• No results found

University of Groningen On monodromy in integrable Hamiltonian systems Martynchuk, Nikolay

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen On monodromy in integrable Hamiltonian systems Martynchuk, Nikolay"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

On monodromy in integrable Hamiltonian systems

Martynchuk, Nikolay

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Martynchuk, N. (2018). On monodromy in integrable Hamiltonian systems. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

[1] V. I. Arnold, A theorem of Liouville concerning integrable problems of dy-namics, Sibirsk. Mat. Zh. (1963), no. 2, 471–474.

[2] V. I. Arnol’d, Mathematical methods of classical mechanics, 2 ed., Graduate

Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989, Translated by K. Vogtmann and A. Weinstein.

[3] V.I. Arnol’d and A. Avez, Ergodic problems of classical mechanics, W.A.

Benjamin, Inc., 1968.

[4] M. Audin, Torus actions on symplectic manifolds, Birkh¨auser, 2004.

[5] L. Bates and R. Cushman, Scattering monodromy and the A1 singularity,

Central European Journal of Mathematics 5 (2007), no. 3, 429–451.

[6] L.M. Bates, Monodromy in the champagne bottle, Journal of Applied

Math-ematics and Physics (ZAMP) 42 (1991), no. 6, 837–847.

[7] L.M. Bates and F. Fass`o, No monodromy in the champagne bottle, or

singu-larities of a superintegrable system, J. Geom. Mech. 8 (2016), no. 4, 375–389.

[8] L.M. Bates and M. Zou, Degeneration of hamiltonian monodromy cycles,

Nonlinearity 6 (1993), no. 2, 313–335.

[9] S. Bochner, Compact groups of differentiable transformations, Annals of

Mathematics 46 (1945), no. 3, 372–381.

[10] A.V. Bolsinov, Izosimov A.M., A.Y. Konyaev, and A.A. Oshemkov, Algebra

and topology of integrable systems. Research problems (in Russian), Trudy

Sem. Vektor. Tenzor. Anal. 28 (2012), 119–191.

[11] A.V. Bolsinov and A.T. Fomenko, Integrable Hamiltonian Systems:

Geom-etry, Topology, Classification, CRC Press, 2004.

[12] A.V. Bolsinov, S.V. Matveev, and Fomenko A.T., Topological classification of integrable Hamiltonian systems with two degrees of freedom. list of systems of small complexity, Russian Mathematical Surveys 45 (1990), no. 2, 59.

(3)

114 BIBLIOGRAPHY

[13] M. Born, Zur Quantenmechanik der Stoßvorg¨ange, Zeitschrift f¨ur Physik 37

(1926), 863–867.

[14] H.W. Broer, K. Efstathiou, and O.V. Lukina, A geometric fractional

mon-odromy theorem, Discrete and Continuous Dynamical Systems 3 (2010), no. 4, 517–532.

[15] C.L. Charlier, Die Mechanik des Himmels, Veit and Comp, 1902.

[16] J.M. Cook, Banach algebras and asymptotic mechanics, Application of

Mathematics to Problems in Theoretical Physics: Proceedings, Summer School of Theoretical Physics, vol. 6, 1967, pp. 209–246.

[17] R. Cushman and J.J. Duistermaat, The quantum mechanical spherical

pen-dulum, Bulletin of the American Mathematical Society 19 (1988), no. 2, 475–479.

[18] R. H. Cushman and D. A. Sadovski´ı, Monodromy in the hydrogen atom in

crossed fields, Physica D: Nonlinear Phenomena 142 (2000), no. 1-2, 166– 196.

[19] R. H. Cushman and S. V˜u Ngo.c, Sign of the monodromy for Liouville

inte-grable systems, Annales Henri Poincar´e 3 (2002), no. 5, 883–894.

[20] R.H. Cushman and L.M. Bates, Global aspects of classical integrable systems, 2 ed., Birkh¨auser, 2015.

[21] R.H. Cushman and J.J. Duistermaat, Non-hamiltonian monodromy, Journal of Differential Equations 172 (2001), no. 1, 42–58.

[22] R.H. Cushman and H. Kn¨orrer, The energy momentum mapping of the La-grange top, Differential Geometric Methods in Mathematical Physics, Lec-ture Notes in Mathematics, vol. 1139, Springer, 1985, pp. 12–24.

[23] J.B. Delos, G. Dhont, D.A. Sadovski´ı, and B.I. Zhilinski´ı, Dynamical

mani-festation of hamiltonian monodromy, EPL (Europhysics Letters) 83 (2008),

no. 2, 24003.

[24] T. Delzant, Hamiltoniens p´eriodiques et images convexes de l’application moment, Bulletin de la S. M. F. 116 (1988), no. 3, 315–339.

[25] A. Deprit, Le probleme des deux centres fixes, Bull. Soc. Math. Belg 14 (1962), no. 11, 12–45.

[26] J. Derezinski and C. Gerard, Scattering theory of classical and quantum n-particle systems, Theoretical and Mathematical Physics, Springer Berlin Heidelberg, 2013.

(4)

[27] J. J. Duistermaat, On global action-angle coordinates, Communications on Pure and Applied Mathematics 33 (1980), no. 6, 687–706.

[28] J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology

of the symplectic form of the reduced phase space, Inventiones mathematicae

69(1982), no. 2, 259–268.

[29] J.J. Duistermaat, The monodromy in the Hamiltonian Hopf bifurcation,

Zeitschrift f¨ur Angewandte Mathematik und Physik (ZAMP) 49 (1998),

no. 1, 156.

[30] H. Dullin and H. Waalkens, Nonuniqueness of the phase shift in central

scattering due to monodromy, Phys. Rev. Lett. 101 (2008).

[31] H. R. Dullin and R. Montgomery, Syzygies in the two center problem,

Non-linearity 29 (2016), no. 4, 1212.

[32] H. R. Dullin and ´A. Pelayo, Generating hyperbolic singularities in semitoric

systems via Hopf bifurcations, Journal of Nonlinear Science 26 (2016), no. 3, 787–811.

[33] Holger R. Dullin and Holger Waalkens, Defect in the joint spectrum of

hy-drogen due to monodromy, Phys. Rev. Lett. 120 (2018), 020507.

[34] K. Efstathiou, Metamorphoses of Hamiltonian systems with symmetries, Springer, Berlin Heidelberg New York, 2005.

[35] K. Efstathiou and H.W. Broer, Uncovering fractional monodromy, Commu-nications in Mathematical Physics 324 (2013), no. 2, 549–588.

[36] K. Efstathiou, R.H. Cushman, and D.A. Sadovski, Fractional monodromy in the 1:2 resonance, Advances in Mathematics 209 (2007), no. 1, 241 – 273. [37] K. Efstathiou and A. Giacobbe, The topology associated to cusp singular

points, Nonlinearity 25 (2012), no. 12, 3409–3422.

[38] K. Efstathiou, A. Giacobbe, P. Mardeˇsi´c, and D. Sugny, Rotation forms and local hamiltonian monodromy, Journal of Mathematical Physics 58 (2017), no. 2, 022902.

[39] K. Efstathiou, H. Hanßmann, and A. Marchesiello, Bifurcations and

mon-odromy of the axially symmetric1:1:−2 resonance, in preparation.

[40] K. Efstathiou and N. Martynchuk, Monodromy of Hamiltonian systems with complexity-1 torus actions, Geometry and Physics 115 (2017), 104–115. [41] H.A. Erikson and E.L. Hill, A note on the one-electron states of diatomic

(5)

116 BIBLIOGRAPHY

[42] L. Euler, Probleme. Un corps ´etant attir´e en raison r´eciproque quarr´ee des

distances vers deux points fixes donn´es, trouver les cas o`u la courbe d´ecrite

par ce corps sera alg´ebrique, Histoire de L’Acad´emie Royale des sciences et

Belles-lettres XVI ((1760), 1767), 228–249.

[43] , De motu corporis ad duo centra virium fixa attracti, Novi

Commen-tarii academiae scientiarum Petropolitanae 10 (1766), 207–242.

[44] , De motu corporis ad duo centra virium fixa attracti, Novi

Commen-tarii academiae scientiarum Petropolitanae 11 (1767), 152–184.

[45] H. Flaschka, A remark on integrable Hamiltonian systems, Physics Letters

A 131 (1988), no. 9, 505 – 508.

[46] A.T. Fomenko, Morse theory of integrable Hamiltonian systems, Dokl. Akad.

Nauk SSSR, vol. 287, 1986, pp. 1071–1075.

[47] , The topology of surfaces of constant energy in integrable

Hamilto-nian systems, and obstructions to integrability, Izvestiya: Mathematics 29 (1987), no. 3, 629–658.

[48] A.T. Fomenko and S.V. Matveev, Algorithmic and computer methods for

three-manifolds, 1st ed., Springer Netherlands, 1997.

[49] A.T. Fomenko and H. Zieschang, Topological invariant and a criterion for equivalence of integrable Hamiltonian systems with two degrees of freedom, Izv. Akad. Nauk SSSR, Ser. Mat. 54 (1990), no. 3, 546–575 (Russian). [50] I.A. Gerasimov, Euler problem of two fixed centers, Friazino, 2007, in

Rus-sian.

[51] A. Giacobbe, Fractional monodromy: Parallel transport of homology cycles, Diff. Geom. and Appl. 26 (2008), 140–150.

[52] A. Hatcher, Notes on basic 3-manifold topology, Available online, 2000. [53] I.W. Herbst, Classical scattering with long range forces, Comm. Math. Phys.

35(1974), no. 3, 193–214.

[54] W. Hunziker, The S-matrix in classical mechanics, Comm. Math. Phys. 8 (1968), no. 4, 282–299.

[55] C. G. J. Jacobi, Vorlesungen ¨˜ uber Dynamik, Chelsea Publ., New York, 1884.

[56] M. Jankins and W. D. Neumann, Lectures on seifert manifolds, vol. 2, Bran-deis University, 1983.

[57] C. Jung, Connection between conserved quantities of the Hamiltonian and of the S-matrix, Journal of Physics A: Mathematical and General 26 (1993), no. 5, 1091.

(6)

[58] Y. Karshon and S. Tolman, Centered complexity one Hamiltonian torus ac-tions, Transactions of the American Mathematical Society 353 (2001), 4831– 4861.

[59] S. Kim, Homoclinic orbits in the Euler problem of two fixed centers,

https://arxiv.org/abs/1606.05622 (2017).

[60] M. Klein and A. Knauf, Classical planar scattering by coulombic potentials,

Lecture Notes in Physics Monographs, Springer Berlin Heidelberg, 2008.

[61] A. Knauf, Qualitative aspects of classical potential scattering, Regul. Chaotic

Dyn. 4 (1999), no. 1, 3–22.

[62] , Mathematische Physik, Springer-Lehrbuch Masterclass, Springer

Berlin Heidelberg, 2011.

[63] A. Knauf and M. Krapf, The non-trapping degree of scattering, Nonlinearity

21(2008), no. 9, 2023.

[64] A. Knauf and M. Seri, Symbolic dynamics of magnetic bumps, Regular and

Chaotic Dynamics 22 (2017), no. 4, 448–454.

[65] E.A. Kudryavtseva and T.A. Lepskii, The topology of Lagrangian foliations

of integrable systems with hyperelliptic Hamiltonian, Sbornik: Mathematics

202(2011), no. 3, 373.

[66] J.L. Lagrange, Miscellania taurinensia, Recherches sur la mouvement d’un corps qui est attir´e vers deux centres fixes 14 (1766-69).

[67] L.M. Lerman and Ya.L. Umanski˘ı, Classification of four-dimensional

inte-grable Hamiltonian systems and Poisson actions of R2 in extended

neigh-borhoods of simple singular points. i, Russian Academy of Sciences. Sbornik

Mathematics 77 (1994), no. 2, 511–542.

[68] J. Liouville, Note sur l’int´egration des ´equations diff´erentielles de la

Dy-namique, pr´esent´ee au Bureau des Longitudes le 29 juin 1853., Journal de

Math´ematiques pures et appliqu´ees (1855), 137–138.

[69] O. V. Lukina, F. Takens, and H. W. Broer, Global properties of integrable hamiltonian systems, Regular and Chaotic Dynamics 13 (2008), no. 6, 602– 644.

[70] N. Martynchuk, H.R. Dullin, K. Efstathiou, and H. Waalkens, Scattering invariants in euler’s two-center problem, arXiv:1801.09613 (2018).

[71] N. Martynchuk and K. Efstathiou, Parallel transport along Seifert manifolds and fractional monodromy, Communications in Mathematical Physics 356 (2017), no. 2, 427–449.

(7)

118 BIBLIOGRAPHY

[72] N. Martynchuk and H. Waalkens, Knauf ’s degree and monodromy in planar

potential scattering, Regular and Chaotic Dynamics 21 (2016), no. 6, 697– 706.

[73] N.N. Martynchuk, Semi-local Liouville equivalence of complex Hamiltonian

systems defined by rational Hamiltonian, Topology and its Applications 191 (2015), no. Supplement C, 119 – 130.

[74] Y Matsumoto, Topology of torus fibrations, Sugaku expositions 2 (1989),

55–73.

[75] V.S. Matveev, Integrable Hamiltonian system with two degrees of freedom.

the topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type, Sbornik: Mathematics 187 (1996), no. 4, 495–524.

[76] S. Meesters, Monodromy in the two-center problem, 2017.

[77] J. Milnor, Morse theory, Princeton Univ. Press, Princeton, N. J., 1963.

[78] N.N. Nekhoroshev, Fractional monodromy in the case of arbitrary

reso-nances, Sbornik: Mathematics 198 (2007), no. 3, 383–424.

[79] N.N. Nekhoroshev, D.A. Sadovski´ı, and B.I. Zhilinski´ı, Fractional

Hamilto-nian monodromy, Annales Henri Poincar´e 7 (2006), 1099–1211.

[80] K.F. Niessen, Zur Quantentheorie des Wasserstoffmolek¨ulions, Annalen der

Physik 375 (1923), no. 2, 129–134.

[81] D. ´O’Math´una, Integrable systems in celestial mechanics, Birkh¨auser, Basel,

2008.

[82] W. Pauli, ¨Uber das Modell des Wasserstoffmolek¨ulions, Annalen der Physik

373(1922), no. 11, 177–240.

[83] Alvaro Pelayo and San V˜´ u Ngc, Hamiltonian dynamics and spectral theory

for spin–oscillators, Communications in Mathematical Physics 309 (2012), no. 1, 123–154.

[84] M. M. Postnikov, Differential geometry IV, MIR, 1982.

[85] D.A. Sadovsk´ı, Nekhoroshev’s approach to hamiltonian monodromy, Regular and Chaotic Dynamics 21 (2016), no. 6, 720–758.

[86] S. Schmidt and H.R. Dullin, Dynamics near the p : −q resonance, Physica D: Nonlinear Phenomena 239 (2010), no. 19, 1884–1891.

[87] D. Sepe, S. Sabatini, and S. Hohloch, From Compact Semi-Toric Systems To Hamiltonian S-1-Spaces, 35 (2014), 247–281.

(8)

[88] M. Seri, The problem of two fixed centers: bifurcation diagram for positive energies, Journal of Mathematical Physics 56 (2015), no. 1, 012902.

[89] M. Seri, A. Knauf, M. D. Esposti, and T. Jecko, Resonances in the

two-center coulomb systems, Reviews in Mathematical Physics 28 (2016), no. 07, 1650016.

[90] B. Simon, Wave operators for classical particle scattering, Comm. Math.

Phys. 23 (1971), no. 1, 37–48.

[91] D. Sugny, P. Mardeˇsi´c, M. Pelletier, A. Jebrane, and H.R. Jauslin,

Frac-tional Hamiltonian monodromy from a Gauss–Manin monodromy, Journal of Mathematical Physics 49 (2008), no. 4, 042701.

[92] F. Takens, Private communication, (2010).

[93] D.I. Tonkonog, A simple proof of the geometric fractional monodromy

theo-rem, Moscow University Mathematics Bulletin 68 (2013), no. 2, 118–121.

[94] H.K. Urbantke, The Hopf fibration—seven times in physics, Journal of

Ge-ometry and Physics 46 (2003), no. 2, 125–150.

[95] S. V˜u Ngo.c, Quantum monodromy in integrable systems, Communications

in Mathematical Physics 203 (1999), no. 2, 465–479.

[96] , Bohr-Sommerfeld conditions for integrable systems with critical

manifolds of focus-focus type, Communications on Pure and Applied Math-ematics 53 (2000), no. 2, 143–217.

[97] S. V˜u Ngo.c, Moment polytopes for symplectic manifolds with monodromy,

Advances in Mathematics 208 (2007), no. 2, 909 – 934.

[98] T.G. Vosmischera, Integrable systems of celestial mechanics in space of

con-stant curvature, Springer Netherlands, 2003.

[99] H. Waalkens, H.R. Dullin, and P.H. Richter, The problem of two fixed

cen-ters: bifurcations, actions, monodromy, Physica D: Nonlinear Phenomena

196(2004), no. 3-4, 265–310.

[100] , The problem of two fixed centers: bifurcations, actions, monodromy,

Physica D 196 (2004), no. 3-4, 265–310.

[101] Arthur G. Wasserman, Equivariant differential topology, Topology 8 (1969), no. 2, 127 – 150.

[102] Alan Weinstein, Symplectic manifolds and their lagrangian submanifolds, Advances in Mathematics 6 (1971), no. 3, 329 – 346.

(9)

120 BIBLIOGRAPHY [103] E.T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies; with an introduction to the problem of three bodies, Cambridge, Uni-versity Press, 1917.

[104] O.A. Zagryadskii, E.A. Kudryavtseva, and D.A. Fedoseev, A generalization of Bertrand’s theorem to surfaces of revolution, Sbornik: Mathematics 203 (2012), no. 8, 1112.

[105] N.T. Zung, A note on focus-focus singularities, Differential Geometry and its Applications 7 (1997), no. 2, 123–130.

[106] , Another note on focus-focus singularities, Letters in Mathematical

Referenties

GERELATEERDE DOCUMENTEN

In particular, we show that fractional monodromy can be described in terms of the Euler number of an appropriately chosen Seifert fibration and that this number can be computed in

What has been missing until now for scattering monodromy, is a definition which makes an explicit connection to scattering theory and which is applicable to general scattering

We shall show that the Euler problem has non-trivial scattering monodromy of two different types, namely, pure and mixed scattering monodromy, that the Hamiltonian and the

Our results showed that scattering monodromy appears in two different types, namely, as pure and mixed scattering monodromy, that Hamiltonian and mixed scattering monodromy

De resultaten in dit hoofdstuk laten zien dat de Morse-theorie kan worden gebruikt voor de berekening van Hamiltoniaanse monodromie.. De benadering die we ontwikkelen in hoofdstuk 1

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright

In 2014 he graduated from Moscow State University (specialization in Mathematics, cum laude), where he wrote his thesis under the supervision of A.T. Fomenko

Recall also that in a neighborhood of the focus-focus singular fiber there exists a Hamiltonian circle action that is free outside the fixed focus-focus points; see Theorem 1.3.3.