Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
A “Multimessenger” Approach to Substructure Lensing
Chuck Keeton
June 23, 2009
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Millilensing: A past, a present, a future?
Past.
I Mao & Schneider 1998: connect flux ratios and substructure
I Metcalf & Madau 2001, Chiba 2002: propose using flux ratios to test CDM
I Dalal & Kochanek 2002: use flux ratios to constrain substructure mass fraction
Present.
I Does lensing need too much substructure? (cf. Chen)
I Can we see it? (cf. Vegetti, Fassnacht)
Future.
I Can we learn more about substructure?
I Is there really a populationsofclumps?
I Can we constrain its: mass function? spatial distribution?
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Flux ratios
Flux ratio anomalies are hard to miss, and hard to misinterpret.
(CRK, Gaudi & Petters 2003, 2005; Congdon & CRK 2005; Yoo et al. 2005, 2006)
They reveal the total amount of substructure, Z
m dN dm dm
But single-wavelength flux ratios tell you (essentially) nothing about the mass function.
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Finite source effects: Theory
Magnification vs. source size, given an SIS clump. (Dobler & CRK 2006)
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5 -1 -0.5 0 0.5 1 1.5 2
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2
-1.5 -1 -0.5 0 0.5 1 1.5 2
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.001 0.01 0.1 1 10
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.001 0.01 0.1 1 10 1.1
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0.001 0.01 0.1 1 10
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Finite source effects: Observations
Heuristically, each wavelength probes substructure above some mass threshold:
δµ(λ) ∼ Z mhi
m(Rsrc(λ))
m dN dm dm Plus, useful “resonance” if Rein(m) ≈ Rsrc. Many possibilities:
I radio
I near-IR
I optical emission lines
I optical continuum
I X-ray
Of course, need mapping λ ↔ Rsrc.
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
New observables?
Multi-wavelength flux ratios.
I need to know Rsrc(λ)
I need to be careful about variability, microlensing, extinction Image positions.
I can be perturbed at the & 1–10 mas level(cf. Chen)
I but are position shifts unique to substructure? probably not Time delays.
I there is interest in measuring more precise time delays
I might they be sensitive to substructure?
(Also, gravitational imaging . . . cf. Vegetti)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Time delay millilensing
(CRK & Moustakas 2009)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Time delay millilensing
(CRK & Moustakas 2009)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Time delay millilensing
(CRK & Moustakas 2009)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Time delay millilensing
(CRK & Moustakas 2009)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Time delay millilensing
(CRK & Moustakas 2009)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Random time delays
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Scalings
σt∝ fs
m2 hmi
!1/2
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Time delay anomalies
(Congdon, CRK & Nordgren ApJ submitted)
Use realistic smooth models to create mock 4-image lenses.
I Ellipticities and m = 4 multipoles from galaxy photometry.
(Bender et al. 1989, Saglia et al. 1993, Jørgensen et al. 1995)
I Shears from N -body simulations. (Holder & Schechter 2003)
Find mock lenses that match each observed image pair:
I d1= distance between the images
I d2= distance to next-nearest image
I parities
Examine distribution of time delays among the matching mock lenses. Identify outliers as anomalies.
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
(Congdon, CRK & Nordgren ApJ submitted)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
RX J1131−1231
Morgan et al. (2006): M2 (2.2 ± 1.6 d) M1 (9.6 ± 2.0 d) S1.
Smooth models predict M1 leads M2.
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
RX J1131−1231
Morgan et al. (2006): M2 (2.2 ± 1.6 d) M1 (9.6 ± 2.0 d) S1.
But substructure can reverse that ordering. (CRK & Moustakas 2009)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Lensing with stochastic substructure
It looks like we want to use multiple observables to probe substructure.
Can we develop a general theory of substructure lensing?
1. Improve substructure modeling:
I faster
I richer — broader substructure models
I better — understanding of systematic uncertainties 2. Develop general insights, e.g.:
I how is information about the substructure population encoded in lensing observables?
I to what extent are flux ratios, image positions, and time delays complementary?
I are there unique signatures of clumpy substructure?
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Substructure modeling
Bayesian framework.
I d, data
I q, smooth model parameters
I s, substructure population parameters
I c = {xi, mi}, clump positions and masses[nuisance!]
Posterior probability, marginalizing over nuisance parameters:
P (s, q | d) ∝ Z
L(d | c, s, q) P (c | s, q) P (s|q) P (q) d3Nc Further marginalize over smooth model parameters:
P (s) ∝ Z
P (s, q | d) dq
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Let’s think for a moment
Can we avoid marginalizing over N clump positions and masses?
(Please?!)
What really matters is Φ = {φ, αx, αy, κ, γc, γs}
I potential, φ
I deflection, (αx, αy)
I convergence, κ
I shear, (γc, γs) at each image position.
Dream: analytic probability distribution P ({Φ}).
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Use polar coordinates (ri, θi) centered on an image:
φ = X
i
mi
π ln ri
αx
αy
= −X
i
mi
πri
cos θi
sin θi
γc γs
= −X
i
mi πri2
cos 2θi sin 2θi
(Small corrections for any clump that overlaps line of sight.) Can we just use the Central Limit Theorem?
No: variances diverge.
Trouble caused by clump(s) closest to image. If we can handle those, we can use CLT on the bulk of the remaining population.
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Use polar coordinates (ri, θi) centered on an image:
φ = X
i
mi
π ln ri
αx
αy
= −X
i
mi
πri
cos θi
sin θi
γc γs
= −X
i
mi πri2
cos 2θi sin 2θi
(Small corrections for any clump that overlaps line of sight.) Can we just use the Central Limit Theorem?
No: variances diverge.
Trouble caused by clump(s) closest to image. If we can handle those, we can use CLT on the bulk of the remaining population.
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Clump population
N clumps.
I position: xi
I “mass” [with dimension of area]: mi= Mi/Σcrit
Assume clumps are independent and identically distributed (i.i.d.).
Then probabilities multiply:
ptot(x1, m1, x2, m2, . . .) = p(x1, m1) × p(x2, m2) × . . . If positions and masses are separable:
p(xi, mi) = px(xi) pm(mi)
More intuitive is the mean surface mass density in substructure — what you get if you average over many realizations:
κs(x) = N Z
p(x, m) m dm ⇒ κs(x) = N hmi px(x)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Local analysis: Uniform case
Goal: find probability distributions for most extreme shear, deflection, and potential.
Work through simple case analytically for illustration.
Uniform probability:
px(x) = κs
N hmi
(Over some large but finite area such thatR px(x) d2x = 1.) Polar coordinates (ri, θi) centered on an image. Shear strength:
γi= mi πri2
What is the probability distribution for the largest shear?
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Probability that the shear from a given clump is bigger than γ:
Pi(> γ) = Z
mi πr2i
>γ
px(xi) pm(mi) d2xi dmi
= 1
N hmi Z
dm pm(m) Z
dθ
Z (πγm)1/2
0
dr r κs
= 1
N hmi Z
dm pm(m) × 2π × 1 2
m πγ
κs
= κs N γ
Probability that all shears are smaller than γ:
Pall(< γ) =
1 − κs
N γ
N
→ exp
−κs
γ
for N → ∞ This is just the cumulative probability distribution for γmax!
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Deflection
Deflection strength:
αi= mi πri
What is the probability distribution for the largest deflection?
Probability that the deflection from a given clump is bigger than α:
Pi(> α) = Z
mi πri>α
px(xi) pm(mi) d2xi dmi
= 1
N hmi Z
dm pm(m) Z
dθ Z παm
0
dr r κs
= κs
N πα2 m2
hmi
Probability that all deflections are smaller than α:
Pall(< α) = 1 − κs N πα2
m2 hmi
!N
→ exp − κs πα2
m2 hmi
!
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Example: Uniform case
Basic population parameters:
κs = 0.01 Rmax = 10000
N = 109189 Mass function:
dN
dM ∝ M−1.8 (M1< M < M2) hM i = 108M
M2
M1 = 100
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Example: Isothermal case
Basic population parameters:
κs(r) = 0.01 r Rmax = 10000
N = 1091 Mass function:
dN
dM ∝ M−1.8 (M1< M < M2) hM i = 108M
M2 M1
= 100
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Effects of mass function
Fiducial mass function,same hmi, or same meff =m2 / hmi.
Local shear:
0 0.2 0.4 0.6 0.8 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
shear
0 0.2 0.4 0.6 0.8 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
shear
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Fiducial mass function,same hmi, or same meff =m2 / hmi.
Local deflection:
0 0.2 0.4 0.6 0.8 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
deflection (arcsec)
0 0.2 0.4 0.6 0.8 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
deflection (arcsec)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Fiducial mass function,same hmi, or same meff =m2 / hmi.
Local potential:
0 0.2 0.4 0.6 0.8 1
-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002
potential (arcsec^2)
0 0.2 0.4 0.6 0.8 1
-0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002
potential (arcsec^2)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Long-range analysis
Illustrate with deflection:
αx=X
i
αxi
Variance:
var(αx) = α2x − hαxi2
= X
i
X
j
hαxiαxji − X
i
hαxii
!2
= X
i
α2xi +X
i
X
j6=i
hαxii hαxji −
N hαxii2
= Nα2xi − N hαxii2
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
hαxii = 1 N hmi
Z
dmi pm(mi) Z
d2xi κs(xi) micos θi
πri
α2xi
= 1
N hmi Z
dmi pm(mi) Z
d2xi κs(xi) micos θ πri
2
Note
N hαxii2∼ O 1 N
Thus
var(αx) ≈ Nα2xi = m2 hmi
Z
d2xi κs(xi) cos θ πri
2
Same applies to all observables. Question is: are long-range effects significant compared with local effects?
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Local vs. total
Local ortotal.
Shear:
0 0.2 0.4 0.6 0.8 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
shear
0 0.2 0.4 0.6 0.8 1
0 0.02 0.04 0.06 0.08 0.1
shear
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Local ortotal.
Deflection:
0 0.2 0.4 0.6 0.8 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
deflection (arcsec)
0 0.2 0.4 0.6 0.8 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
deflection (arcsec)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Local ortotal.
Potential:
0 0.2 0.4 0.6 0.8 1
-4 -3 -2 -1 0 1 2 3
potential (arcsec^2)
0 0.2 0.4 0.6 0.8 1
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
potential (arcsec^2)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Effects of mass function
Fiducial mass function,same hmi, or same meff =m2 / hmi.
Total shear:
0 0.2 0.4 0.6 0.8 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
shear
0 0.2 0.4 0.6 0.8 1
0 0.02 0.04 0.06 0.08 0.1
shear
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Fiducial mass function,same hmi, or same meff =m2 / hmi.
Total deflection:
0 0.2 0.4 0.6 0.8 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
deflection (arcsec)
0 0.2 0.4 0.6 0.8 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
deflection (arcsec)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Fiducial mass function,same hmi, or same meff =m2 / hmi.
Total potential:
0 0.2 0.4 0.6 0.8 1
-4 -3 -2 -1 0 1 2 3
potential (arcsec^2)
0 0.2 0.4 0.6 0.8 1
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
potential (arcsec^2)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Effects of spatial distribution
Uniformvs.isothermal.
Total shear:
0 0.2 0.4 0.6 0.8 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
shear
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Uniformvs.isothermal.
Total deflection:
0 0.2 0.4 0.6 0.8 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
deflection (arcsec)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Uniformvs.isothermal.
Total potential:
0 0.2 0.4 0.6 0.8 1
-4 -3 -2 -1 0 1 2 3
potential (arcsec^2)
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Lensing Complementarity
Scaled distance, ˆr = r/Rein.
observable mnemonic mass scale spatial scale fluxes δµ ∼ 1/ˆr2 none quasi-local positions δx ∼ Rein/ˆr m2 / hmi intermediate time delays δt ∼ R2einln ˆr m2 / hmi long-range
Different observables contain different information about the clump population.
⇒ Even we are frank about systematic uncertainties, we can still expect to learn a lot of new things about substructure.
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Work in progress
Better characterize spatial dependence.
I How many clumps do you need to account for?
Allow “puffy” clumps.
I How many clumps overlap the line of sight?
Line of sight effects? (cf. Chen)
Use this formalism to simplify and enrich substructure modeling.
Stay tuned. . .
I new multi-wavelength flux ratio data
I gravlens 2.0
Flux ratios Finite source Time delays
Millilensing Anomalies General Theory
Clump pop’n Local analysis Local examples Long-range Local vs. total Mass function Spatial dist’n Complementarity Biases
Biases?
Are there effects that might bias the amount of substructure found in lens galaxies?
I Shape and inclination. (Mandelbaum, van den Ven & CRK 2009)
I Evironment? (Oguri)
I Line of sight? (Chen)