• No results found

Simulating the chemical enrichment of the intergalactic medium Wiersma, R.P.C.

N/A
N/A
Protected

Academic year: 2021

Share "Simulating the chemical enrichment of the intergalactic medium Wiersma, R.P.C."

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Simulating the chemical enrichment of the intergalactic medium

Wiersma, R.P.C.

Citation

Wiersma, R. P. C. (2010, September 22). Simulating the chemical enrichment of the intergalactic medium. Retrieved from https://hdl.handle.net/1887/15972

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/15972

Note: To cite this publication please use the final published version (if applicable).

(2)

S IMULATING THE

C HEMICAL E NRICHMENT

OF THE I NTERGALACTIC M EDIUM

(3)
(4)

S IMULATING THE

C HEMICAL E NRICHMENT

OF THE I NTERGALACTIC M EDIUM

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op woensdag 22 september 2010 te klokke 15.00 uur

door

Robert P.C. Wiersma

geboren te Collingwood in 1978

(5)

Promotiecommissie

Promotor: Prof. dr. Tim de Zeeuw Co-promotor: Dr. J. Schaye

Overige leden: Dr. J. Brinchmann

Prof. dr. S. Portegies Zwart Prof. dr. K. Kuijken

Dr. T. Theuns (Durham University)

Prof. dr. E. Tolstoy (Rijksuniversiteit Groningen)

(6)

The heavens proclaim the glory of God.

The skies display his craftsmanship.

PSALM19:1, NLT

(7)

Cover: “Space” by Orion and Esther Wiersma

(8)

Contents

1 Introduction 1

1.1 ’Simple’ Models . . . 5

1.1.1 Purely Analytical Calculations . . . 5

1.1.2 Numerical Calculations . . . 9

1.2 The OWLS project . . . 12

1.3 This Thesis . . . 14

1.3.1 Chapter 2 . . . 14

1.3.2 Chapter 3 . . . 14

1.3.3 Chapter 4 . . . 15

1.3.4 Chapter 5 . . . 15

1.4 Outlook . . . 16

2 Photoionization and the cooling rates of enriched, astrophysical plasmas 19 2.1 Introduction . . . 20

2.2 Method . . . 21

2.3 Photo-Ionization, metals, and cooling rates . . . 25

2.4 Effect on the WHIM . . . 29

2.5 The relative importance of different elements . . . 31

2.6 Discussion . . . 33

3 Chemical enrichment in cosmological, SPH simulations 37 3.1 Introduction . . . 39

3.2 Simulations . . . 41

3.3 Ingredients from stellar evolution . . . 45

3.3.1 Stellar initial mass function . . . 46

3.3.2 Stellar lifetimes . . . 48

3.3.3 Stellar yields . . . 48

3.3.4 SN type Ia rates . . . 54

3.4 Previous Work . . . 58

3.5 The mass ejected by a simple stellar population . . . 61

3.5.1 Implementation . . . 61

3.5.2 Results . . . 64

3.6 Implementation into SPH . . . 65

3.6.1 Enrichment scheme . . . 65

(9)

viii The Chemical Enrichment of the IGM

3.6.2 Smoothed metallicities . . . 67

3.7 The predicted distribution of metals . . . 72

3.7.1 Smoothed vs. particle metallicity . . . 78

3.8 Summary . . . 80

3.A Varying the size of the simulation box . . . 83

3.B Varying the resolution . . . 86

4 Determining the cosmic distribution of metals. 97 4.1 Introduction . . . 99

4.2 Method . . . 100

4.2.1 The REFERENCE model . . . 101

4.2.2 The Simulation Suite . . . 104

4.3 Results . . . 105

4.3.1 Overview . . . 107

4.3.2 Impact of energy feedback and metal-line cooling . . . 114

4.3.3 Wind Models . . . 119

4.3.4 Active Galactic Nuclei . . . 126

4.3.5 Stellar Initial Mass Function . . . 127

4.3.6 Other models . . . 131

4.3.7 Summary . . . 132

4.4 Conclusions . . . 135

5 The enrichment history of cosmic metals 143 5.1 Introduction . . . 144

5.2 Simulations . . . 145

5.3 When was the gas enriched? . . . 148

5.4 How massive were the objects that enriched the gas? . . . 154

5.5 What enriched the IGM and when? . . . 161

5.6 Conclusions . . . 163

Bibliography 168

Nederlandse Samenvatting 171

Curriculum Vitae 179

Nawoord 181

Referenties

GERELATEERDE DOCUMENTEN

We find that these classical yields models fail to reproduce our abundance ratios (Fig. 2), regardless of the assumptions made for the SNIa explosion mechanism (deflagration

The ingredients of our stellar evolution module include a choice of IMF (we use Chabrier), stellar lifetimes as a function of metallicity (which we take from Portinari et al. 1998),

However, this is of course not true for the diffuse IGM which was already in place: for this phase high wind speed models heat a significant fraction of the metals as the winds

The colour scale gives the metal mass weighted mean enrichment redshift as a function of the gas density and temperature at z = 0 for simulations REF L100N512 (left panel),

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden.. Downloaded

Tijdens een dergelijke explosie wordt niet alleen een groot deel van de inhoud van de ster uitgeworpen maar treden ook de condities op die ideaal zijn voor snelle nucleosynthese..

This completion of this thesis would also not have been possible without the encou- ragement of the folks at the International Church of Leiden and Munich International

In the near future, more time will need to be spent designing computer programs which can analyse large amounts of data than designing programs that produce it.. From the perspective