Worsley, S. F., Hutchings, M. I. & van Wezel, G. P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41,

392–416 (2017).

271. Yang, W. et al. The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor. Sci. Rep. 7, 1–13 (2017).

272. Claessen, D. et al. Two novel homologous proteins of Streptomyces

coeli-color and Streptomyces lividans are involved in the formation of the rodlet

layer and mediate attachment to a hydrophobic surface. Mol. Microbiol. 44,

1483–1492 (2002).

273. Claessen, D. et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev.

17, 1714– 1726 (2003).

274. Willemse, J., Borst, J. W., De Waal, E., Bisseling, T. & Van Wezel, G. P. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces. Genes

(17)

Dev. 25, 89–99 (2011).

275. Zhang, L., Willemse, J., Claessen, D. & Van Wezel, G. P. SepG coordinates sporula-tion-specific cell division and nucleoid organization in Streptomyces coelicolor. Open

Biol. 6, (2016).

276. Möller, J., Luehmann, T., Hall, H. & Vogel, V. The race to the pole: how high-aspect ratio shape and heterogeneous environments limit phagocytosis of filamentous Escherichia

coli bacteria by macrophages. Nano Lett. 12, 2901–2905 (2012).

277. Prashar, A. et al. Filamentous morphology of bacteria delays the timing of pha-gosome morphogenesis in macrophages. J. Cell Biol. 203, 1081–1097 (2013).

278. Hyams, C., Camberlein, E., Cohen, J. M., Bax, K. & Brown, J. S. The Streptococcus

pneu-moniae capsule inhibits complement activity and neutrophil phagocytosis by multiple

mechanisms. Infect. Immun. 78, 704–715 (2010).

279. Dalia, A. B. & Weiser, J. N. Minimization of bacterial size allows for complement evasion and is overcome by the agglutinating effect of antibody. Cell Host Microbe 10, 486–496

(2011).

280. Sanchez-Puelles, J. M. et al. Searching for autolysin functions: characteriza-tion of a pneumococcal mutant deleted in the lytA gene. Eur. J. Biochem. 158,

289–293 (1986).

281. Rodriguez, J. L., Dalia, A. B. & Weiser, J. N. Increased chain length promotes pneumo-coccal adherence and colonization. Infect. Immun. 80, 3454–3459 (2012).

282. Kawai, Y., Mercier, R. & Errington, J. Bacterial cell morphogenesis does not require a preexisting template structure. Curr. Biol. 24, 863–867 (2014).

283. Monahan, L. G. et al. Rapid conversion of Pseudomonas aeruginosa to a spherical cell morphotype facilitates tolerance to carbapenems and penicillins but increases sus-ceptibility to antimicrobial peptides. Antimicrob. Agents Chemother. 58, 1956–1962

(2014).

284. Lewis, K. Persister Cells. Annu. Rev. Microbiol. 64, 357–372 (2010).

285. Kim, J. S., Chowdhury, N., Yamasaki, R. & Wood, T. K. Viable but non-culturable and persistence describe the same bacterial stress state. Environ. Microbiol. 20,

2038–2048 (2018).

286. Mahamid, J. et al. A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms. J. Struct. Biol. 192,

262– 269 (2015).

287. Briegel, A. & Uphoff, S. Editorial overview: the new microscopy. Curr. Opin.

Micro-biol. 43, 208–211 (2018).

288. Paradis-Bleau, C. et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110–1120 (2010).

289. Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell

143, 1097–1109 (2010).

290. Dahl, R. & Staehelin, L. A. High-pressure freezing for the preservation of biological structure: theory and practice. J. Electron Microsc. Tech. 13, 165–174 (1989).

291. Dubochet, J. & Mcdowall, A. Vitrification of pure water for electron-microscopy. J. Microsc.

124, RP3--RP4 (1981).

292. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21,

129– 228 (1988).

293. Matias, V. R. F. & Beveridge, T. J. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol.

(18)

Microbiol. 56, 240–251 (2005).

294. Matias, V. R. F. & Beveridge, T. J. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in

Staphylococcus aureus. J. Bacteriol. 188, 1011–1021 (2006).

295. Zuber, B. et al. Direct visualization of the outer membrane of myco-bacteria and corynemyco-bacteria in their native state. J. Bacteriol. 190,

5672–5680 (2008).

296. Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M. & Engelhardt, H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections re-veal the lipid bilayer structure. Proc. Natl. Acad. Sci. 105, 3963–3967 (2008).

297. Al-Amoudi, A., Studer, D. & Dubochet, J. Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J. Struct. Biol. 150, 109–121 (2005).

298. Marko, M., Hsieh, C., Moberlychan, W., Mannella, C. A. & Frank, J. Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of fro-zen-hydrated biological samples. J. Microsc. 222, 42–47 (2006).

299. Marko, M., Hsieh, C., Schalek, R., Frank, J. & Mannella, C. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat. Methods 4,

215–217 (2007).

300. Rigort, A. & Plitzko, J. M. Cryo-focused-ion-beam applications in structural biolo-gy. Arch. Biochem. Biophys. 581, 122–130 (2015).

301. Diebolder, C. A., Koster, A. J. & Koning, R. I. Pushing the resolution limits in cryo-electron tomography of biological structures. J. Microsc. 248, 1–5 (2012).

302. Chen, S. et al. Electron cryotomography of bacterial cells. J. Vis. Exp. 2–6 (2010). doi:10.3791/1943

303. Gan, L. & Jensen, G. J. Electron tomography of cells. Q. Rev. Biophys. 45, 27–56 (2012).

304. Oikonomou, C. M. & Jensen, G. J. A new view into prokaryotic cell biology from electron cryotomography. Nat. Rev. Microbiol. 14, 205–220 (2016).

305. Alton, G. G. & Forsyth, J. R. L. Brucella. in Medical Microbiology (ed. Baron, S.) (Univer-sity of Texas Medical Branch at Galveston, 1996).

306. Conde-Alvarez, R. et al. Synthesis of phosphatidylcholine, a typical eukaryotic phospho-lipid, is necessary for full virulence of the intracellular bacterial parasite Brucella

abor-tus. Cell. Microbiol. 8, 1322–1335 (2006).

307. Lamontagne, J. et al. Extensive cell envelope modulation is associated with viru-lence in Brucella abortus. J. Proteome Res. 6, 1519–1529 (2007).

308. Conde-Álvarez, R. et al. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. PLoS Pathog. 8, (2012).

309. Smith, J. A. Brucella lipopolysaccharide and pathogenicity: the core of the matter.

Viru-lence 9, 379–382 (2018).

310. van Leeuwen, L. M., van der Sar, A. M. & Bitter, W. Animal models of tuberculosis: zebra-fish. Cold Spring Harb. Perspect. Med. 5, a018580–a018580 (2015).

311. Jankute, M., Cox, J. A. G., Harrison, J. & Besra, G. S. Assembly of the mycobacterial cell wall.

Annu. Rev. Microbiol. 69, 405–423 (2015).

312. Sani, M. et al. Direct visualization by Cryo-EM of the mycobacterial capsular layer: A labile structure containing ESX-1-secreted proteins. PLoS Pathog. 6, (2010).

313. Mickiewicz, K. M. et al. Possible role of L-form switching in recurrent urinary tract infection. Nat. Commun. 10, 1–9 (2019).

(19)

314. Akbar, A. & Farni, P. Morphological characterization of Mycobacterium

tubercu-losis. in Understanding Tuberculosis - Deciphering the Secret Life of the Bacilli

(2012). doi:10.5772/29644

315. Vijay, S. et al. Ultrastructural analysis of cell envelope and accumulation of lipid inclu-sions in clinical Mycobacterium tuberculosis isolates from sputum, oxidative stress, and iron deficiency. Front. Microbiol. 8, 1–12 (2018).

316. Comolli, L. R., Kundmann, M. & Downing, K. H. Characterization of intact subcellular bodies in whole bacteria by cryo-electron tomography and spectroscopic imaging. J.

Microsc. 223, 40– 52 (2006).

317. May, J. F., Splain, R. A., Brotschi, C. & Kiessling, L. L. A tethering mechanism for length control in a processive carbohydrate polymerization. Proc. Natl. Acad. Sci. U. S. A. 106,

11851–11856 (2009).

318. Justen, A. M. et al. Polysaccharide length impacts mycobacterial cell shape and antibiotic susceptibility. Sci. Adv. article in press (2020).

319. Beeby, M., Gumbart, J. C., Roux, B. & Jensen, G. J. Architecture and assembly of the Gram- positive cell wall. Mol. Microbiol. 88, 664–672 (2013).

320. Gan, L., Chen, S. & Jensen, G. J. Molecular organization of Gram-negative peptidoglycan.

Proc. Natl. Acad. Sci. 105, 18953–18957 (2008).

321. McCormick, J. R. Cell division is dispensable but not irrelevant in Streptomyces. Curr.

Opin. Microbiol. 12, 689–698 (2009).

322. Prosser, J. I. & Tough, A. J. Growth mechanisms and growth kinetics of filamentous microorganisms. Crit. Rev. Biotechnol. 10, 253–74 (1991).

323. Mincer, T. J., Jensen, P. R., Kauffman, C. A. & Fenical, W. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl.

Environ. Microbiol. 68, 5005–5011 (2002).

324. Maldonado, L. A. et al. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int. J.

Syst. Evol. Microbiol. 55, 1759–66 (2005).

325. Tuttle, R. N. et al. Detection of Natural Products and Their Producers in Ocean Sediments.

Appl. Environ. Microbiol. 85, 1–15 (2019).

326. Subramani, R. & Sipkema, D. Marine rare actinomycetes: A promising source of struc-turally diverse and unique novel natural products. Marine Drugs 17, (2019).

327. Jensen, P. R., Dwight, R. & Fenical, W. Distribution of actinomycetes in near-shore tropical marine sediments. Appl. Environ. Microbiol. 57, 1102–1108 (1991).

328. Jensen, P. R., Moore, B. S. & Fenical, W. The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat. Prod. Rep. 32, 738–751

(2015).

329. Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery.

Science 351, 969–972 (2016).

330. Strunk, K. M., Wang, K., Ke, D., Gray, J. L. & Zhang, P. Thinning of large mammalian cells for cryo-TEM characterization by cryo-FIB milling. J. Microsc. 247, 220–227 (2012).

331. Harapin, J. et al. Structural analysis of multicellular organisms with cryo-electron tomogra-phy. Nat. Methods 12, 634–636 (2015).

332. Böck, D. et al. In situ architecture, function, and evolution of a contractile injection system.

Science 357, 713–717 (2017).

333. Herrou, J. et al. Brucella periplasmic protein EipB is a molecular determinant of cell envelope integrity and virulence. J. Bacteriol. 201, 1–20 (2019).

(20)

334. Herrou, J. et al. Periplasmic protein EipA determines envelope stress resistance and virulence in Brucella abortus. Mol. Microbiol. 0, 1–25 (2019).

335. Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat.

Me-thods 9, 676–682 (2012).

336. Zheng, Q. S., Braunfeld, M. B., Sedat, J. W. & Agard, D. A. An improved strategy for auto-mated electron microscopic tomography. J. Struct. Biol. 147, 91–101 (2004).

337. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three- dimensional image data using IMOD. J. Struct. Biol. 116, 71–6

(1996).

338. Glauner, B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal. Biochem. 172, 451–464 (1988).

339. Ellwood, D. C. The wall content and composition of Bacillus substilis var. niger grown in a chemostat. Biochem. J. 118, 367–373 (1970).

340. Tomita, S. et al. Comparison of components and synthesis genes of cell wall teichoic acid among Lactobacillus plantarum strains. Biosci. Biotechnol. Biochem. 74, 928–

933 (2010).

341. Rausch, M. et al. Coordination of capsule assembly and cell wall bio-synthesis in Staphylococcus aureus. Nat. Commun. 10, 1404 (2019).

342. Rajagopal, M. & Walker, S. Envelope structures of Gram-positive bacteria. in

Assess-ment & Evaluation in Higher Education 37, 1–44 (2015).

343. Yother, J. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation . Annu. Rev. Microbiol. 65, 563–

581 (2010).

344. Brown, S., Santa Maria, J. P. & Walker, S. Wall teichoic acids of Gram-positive bacteria.

Annu. Rev. Microbiol. 67, 313–336 (2013).

345. Neuhaus, F. C. & Baddiley, J. A continuum of anionic charge: structures and functions of D- alanyl-teichoic acids in Gram-positive bacteria. Microbiology 67, 686–723

(2003).

346. Archibald, A. R., Armstrong, J. J., Baddiley, J. & Hay, J. B. Teichoic acids and the struc-ture of bacterial walls. Nastruc-ture 191, 570–2 (1961).

347. Bos, M. P. & Tommassen, J. Biogenesis of the Gram-negative bacterial outer membrane.

Curr. Opin. Microbiol. 7, 610–616 (2004).

348. Daniel, R. A. & Errington, J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776 (2003).

349. Brown, P. J. B., Kysela, D. T. & Brun, Y. V. Polarity and the diversity of growth mecha-nisms in bacteria. Semin. Cell Dev. Biol. 22, 790–798 (2011).

350. Sieger, B. & Bramkamp, M. Interaction sites of DivIVA and RodA from

Corynebac-terium glutamicum. Front. Microbiol. 5, 1–11 (2014).

351. Baranowski, C. et al. Maturing Mycobacterium smegmatis peptidoglycan re-quires non- canonical crosslinks to maintain shape. Elife 7, 1–24 (2018).

352. Meniche, X. et al. Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc. Natl. Acad. Sci. U. S. A. 111, E3243-51 (2014).

353. García-Heredia, A. et al. Peptidoglycan precursor synthesis along the sidewall of pole-growing mycobacteria. Elife 7, 1–22 (2018).

354. Melzer, E. S., Sein, C. E., Chambers, J. J. & Sloan Siegrist, M. DivIVA concen-trates mycobacterial cell envelope assembly for initiation and stabilization of

(21)

polar growth. Cytoskeleton 75, 498–507 (2018).

355. Flärdh, K., Richards, D. M., Hempel, A. M., Howard, M. & Buttner, M. J. Regulation of apical growth and hyphal branching in Streptomyces. Curr. Opin. Microbiol. 15,

737–743 (2012).

356. Kim, Y.-M. & Kim, J. Formation and dispersion of mycelial pellets of Streptomyces

coelicolor A3(2). J. Microbiol. 42, 64–7 (2004).

357. De Jong, W., Wösten, H. A. B., Dijkhuizen, L. & Claessen, D. Attachment of Streptomyces

coelicolor is mediated by amyloida fimbriae that are anchored to the cell surface via

cellulose. Mol. Microbiol. 73, 1128–1140 (2009).

358. van Dissel, D. et al. Production of poly-β-1,6-N-acetylglucosamine by MatAB is re-quired for hyphal aggregation and hydrophilic surface adhesion by Streptomyces.

Microb. cell (Graz, Austria) 5, 269–279 (2018).

359. Chaplin, A. K. et al. GlxA is a new structural member of the radical copper oxidase fami-ly and is required for gfami-lycan deposition at hyphal tips and morphogenesis of

Streptomy-ces lividans. Biochem. J. 469, 433–444 (2015).

360. Liman, R., Facey, P. D., van Keulen, G., Dyson, P. J. & Del Sol, R. A Laterally acquired galac-tose oxidase-like gene is required for aerial development during osmotic stress in

Strep-tomyces coelicolor. PLoS One 8, (2013).

361. Petrus, M. L. C. et al. The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces. Open Biol. 6, (2016).

362. Chater, K. F., Biró, S., Lee, K. J., Palmer, T. & Schrempf, H. The complex extracellular biolo-gy of Streptomyces. FEMS Microbiol. Rev. 34, 171–198 (2010).

363. Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl.

Acad. Sci. 111, 15635–15640 (2014).

364. Glaser, L. & Burger, M. M. The synthesis of teichoic acids (3) gly-cosylation of polyglycerolphosphate. J. Biol. Chem. 239, 3187–91

(1964).

365. Lipkin, D., Phillips, B. E. & Abrell, J. W. The action of hydrogen gluoride on nucleo-tides and other esters of phosphorus (V) acids. J. Org. Chem. 34, 1539–1547 (1969).

366. Siegel, S. D., Liu, J. & Ton-That, H. Biogenesis of the Gram-positive bacterial cell enve-lope. Curr. Opin. Microbiol. 34, 31–37 (2016).

367. Światek, M. A. et al. The ROK Family regulator Rok7B7 pleiotropically affects xylose utili-zation, carbon catabolite repression, and antibiotic production in Streptomyces

coelicol-or. J. Bacteriol. 195, 1236–1248 (2013).

368. Tong, Y., Charusanti, P., Zhang, L., Weber, T. & Lee, S. Y. CRISPR-Cas9 Based engineer-ing of actinomycetal genomes. ACS Synth. Biol. 4, 1020–1029 (2015).

369. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

370. Yokogawa, K., Kawata, S., Takemura, T. & Yoshimura, Y. Purification and properties of lytic enzymes from Streptomyces globisporus 1829. Agric. Biol. Chem. 39, 1533–

1543 (1975).

371. Bronneke, V. & Fiedler, F. Production of bacteriolytic enzymes by Streptomyces

glo-bisporus regulated by exogenous bacterial cell walls. Appl. Environ. Microbiol. 60,

785–791 (1994).

372. Zacchetti, B. et al. Aggregation of germlings is a major contributing factor towards mycelial heterogeneity of Streptomyces. Sci. Rep. 6, 27045 (2016).

Referenties

GERELATEERDE DOCUMENTEN

Nanowire Templates: Commercially available Nuclepore® (Whatman Inc.) polycarbonate track-etched (PCTE) membranes with a thickness of 6 μm, a pore diameter of 200 nm and a

However, protoplast fusion has potential disadvantages, such as the requirement for multiple fusion and regeneration phases, a short time frame during which recombination can occur

Given the fact that Grade 12 learner results had declined steadily from 2011 to 2013, in which the majority of learners could not access higher education or employment after Grade

While the responses of cells to cell-wall-targeting antibiotics are the best known examples that lead to wall deficiency, it was recently found that hyperosmotic stress caused

We propose that, in α-glucan-containing filamentous fungi, the chitin-α-1,3-glucan in- teraction and Crh enzymes may act as reciprocal backup systems to ensure cell wall integrity

The patterns of structural change models are concerned with mechanisms by which underdeveloped countries transform their economic structures from a heavy emphasis on

Volgens dit onderzoek kan Beating the Blues als therapievorm voor lichte tot matige depressies worden aangemerkt als zorg die voldoet aan de stand van de wetenschap en praktijk.. Dit