• No results found

Stress [MPa]

N/A
N/A
Protected

Academic year: 2022

Share "Stress [MPa]"

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Self-consistent Modeling of Polycrystal Plasticity

B. Clausen

, C.N Tomé

, P. Maudlin

*

and Mark Bourke

LANL,

LANSCE-12,

MST-8,

*

T-3

TMS 2000, Nashville, Tennessee March 12-16, 2000

(2)

Polycrystal versus Continuum Constitutive Description

Single Crystal Properties and Deformation Mechanisms

Polycrystal Texture

Polycrystal Model Experimental Data

Constitutive Response

Continuum mechanics

Simulation of Forming Operations using Finite Element Codes

(3)

Outline

z

Self-consistent model (SCM)

z Input, assumptions, output

z

Internal and residual strain development (EPSC)

z Tensile testing of stainless steel

z

Influence of deformation modes on texture development (VPSC)

z Clock rolled Zircaloy

z

Incorporating SCM into FEM formulation

z Bending of highly textured zirconium bars z

Conclusions

(4)

Self-consistent model (SCM) - EPSC

z

Material parameters

z Single crystal stiffnesses and coefficients of thermal expansion

z Description of texture with discrete set of grain orientations

z Crystal structure, slip (and twinning) systems

z CRSS and hardening law z

Model Assumptions

z Eshelby inclusion theory

z HEM properties equal to

weighted average of the grains z

Output

z Direct comparison with neutron diffraction measurements

z Averages over grains sets representing reflections

σ σ σc σc

HEM

(5)

Self-consistent model (SCM) - basic equations









 









 









 





 

 



 























 



















 







  















 

¼













 









 























¼



















 







  







 

¼























 































 



 







 







   











    





    



EPSC (small strain) VPSC (large deformations) z Basic equations for the EPSC and VPSC formulations

z Solve last two sets of equations iteratively

(6)

Comparison to neutron diffraction data - EPSC

z Uniaxial tensile loading of austenitic stainless steel

z ND measurements made at load levels marked by the symbols

z Schematic set-up of the NPD at LANSCE. Measurement time is about 2-3 hours

z Measure elastic strains in two directions simultaneously

0 50 100 150 200 250 300 350

0 0.5 1 1.5 2 2.5

Measured Calculated

Stress [MPa]

Macroscopic strain [%]

+ 90°

Detector Bank Incident Neutron Beam

- 90°

Detector Bank Tensile Axis

Q Q||

(7)

Comparison to neutron diffraction data - EPSC

0 500 1000 1500 2000 2500 3000 0

50 100 150 200 250 300 350

111 200 531

Elastic strain [µε]

Stress [MPa]

σ0.2

Active slip systems after

10µε plastic strain Active slip systems after 100µε plastic strain

z The reflections carry different amount of the load

z Plasticity starts around the <531> orientation

z => the <531> reflection deflects to the left

z The <100> orientation stays elastic the longest

z => the <200> reflection deflects to the right

z Applied stress versus measured elastic lattice strain

z ND measures lattice spacing changes and thereby only elastic strains

z Symbols are measurements, lines are model predictions

(8)

Self-consistent model (SCM) - VPSC

pr ttw ctw

pr ttw pyr

Predicted <0002> and

<1010> pole figures

Predicted and measured intensities along ND-TD and ND-RD

Predicted relative activity of the

deformation modes

z Prediction of rolling textures for Zircaloy, rolled to a true strain of 1.0

z Two different model assumptions of plastic deformation modes

z prismatic, tensile twins and compressive twins versus prismatic, tensile twins and pyramidal

z Comparison to measured textures for Zircaloy with two different grain sizes

(9)

SCM and FEM

(0001) 1

2

levels 2 4 6 8 10 12 max=13.7

0.0 0.1 0.2

0 500

1000 293 K

IPT in-plane tension IPC in-plane compression TTC through-thickness comp.

IPT IPC TTC

stress [MPa]

strain

^ τ )[MPa]

0.00 0.25 0.50

0 100 200 300 400 500

tens twin 293 K

pyram slip

prism slip

shear strain Γ

z Highly textured “clock” rolled Zirconium

z One set of deformation modes, CRSS and hardening parameters

z Possible to reproduce measured material behavior for all three deformation tests

z Through thickness compression (TTC), in-plane compression (IPC) and in-plane tension (IPT)

(10)

SCM and FEM

C0

C90

Measured cross-sections

(Red dots are

outlining the predicted cross-section)

C0 C90

C0 C90

Predicted cross-sections

z 4-point bending of heavily textured Zirconium bars

z Difference in deformed cross-section depending on orientation of preferred c-axis orientation (C0 or C90)

z 377 grain orientations for each element, 4000 elements

z Good agreement between predicted cross-sections and measured data

(11)

Conclusions

z

Self-consistent modeling (polycrystal constitutive model)

z Very useful tool for interpreting neutron diffraction data

z Pinpoint active deformation mechanisms

z

Prediction of internal and residual stresses and strains (EPSC)

z

Prediction of texture development for large strains (VPSC)

z

Incorporated SCM into FEM formulation

(12)

Self-consistent model (SCM) - EPSC

z Known elastic properties

z Calculate HEM stiffness using Voigt, Reuss or Hill average

z Calculate stress and strain increments in all grains for given macroscopic stress or strain increment

Requires knowledge of stiffness of HEM and all the grains

Determines a new self-consistent average stiffness

z Compare the new and old average stiffness/compliance

Iterate until sufficient convergence is obtained z Further deformation

z Yielding in grains (stress exceeds yield criteria)

Determine the elastic-plastic stiffness z “Bookkeeping”

z Calculate elastic strains for grain sets representing reflections

z Statistics on; # of slip systems, Taylor factor, plastic strain, etc.

(13)

Talk

z

Somewhat different length scale - “meso scale”

z

Self-consistent polycrystal models

z

Tool to predict the macroscopic behavior of a material using microscopic material behavior, such as single X-tal elastic

stiffness, inelastic deformation modes like slip and twining, and texture

z

Show how we can validate this tool with neutron diffraction measurements of elastic lattice strains and texture

measurements

z

Start out with describing how we can use the SC models as a

constitutive material formulation

Referenties

GERELATEERDE DOCUMENTEN

Article 2/Manuscript 18: Training quality Learner Support post-graduate teachers at a higher education institution to meet the educational challenges in South Africa: Perceptions

207 lazen we: ‘Feit is hoe dan ook dat taal zich niet mathematisch laat benaderen: de verschillende benaderingen bij deze varianten lopen voor een stuk dood op het feit dat

Informatie over een Nederlands taalgidsje voor het leren van Europese talen wordt gevolgd door een reisjournaal van Frederik de Houtman en vervolgens door een gedeeltelijke weerga-

We think that in this context so little Information was available in (and hence selected from) the file maps that PEM considered most of the decisions to be closed, whereas

children’s human Ž gure drawings. Psychodiagnostic test usage: a survey of the society of personality assessment. American and International Norms, Raven Manual Research Supplement

Tegen het eind van zijn roman laat hij zijn hoofdpersoon en verteller (die ook Arie Storm heet) opmerken: `De hele kwestie is (...) dat we geneigd zijn om opvallende gebeurtenissen

The high CVa values are probably due to the fact that life-history traits are dependent on more genes and more complex interactions than morphological traits and therefore

(69) Meetkundig betekent dit. De stangenvierzijde in de positie. De middelpuntskromme ka ontaardt in de pool raaklijn p en een cirkel door P met middelpunt op p.