• No results found

Microfluidic bio-particle for manipulation biotechnology Biochemical Engineering Journal

N/A
N/A
Protected

Academic year: 2022

Share "Microfluidic bio-particle for manipulation biotechnology Biochemical Engineering Journal"

Copied!
20
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Biochemical Engineering Journal

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / b e j

Microfluidic bio-particle manipulation for biotechnology

Barbaros C¸etin

a,∗

, Mehmet Bülent Özer

b

, Mehmet Ertu˘grul Solmaz

c,d

aMechanicalEngineeringDepartment,Microfluidics&Lab-on-a-ChipResearchGroup, ˙IhsanDo˜gramacıBilkentUniversity,Ankara06800,Turkey

bDepartmentofMechanicalEngineering,TOBBUniversityofEconomicsandTechnology,Ankara06560,Turkey

cDepartmentofElectricalandElectronicsEngineering, ˙IzmirKatipelebiUniversity, ˙Izmir35620,Turkey

dNationalNanotechnologyResearchCenter,Ankara06800,Turkey

a r t i c l e i n f o

Articlehistory:

Received23March2014

Receivedinrevisedform8July2014 Accepted14July2014

Availableonline21July2014

Keywords:

Biomedical Bioprocessdesign Bioseparations Fluidmechanics Microfluidics

Bio-particlemanipulation

a b s t r a c t

Microfluidicsandlab-on-a-chiptechnologyoffersuniqueadvantagesforthenextgenerationdevices fordiagnostictherapeuticapplications.Forchemical,biologicalandbiomedicalanalysisinmicrofluidic systems,therearesomefundamentaloperationssuchasseparation,focusing,filtering,concentration, trapping,detection,sorting,counting,washing,lysisofbio-particles,andPCR-likereactions.Thecombi- nationoftheseoperationsledtothecompleteanalysissystemsforspecificapplications.Manipulationof thebio-particlesisthekeyingredientfortheseapplications.Therefore,microfluidicbio-particlemanip- ulationhasattractedasignificantattention fromtheacademiccommunity.Consideringthesizeof thebio-particlesandthethroughputofthepracticalapplications,manipulationofthebio-particles isachallengingproblem.Differenttechniques areavailableforthemanipulationofbio-particlesin microfluidicsystems.Inthisreview,someofthetechniquesforthemanipulationofbio-particles;namely hydrodynamicbased,electrokinetic-based,acoustic-based,magnetic-basedandoptical-basedmethods havebeendiscussed.Thecomparisonofdifferenttechniquesandtherecentapplicationsregardingthe microfluidicbio-particlemanipulationfordifferentbiotechnologyapplicationsarepresented.Finally, challengesandthefutureresearchdirectionsformicrofluidicbio-particlemanipulationareaddressed.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Theminiaturizationtrendofintegratedcircuitssince1970s,and thedevelopmentofadvancedfabricationtechniquesformicroand nano-scaledevices[1]since1980sledtotheusageofdeviceshav- ingthedimensionsofmicrometersandnanometersinmanyfields.

Thistrendhashelpedmicrofluidics,whichistheflowphysicsat micro scale,becomean activeresearchareaat theintersection ofchemistry,physics,biologyandengineering.Thisintersection eliminatedtheboundariesbetweenthesedisciplines.Theelimi- nationoftheseboundarieshasposedmanychallengesandnew directionsfororganizationsofeducationandresearch.Oneofthe importantchallengesistherapiddevelopmentofbiochips,minia- turizedanalysissystemsorlab-on-a-chip(LOC)deviceswhichare microfluidicplatformsonwhichonecanhandlechemicalandbio- logicalanalyses,point-of-caretesting,clinicalandforensicanalysis, molecularandmedicaldiagnosticsforbiological,biomedicaland

∗ Correspondingauthor.Tel.:+903122902108;fax:+903122664126.

E-mailaddresses:barbaros.cetin@bilkent.edu.tr,barbaroscetin@gmail.com (B.etin),bulent.ozer@gmail.com(M.B.Özer),mehmete.solmaz@ikc.edu.tr (M.E.Solmaz).

chemical applications. LOC devices can perform the same spe- cializedfunctionsastheirbench-topcounterparts.Theycanalso perform clinical diagnoses, scan DNA, run electrophoretic sep- arations, act as microreactors, detect cancer cells and identify bacteriaandviruses[2].Onasinglechip,hundredsofdifferentreac- tionsand/oranalysescanbeperformedatthesametimethrough hundredsofparallelmicrochannels.Originallyitwasthoughtthat themostsignificantbenefitoftheseLOCdeviceswouldhavebeen theanalyticalimprovementsassociatedwiththescalingdownof thesize.Furtherdevelopmentsrevealedothersignificantadvan- tagessuchas:(i)smallamountofsample(inthenanotopicoliter range,openingthedoortothepossibilityofanalyzingcomponents fromsinglecells),(ii)smallamountofreagents,(iii)veryshortreac- tionandanalysistimecomparedtobench-topcounterparts,(iv) reducedmanufacturingcosts,(v)increasedautomation,(vi)high portability,and(vii)opportunityformassivelyparallelchemical analyseseitheronthesameormultiplesamples[3].

Forchemical,biologicalandbiomedicalanalysesinmicroflu- idic systems, there are some fundamental operations such as separation, focusing, filtering, concentration, trapping, sorting, detection,counting,washing,lysis ofbio-particles,andPCR-like reactions. Thecombination oftheseoperations ledtothecom- plete analysis system or LOC system for a certain application.

http://dx.doi.org/10.1016/j.bej.2014.07.013 1369-703X/©2014ElsevierB.V.Allrightsreserved.

(2)

Manipulation of the bio-particles is the key ingredient for the aforementioned operations. Therefore, microfluidic bio-particle manipulation has attracted significant attention from the aca- demiccommunity.Consideringthesizeofthebio-particlesandthe requiredthroughputforthepracticalapplications,manipulationof thebio-particlesisachallengingproblem.Manyresearchgroups andscientistshaveproposeddifferenttechniquestomanipulate bio-particlessuch ashydrodynamic-based, electrokinetic-based, acoustic-based,magnetic-based,optical-basedetc.Inthisreview, thesedifferenttechniquesarediscussed.Moreover,thecomparison ofdifferenttechniquesandtherecentbiotechnologyapplications regardingthemicrofluidicbio-particlemanipulationarepresented.

Finally, challenges and the future research directions are also addressed.

2. Manipulationmethods

Manipulationmethodscanbecategorizedaspassiveoractive methods dependingon thepresence of an external force field.

Passivesystemsutilizetheflowfield togetherwiththechannel geometryortopologychangestomanipulatethemotionofpar- ticles.Ontheotherhand,activesystemsutilizeanexternalforce fieldsuchaselectric,acoustic,magneticandoptictomanipulatethe motionofparticles.Thesemethodscanalsobecategorizedaslabel- basedorlabel-freemethodsdependingontheneedforanylabeling (ortags)forthebio-particles.Thelabel-freemethodsutilizethe intrinsicpropertiesofthebio-particlessuchassize,shape,den- sity,dielectricproperties,acousticpropertiesandrefractiveindex.

Ontheotherhand,thelabel-basedtechniquesrequireadditional labelstomanipulatebio-particles.Asanexample,twoconventional cellsortingtechniquenamelyfluorescence-activatedcellsorting (FACS)andmagnetic-activated cellsorting(MACS) requirecell- specificlabelingthroughfluorophore-conjugatedantibodiesand magneticbeadsconjugatedwithantibodies,respectively[4].

Consideringthemanipulationofabio-particleinamicrofluidic system,dependingonthemethodstheremayexistmultipleforces onabio-particle,someofwhich canbedominantornegligible.

Therefore,theorderofmagnitudeestimateofthevariousforces experiencedbyabio-particleis crucialformicrofluidic applica- tionstopredicttheresultantmotionofbio-particles.Asanexample, Brownianmotionistherandommovementofparticlesduetothe thermaleffects;however,Brownianmotionisnegligibleforthe particleswithasizelargerthan1␮mformicrofluidicapplications [5].

There are several techniques to manipulate bio-particles in microfluidicsystems.Severalofthosemethodsarereviewedwithin thispaper.Stand-alonereviewpapersarepresentforeachofthese methods[6–14]sincetherehasbeena vastamountofresearch effortonthesetechniquesformicrofluidicplatformsforthelast twodecades.Inthisreview,ourobjectiveistogivethebasicsof eachmethod.Moreworkisdedicatedforthecomparisonofthe techniquesinterms ofassociated samplepreparation, through- put,channelgeometry,materialandfabrication,andtherequired hardware.Webelievethatsuchacomparisonwillprovidevaluable helpfortheresearchersfrommanydisciplineswhowouldliketo applymicrofluidictechnologytobio-particlerelatedbiotechnology applications.

2.1. Hydrodynamic-based(HD)

Inmicrofluidicapplications,theflowcanbeinducedbypressure difference(pressure-drivenflow)and/orbyelectricalfield(electro- osmoticflow).Sinceelectricfieldisintroducedforelectro-osmotic flow,otherforces(whichwillbediscussedinthefollowingsub- section)otherthandragforcegeneratedontheparticlecomeinto

picture.Inthecaseofpressure-drivenflow,pressuredifferenceis themainparameterwhichcontroltheincompressiblefluidflow inmicrochannels.Thedragforceis theonlyforcegenerated on theparticlesasaresultoftheinteractionoftheparticlewiththe flowfield.Hydrodynamic-basedmethodsarepassivemethodsin whichthebio-particlemanipulationisperformedbyuseofthedrag forcegeneratedontheparticlesthroughspeciallydesignedchan- nelgeometriesandtopologies.Thedimensionlessnumberswhich characterizetheparticleflowinamicrochannelarethechannel Reynoldsnumber(Re)andtheparticleReynoldsnumber(Rep)[15]:

Re= UmaxDh

 , Rep= Umaxd2

Dh =Re



d

Dh



2

, (1)

whereUmax isthemaximumvelocity inthemicrochannel,is thefluiddensity,isthedynamicfluidviscosity,distheparticle diameter,andDhisthehydraulicdiameterofthechannel.Typi- cally,flowswithinmicrochannelsareinStoke’sflowregime(lowRe flows)whichmeanstheflowfollowstheboundariesofthedomain.

Whenparticlesarepresentwithinthechannel,theyalsofollowthe streamlinesoftheflowfieldinadeterministicmanner.However, whenanobstacleand/orflowcontraction/expansionispresented withinthechannel,theparticletrajectoriesrevealsizedependence.

Therefore,byspeciallydesignedchannelgeometries,bio-particles canbemanipulatedaccordingtotheirsizeanddeformability.

Introducing obstacles and posts with a critical spacing can be utilized as filter structure to capture (trap) or isolate spe- cific bio-particle of interest witha size largerthan the critical size[6].However,pore-based filtrationmaybeineffective with deformablebio-particlesand/orbio-particleswithuniqueshapes.

Byintroducingseriesofposts,asizedependentlateraldisplace- ment of bio-particles canalso beachieved, which is knownas deterministiclateraldisplacement(DLD)(seeFig1a)[16–20].DLD canbeutilizedforbio-particleseparation,sortingandfocusing.The presenceofslantedoranisotropicobstacleswithinthemicrochan- nelcanalsoinducesize-basedmotionoftheparticlesduetothe particle-obstacle interaction induced rotational flows, which is knownashydrophoresis (see Fig.1b) andcan beimplemented forbio-particleseparation,sortingandfocusing[21–26].Withthe introductionofcontraction/expansion(pinchsegment)withinthe microchannelnetworktogetherwiththelaminarflowprofile,bio- particlescanalsobemanipulatedtoflowatdifferentstreamlines, whichisknownaspinch-flowfractionation(PFF)(seeFig1c)and canbeimplementedforbio-particleseparation,sortingandfocus- ing[27–31].

TheStoke’sflowregimeisvaliduptoRe∼1.WhenRereaches unityandbeyond,theinertialeffectsbecomesignificantandmod- ifytheflowcharacteristics,whichisknownasinertialmicrofluidics.

Inthisregime,particlesdonotfollowthestreamlinesoftheflow field.Whentheinertialeffectscomeintopicture,twoinertiallift forcesareinducedontheparticle:(i)asheargradientliftforce and(ii)awall-effectliftforce[15].Awall-effectliftforceinduces arepellingforceaway formthewall.Ontheotherhand,shear- gradientliftforceinducesanattractiveforcetowardsthewall[15].

Whenthechannelgeometrybecomes curved,a secondaryrota- tionalflowbeginstobeobserveddue totheinertiaofthefluid whichisknownasDeanflow.Thedimensionlessnumberswhich characterizesthissecondaryflowaretheDeannumber(De)and thecurvatureratio(ı)[15,32]:

De=Re



D

h

2r



1/2

, ı=Dh

2r, (2)

wherer istheradiusofcurvature ofthechannel.Deand ıare twoimportantparameterswhichaffectthemotionoftheparticles withincurvedchannels.Inertialmicrofluidicscanbeutilizedfor separation,sorting,focusing,andisolationofbio-particles[33–39].

(3)

Fig.1. Basicprinciplesofhydrodynamic-basedmethods:(a)DLD,(b)hyrdophoresis,(c)pinchedflowfractionation,(d)inertialmicrofluidics.

Aschematicsofaninertialmicrofluidicsbasedsortingcanbeseen in(seeFig1d).

TheHD manipulationcanbealsoutilized for theseparation byshape,sincethetrajectoryoftheparticleswithinamicroflu- idicchannelmayalsopossessshapedependencedependingonthe channelgeometryandcharacteristicsofflow.Morespecifically,the flowofasphericalparticleandnon-sphericalparticlemaydiffer.

Separationandsortingofsphericalandnon-sphericalparticlesis importantforclinicalapplicationssuchasseparationofyeastcells atdifferentcellstageandseparationofparasitesformblood.More recently,someresearcheffortshavebeenfocusedontheimple- mentationofHDapplicationsonseparationbyshape usingDLD [19,18,20],PFF[28]andinertialmicrofluidics[40].

2.2. Electrokinetic-based(EK)

Electricalforceslikeelectrophoresis(EP)anddielectrophoresis (DEP)arethesubtlesolutionstomanipulateparticlesinLOCdevices duetotheirfavorablescalingforthereducedsizeofthesystem [41].EPisthemovementoftheelectrically-chargedparticlesinan electricalfieldduetotheCoulombicbodyforce(electrophoretic force)actingontheparticlesbecauseoftheirsurfacecharge.For theutilizationoftheEP,theparticleneedstobechargedandthe appliedelectricfieldneedstobeconstantordirectcurrent(DC).

TheEPforceonaparticlesubjectedtoanelectricfieldofEcan bewrittenas:

FEP=qE, (3)

whereqisthenetchargeoftheparticle[2].EPiscommonlyused inconventionalandwell-developedseparationtechniquessuchas capillaryelectrophoresistoseparateDNAandproteins.

DEPisthemovementofparticlesinanon-uniformelectricfield duetotheinteractionoftheparticle’sdipoleandspatialgradientof theelectricfield.DEPisapplicableevenfornon-conductingparti- clesandcanbegeneratedeitherbyusingDCoralternatingcurrent (AC)field.

TheDEPforceonasphericalparticlesubjectedtoaDCfieldofE canbewrittenas[8]:

FDEP=2εmfCMR3(E·E)=2εmfCMR3



E



2, (4) whereEistheelectricfieldvector,εmistheabsolutepermittivity ofthesuspendingmedium,andRistheparticleradius.fCMisthe Clausius-Mossotti(CM)factor,whichisgivenby

fCM= εp−εm

εp+2εm, (5)

whereεisthepermittivity,andsubscriptspandmstandforthe particleandthemedium,respectively.CMfactor hasnumerical limitsfrom−0.5to1.0.FornegativeCM,negative-DEP(nDEP)force (whichisinthedirectionofminimaofthegradientoftheelec- tricfieldstrength)isgeneratedontheparticle.ForpositiveCM, positive-DEP (pDEP)force(whichisin thedirectionof maxima ofthegradientoftheelectricfieldstrength)isgeneratedonthe particle.

Similarly, for a spherical particle in an AC-field, the time- averagedDEPforcecanbeexpressedas[8]

FDEP(t)=2εmRe[fCM]R3E2rms, (6) whereErmsistheroot-mean-squareoftheAC-field,Re[fCM]isthe realpartoftheClausius-Mossottifactorwhichisdefinedas fCM(˜εp, ˜εm)= ˜εp− ˜εm

˜εp+2˜εm

, (7)

where ˜ε isthecomplexpermittivityanddefinedas

˜ε=ε−j





ω



. (8)

Time-averagedDEPforce,Eq.(6),isvalidforastationaryAC- field.IfthephaseoftheAC-fieldhasaspatialvariation,Eq.(6)needs tobemodifiedtoincludethiseffect.Ingeneralsense,time-averaged DEPforcecanbewrittenas[8]:

FDEP(t)=2εmRe[fCM]R3E2rms+4εmIm[fCM]R3



E2rms,iϕi



, (9)

(4)

whereϕisthephaseoftheAC-field.Subscriptireferstoeachcom- ponentoftheelectricfieldandthephasegradient.Thelasttermin theparenthesisisatensornotationandreferstothesummation ofthecomponentsofthevectorquantitiesinsidethebracket.Im[·]

referstotheimaginarypartofacomplexquantity.Thefirstterm dependsonthenon-uniformityintheelectricfieldstrength,and thesecondtermdependsonthenon-uniformityinthephaseof theelectricfieldwhichisthedrivingforceforthetraveling-wave DEP(twDEP)applications.Inthecaseofseriesofplanarelectrodes patternedatthebottomsubstrateofaLOCdevicewhichareexcited withdifferentphases,thefirsttermleadstolevitationofparticles withn-DEPresponse,andthesecondtermleadstoanaxialmotion oftheparticlesovertheelectrodes.Directionoftheaxialmotion dependsonthesignoftheimaginarypartoftheCM.

DEPforce depends ontheparticlesize, dielectric properties oftheparticleandthemedium.Moreover,inthecaseofanAC field,DEPforce(throughCMfactor)alsobecomesfunctionofthe frequencyoftheACfield.Dependingonthedielectricproperties ofthe medium and particle, DEPresponse of a particle canbe switchedfromnDEPtopDEP.Thefrequencyatwhichthistran- sitionoccurs(i.e.thefrequencyatwhichDEPforcebecomeszero) iscalledthecross-overfrequency.Actually,theremayexistmulti- plecross-overfrequenciesforbio-particles[4].SinceDEPdepends onthebio-particles’intrinsicelectricalproperties,EKmanipulation techniquesdonotrequireanylabeling,andarelabel-free.Dielec- tricproperties ofa bio-particledependonthemorphology and chemicalcomposition oftheinternal matrixofthebio-particle.

Therefore,eachbio-particlehasitsowndielectricsignature[41].

Thisissueintroducesabio-particlespecificselectivity;however, alsointroducesachallenge.Sincethebiologicalbasisofthedielec- tricsignatureofthebio-particlesisnotwell-known,theprediction ofthedielectrophoreticmotionofthebio-particlesinanelectric fieldis notstraightforward.For EKmanipulation,both negative andpositiveforcescanbegeneratedwithdifferentconfiguration oftheelectrodesand/orthemicrofluidicchannelstructures,and switchingthepolarityand/orthefrequencyoftheelectricfield.In additiontothat,DEPhasafavorablescalingeffectwhichmakes itperfectcandidateforthemanipulationofmicro/nano-sizedpar- ticles[8].OnerequirementfortheDEPforcetobeinducedisthe non-uniformelectricfieldgeneratedwithinthemicrofluidicdevice.

Non-uniformelectricfield caneitherbegenerated bymeansof (i)insulatorstructuresor(ii)byspeciallydesignedmicroelectrode arrays.

2.2.1. Insulator-basedDEP(iDEP)

Thenon-uniformelectricfieldcanbegenerated bymeansof the specially designed microchannel network (such as serpen- tinechannelandspiralchannel)orspeciallydesignedstructures inside themicrochannelnetwork (suchas electricallyinsulated hurdlesandobstacles). Typically,theelectricfield isappliedby usingexternalelectrodesthataresubmergedintothereservoirs, andtheflowisalsoinducedbytheelectricfield(i.e.electro-osmotic flow).Highelectricvoltageisrequiredtogeneratethesufficient electrokineticforcewithinthemicrochannel networkforthese applicationswhichmakestheuseofDC field(orDC-biased AC) feasible.Therefore,commonlyiDEPapplicationsareDC-DEPappli- cations.However,specialcareisneededsincethehighelectrical voltagemayleadtoaseriousJouleheatingeffectinsidethechan- nel.Thisseveretemperatureincreaseinside thechanneldueto Jouleheatingmayleadtoabubbleformationwhichcanseverely interferewiththeoperationofthedevice[42].Ontheotherhand, duetotheabsenceoftheelectrodesinsidethedevice,iDEPdevices arerobust,chemicallyinertanddonotrequireanyphotolithogra- phy,thin-filmdepositionandlift-offand/oretchingforelectrode fabrication.

2.2.2. Electrode-basedDEP(eDEP)

Thenon-uniformelectricfieldcanbegeneratedbymeansofthe speciallydesignedmicroelectrodearrays(i.e.interiorelectrodes) patternedwithinthemicrochannels.Toavoidtheadverseeffects ofDCfieldsuchasmigrationofchargedparticlestowardstheelec- trodes,ACfieldisappliedforeDEPapplications.Mostofthetime, embeddedinternal electrodesareplanar(2D) (i.e.heightofthe electrodesareintheorderofhundrednanometers),andarefabri- catedwithinthedevicebymeansofcomplex,timeconsumingand relativelyexpensivemanufacturingtechniquessuchasthin-film deposition,sputtering,chemicalvapordeposition,etc.Moreover, foulingoftheelectrodesmaydistorttheoperationofthedevice whenworkingwithbio-particles[43].However,withanappropri- atedesign(i.e.closelyspacedelectrodes),operatingvoltagecanbe lowered(whichpreventsanysufferingfromJouleheating)foreDEP applications.Moreover,lowvoltagessimplifytheequipmentand circuitry.ForeDEPapplications,theinterfacialeffectsmayoccur attheinterfacebetweenthefluidmediumandtheelectrodesur- face,andmayleadtoadverseeffectssuchaselectrodepolarization, localheatingaroundtheelectrodes(whichmayresultinACelec- troconvection),bubbleformationanddissolutionoftheelectrodes [8].Therefore,someconstraintsneedtobeconsideredinthedesign ofsuchsystems.

2.3. Acoustic-based(ACT)

Theuseofultrasonicstandingwavesforbio-particlemanipu- lationreliesonthecreationofultrasonicstandingwaveswithina channel.Thegenerationofacousticradiationforcehasbeenstud- iedforalongtime.Theformulationforacousticradiationforceon inelastic[44]andelasticsphereswasderived[45]andlatergeneral- izedbyGorkov[46].Ingeneral,equationsofacousticsconsiderthe compressibleNavier–Stokesequationandthefirstorderharmonic variationsonthestaticmeanofacousticproperties.However,the time-averagevaluesofthesevariablesleadtozeroforharmonic inputs.Realistically,havingzeromeanfortheacousticvariables overonecyclecannotbethecasesincefromthetestsitisknown thatthereisnetdisplacementofparticlesovertimewhichmeans thattheaverageoftheacousticforceover onecyclecannotbe zero.Therefore,forthecalculationofacousticradiationforcetime averagedsecondorderradiationforcesneedtobeused[47].The gradientoftheacousticradiationpotentialcanberelatedtothe acousticradiationforceas:

Frad=−∇Urad, (10)

whereUradis theradiation potential.Under theassumptions of particlesbeingsmallwithrespecttothewavelengthoftheacous- ticwavesandnotconsideringacousticwavescatteringfromother particles(i.e.smallparticleswithlowconcentration),theacoustic radiationforcecanbeobtainedas:

Urad= 4

3 R3



f1 1

2fcf2p2in−f23 4fv2in



, (11)

f1=1−fcf2

pc2p, f2=2(p−f)

2p+f . (12)

Eq.(12)containsthevariablesrelatedtotheacousticproperties ofthefluidmediumaswellastheparticlestobemanipulated.

pinandvinaretheincidentacousticpressureandacousticparticle velocity,andfandcfindicatesthedensityandthespeedofsound ofthesuspensionfluid,respectively.pandcpindicatesthedensity andthespeedofsoundofparticles,Ristheradiusoftheparticle.

Theaboveexpressionsaretrueforanyacousticfield.Forthecase ofanacousticstandingwavewhereacousticpressureismaximum, theparticlevelocityisminimumatthechannelwalls.Thefollowing

(5)

Fig.2.Arepresentationofacousticbasedbio-particle(a)washingand(b)separation.

equationshowstheacousticradiationforceduetoa1Dstanding waveasfollows:

Frad=4R2(kR)Eac sin(2ky)ˆj, (13) wherekisthewavenumber,yisthelocationdirectionalongwhich theacousticpressurewavechanges,andistheacoustophoretic contrastfactorwhichcreatesdifferentamountofforcingonparti- clesduetotheiracousticproperties

=p+2/3(p−f) 2p−f − fc2f

3pc2p, Eac= 1

4fu2y· (14) ThesignofEq.(14)alsodeterminesthedirectionoftheparti- cles’motionwhentheyarepushedbytheacousticradiationforce.

Ifthecontrastfactorispositive,theparticleswillmovetowards thenodalpointsand ifthecontrastfactor isnegative,particles movetotheantinodesoftheacousticpressurewaves.Hence,Eqs.

(13)and(14)canbeusedtodeterminetheacousticradiationforce appliedonabio-particlesolutionwithlowconcentrationsuchthat theacousticpressurefieldisnotdistortedduetoexistenceofthe particles.Moreover,thederivationalsoassumesthattheradiusof eachparticleissmallcomparedtotheacousticwavelength.

Theacousticstandingwavefieldcreatesanacousticradiation forceonbio-particleswhosemagnitudedependsonthesizeand acousticpropertiesofthebio-particle.Thedifferenceinthemag- nitudeof theacousticradiationforcecausestheparticles tobe manipulatedintothedifferentlocationswithinthemicrochannel basedontheirproperties.Propertydependentparticlemanipula- tioncanbeexploitedfordifferentapplicationsinbiotechnology.

Bio-particlewashingisoneoftheseapplicationsinwhichdeflection ofbio-particlesisusedtomovethebio-particlesfromonecarrying mediumtoanother.Forthistooccur,thereneedtobetwodifferent typesof carrying medium(buffer) flowing inthe microchannel andtheReynoldsnumberoftheflowneedstobelowtosatisfy

minimalmixingofthetwobuffersolutions.Theideabehindthe bio-particlewashingistomovetheparticlesfromonebufferto anotherthroughtheuseofacousticradiationforceinducedbythe ultrasonicstandingwavesinsidethemicrofluidicchannel.Thepro- cesscanbeseeninFig.2(a).Ultrasonicwavescanalsobeutilized totrapbio-particles(acoustictrapping)tocertainlocations(nodal planes)ofamicrochannel.Theacousticradiationforcemaybeused toovercomethedragforceonthebio-particlesandholdthemsta- tionary(i.e.trappedparticles).Thesameprinciplecanbeusedto cleanthemediumfrombio-particlesorincreasethenumbercon- centrationofthebio-particlesinthemedium.Sincethemagnitude oftheacousticradiationforceinducedonabio-particledepends onthesizeandacousticpropertiesofthebio-particle,standing ultrasonicwavescanbeusedinbio-particleseparation,whichis alsoknownasacoustophoresis.Bio-particlescanbemanipulated toarriveatcertainlocationsinsidethemicrochannelatdifferent instants.Forinstance,whenbio-particlesaredirectedtothecenter ofthechannelbytheacousticradiationforce,thetimetoreachthe centerofthechannelwillbedifferentfordifferentbio-particles,and thisdifferenceintimecanenabletheseparationofbio-particles.

Ifseparationintermsofsizeisdesired,thenthelargestdiameter particleswillreachthecenterchannelfirstwheretheycanbechan- neledoutfromthecenter,whereasthesmallerdiameterparticles canbechanneledoutfromlocationsthatareclosertothechannel sidewalls.ThisprocessisschematicallyshowninFig.2(b).

2.4. Magnetic-based(MG)

Magneticfieldcanbeusedasanexternalforcetomanipulate bio-particles.Theforceappliedbythemagneticfieldonaparticle canbewrittenas[48]:

FMG=V pm

0 (B·∇)B, (15)

(6)

Fig.3.Theprinciplestepsofimmunomagneticbio-particleseparation.

where prepresentsmagneticsusceptibilityoftheparticle, mis themagneticsusceptibilityofthemedium,0isthemagneticper- meabilityofthefreespace,Visthevolumeoftheparticle,andBis themagneticfluxdensity.Theimportantparameterswhichaffect themagneticforceonaparticlearethedifferencebetweenthe magneticsusceptibilitiesoftheparticleandthemedium,aswell asthemagnitudeandthegradientofthemagneticflux.Moreover, themagneticforcedependsonthevolumeoftheparticle(i.e.the magnitudeoftheforcehassizedependence).

Typically, it is not possible to generate large enough mag- neticforceonabio-particlesuspendinginaconventionalaqueous solution. To be able to create large enough force, the differ- encebetween the magnetic susceptibilities of the particle and themediumneedsto belarge. Thisdifferencemayberealized eitherby increasingthemagnetic susceptibilityof bio-particles orthesuspensionmedium.Itisdifficulttoincreasetheinherent magneticsusceptibilityofbio-particles;however,anengineered paramagnetic micro-particle with high magnetic susceptibility canbeattachedtobio-particleswhichcausesbio-particlestobe manipulatedbytheparamagneticmicro-particle.Forthebinding processtooccur,thesurfaceoftheparamagneticmicro-particle iscoveredwithantibodieswhichhaveaffinitytobindontothe bio-particle(see Fig. 3). The magnetic manipulation using this processiscalledasimmunomagneticbio-particlemanipulation.

Alternatively, a ferrofluid or a paramagnetic suspension rather thanatypicalsuspensionmedium suchas salineorPBS (phos- phatebufferedsaline)canbeusedtogeneratealargedifferencein magneticsusceptibilitiesofthesuspensionfluidandbio-particle.

The use of such suspension medium eliminates the need for attachingamagneticmicro-particlesontothebio-particles.Once the field is introduced, the bio-particles can be pushed away fromthe magnetic field whereas in the immunomagneticcase theparamagneticparticles (hencethebinded bio-particles)are attractedtothemagneticfield. Therepulsionofbio-particles is duetosignchangeinEq. (15)sincethemagneticsusceptibility ofthemediumbecomes largerthantheparticles.Themagnetic

manipulationinwhichthebio-particlesaresuspendedinaparam- agneticorferrofluidsuspensionmediumisalsocalleddiamagnetic bio-particlemanipulation.The diamagneticcellmanipulation is commonlyusedforfocusingpurposes.However,thediamagnetic cell manipulation approach can also beused for concentration and separation of particles of different sizes as illustrated in Fig.4.

2.5. Optic-based(OP)

The use of radiation pressure of light to displace and trap micron-sized dielectric particles was first hypothesized and demonstratedin1970sbyAshkin[49].Itwasnotuntil1980sthat thepracticalapplicationsofopticalforcesinphysics[50]andbiol- ogy[51]haveshownitstruepotential.Thescientificcommunity hassincebeenusingthetermopticaltweezerstoidentifytheuseof opticalforcesasameanstomanipulatenanometertomicrometer- sizedobjects.Someofthesignificantachievementsusingoptical trapsarestudyingmolecularmotorswithsubnanometerresolution [52],fundamentalpropertiesofcolloidsandinterfacescience[53], mechanicalpropertiesoflivingcells[54],andpolymerelasticity [55].Theabilitytopreciselycontrolsmallobjectswithnomechan- icalcontactisdefinitelyadvantageousformicrofluidicapplications.

Recentadvancesonmicrofluidicdevicefabricationbroughtadif- ferent perspective to the utilization of optical forces. Practical applications such as sorting, separation, and self-assembly are nowpossibleusinglight-matterinteractionand basicprinciples ofmicrofluidics.

The basic instrumentation behind an optical trap is a high numericalaperture(NA)microscopeobjectivethatisabletotightly focusalightbeam.Thedielectricparticlenearthefocus,withhigher refractiveindexcomparedtoitssurroundings,receivestheinci- dentphotons,whicharescatteredand/orabsorbed.Scatteringof incidentphotonscreatesamomentumtransfer,hencetheoptical forcecomponent.Thephysicalprinciplebehindopticaltrapscan beexplainedbythebalanceoftwoforces:(i)scatteringforcesin

Fig.4.Diamagneticbio-particlemanipulationtypes.

(7)

Fig.5. (a)Thelightrayswithdifferentintensitiesresultindifferentforcevectors,thevectorsumoftheforcespullstheparticletothebeamaxiswhilealsopushingitinthe directionofbeampropagation.(b)Therayparalleltoz−axishitstheintersectionplanewithananglewithrespecttox–zplane.

thedirectionofpropagationand(ii)gradientforcesinthedirec- tionofopticalfieldgradient.Scatteringforcegeneratesradiation pressurethat pushesthedielectricparticleawayfromthelight source.Gradientforce,ontheotherhand,actstheoppositeway andattractstheparticletowardsthepeakspatiallightintensity.

Inthecaseoftightlyfocusedbeam,stabletrappingoccursifthe gradientforceexceedsthescatteringforce.Trappingdependson factorslikeparticlesize,refractiveindex,laserpowerandspatial characteristics.Theoreticaltreatmentofopticaltrappingcatego- rizestheforcesonparticlesdependingontheirsizes.Thecondition wherethesizeoftheparticleismuchlargerthanthewavelength oflight(d )iscalledtheMieregime.Inthisregime,theforces actingonaparticlecanbecomputedbyRayopticsprinciples,i.e.

reflectionand refraction. Reflection and refraction onthe front andbacksurfacescreatesperpendicularmomentumchangeona sphereasseeinFig.5(a).Inthefigure,adashedcirclerepresents crosssectionofthesphereandwaschosenfordemonstrationpur- poses.

AssumingaGaussianintensityprofile,therayclosertobeam axiscreatesmorepointforcethantheraysituatedfurtheraway.

Thenetforcepullstheobjecttowardsthebeamaxis,andpushesthe objectduetoscattering.Gradientforceonlydominatesandpulls theobjectwhenthereisasteepfieldgradientachievedbytightly focusingthebeam.InMieregime,theforceactingonasphereat anincidenceangleof andrefractionangleofˇisduetoasingle rayofpowerPis(n1QP/c).Therefractiveindexofthemediumsur- roundingtheparticleisn1andtheparticlerefractiveindexisn2.Q describestheamountofmomentumtransferatthefrontandback surfacesformultiplebounces,andisafunctionofFresnelreflec- tion(R)andtransmission(T)coefficients.Qvalueforalltherays actingonacircleweregivenbyAshkin[56],andthetotalscatter- ingandgradientforcesactingonadielectricparticleweregivenby Roosenandcoworkers[57].ThecircleonFig.5(a)canbetreatedas theintersectionofaplaneandasphereonFig.5(b),andthetotal scatteringandgradientforcescanbeintegratedovereverypoint onthesphereas:

Fs=−

/2 0

d

2

0

d

E2r2

oc2sin cos

×

Rcos2 +1−T2cos2( −ˇ)+Rcos2 1+R2+2Rcos2ˇ

, (16)

Fg =−

/2 0

d

2

0

d

E2r2

oc2sin cos sin

×

Rcos2 −T2sin2( −ˇ)+Rsin2 1+R2+2Rcos2ˇ

, (17)

whereoisthefreespacepermittivity,cisthespeedoflight,Eis theincidentelectricfieldandincludestheopticalbeaminformation suchasitsradius,ristheradiusofthesphere,andistheangle betweentheplanethattheraypropagatesandthex–yplane.

Thecondition (d ) iscalled theRayleighregime, describ- ing the diffraction-limited conditions. In this regime, particles are treated as point dipoles, and the gradient and scattering forcesareproportionaltotherealpartandimaginarypartofthe polarizabilityoftheparticle,respectively.Scatteringforce,which isinthedirectionofincidentpowerandthegradientforce,which isinthedirectionofintensitygradientcanbewrittenas[58]:

Fs=Ion1 c

1285r6 3 4

m2−1 m2+2

2

, (18)

Fg=−n31r3 2

m2−1 m2+2

E2, (19)

wheremistheindexcontrastratio,n2/n1,andIoistheintensity oflight.Thescatteringforceisdependentonthelightintensity, theparticlesize,thewavelengthofthelight,andrefractiveindex contrast.Thegradientforceisdependentonthespatialvariation ofelectricfield,theparticlesizeandtherefractiveindex.Unlike scattering,gradientforcescaleswiththethirdpowerofparticle size.Hence,itiseasiertoachievetrappingforasmallerparticle thanalargeparticle.

Sincetheopticaltrappingtheoryissizeandgeometrydepend- ent, researchers depend on empirical determination of optical forces.Theprocedureiscalledopticalforcecalibration(standard methodswiththeiradvantagesanddisadvantagescanbefound elsewhere[13]).Themainobjective oftheopticalforcecalibra- tionistoextractthetrapstiffness(k)oftheopticaltrapthatis treatedasaHookeanspringwheretheforceislinearlyproportional todisplacement(F=−kx).Onecommonapproachisthedragforce calibrationwheretheparticleisheldstationaryusingthetrap,and thechambercontainingthefluidismovedatavelocitysothatthe particleescapesfromthetrap.Thevelocityinformationcanthen beusedtocalculatethedragforce,whichiscorrectedbasedon

(8)

thedistancetotheclosestsurface.Alternatively,Brownianmotion calibrationcanalsobeused.Inthisapproach,thefluctuationsin thepositionoftheparticlearerecorded,andapowerspectrum is formed and fitted to extract thetrap stiffness. This method alsorequiresknowingthedragontheparticle.Inbothmethods, accuratemeasurementsofdisplacementarecrucialforthecalcu- lationofappliedforceandeitheraquadrantphotodetectororvideo trackingisnecessary.

3. Assessmentofthemethods

3.1. Samplepreparationandselectivity

TheselectivityoftheHDmethodsisbasedonbio-particlesize anddeformability.Ifthereisanappreciablesizedifferenceamong bio-particles,theycanbemanipulatedtodifferentlocationswithin themicrofluidicnetwork.Onetypicalaspectofbio-particlesisthat theydonotpossessspecificsize,insteadtheypossesasizedis- tribution.Ifthere isasizeoverlapfortwo differentbio-particle populations,theselectivityoftheHD methodsdiminishes.One majoradvantageofHDmethodsisthattheydonotneedanylabel- ing.Althoughlabelingisnotnecessary,samplepreparationmay stillbeneeded,sincetheconcentrationoftheparticlesmayaffect theflowfield,andresultinaundesiredflowpatterns.Forexam- pleinthecaseofwholeblood,dilutionofthewholebloodmaybe usefuldependingontheapplication.

TheselectivityoftheEKapplicationsrelyonthedielectricprop- ertiesofbio-particles.Thedielectricstateofabio-particledepends onphysical(size,shape,surfacemorphology)andchemicalstate of the bio-particle.For DC-DEP applications, DEP response can bepredictedeasilysinceitonlydependsontheconductivityof thebio-particleandthe medium.For AC-DEPapplications,DEP responsealsodependsonpermittivityofthemediumandthebio- particle.Moreover,DEPresponseisalsoafunctionoffrequency oftheAC-field. Tomanipulate bio-particleseffectively, theDEP responseneedstobepre-determined.Althoughthere aremany studiesregarding DEP-based manipulationof bio-particles, it is stillchallenging topredicttheDEPresponse ofthebio-particle ofinterest.ThebestwayistomeasuretheDEPresponseofthe targetbio-particles.Therearesomeproposedmethodsinthelit- eratureforthemeasurementofDEPresponse[8,59,60],however theprocessisnotstraightforward.Astand-alonemicrofluidicplat- formwithsomespecialcircuitryand/oropticaldetectionsystemis neededtodeterminetheDEPresponseofabio-particlepopulation.

Ifthischallengeishandled,theselectivityofDEPcanbeutilizedto manipulatedifferentbio-particles.

Thepresence ofthe electricfield in EK applicationsinduces Jouleheatingwithinthefluid.Dependingontheconductivityof thebuffersolutionandthestrengthoftheelectricfield,theJoule heatingeffectcanbesevere,andcausedeteriorationofthesystem performance[8,42].Moreover,Jouleheatingmayalsocauseunde- siredelectrothermaleffectswhichmayaffecttheflowfieldwithin themicrochannel[8].Sincethephysiologicalbuffersolutionsfor bio-particlestypicallyhavehighelectricalconductivity,dilutionof thebuffersolutionmaybenecessaryforEKapplications.Thisissue ismorecriticalforiDEPapplicationsinwhichDCelectricfieldis presentthroughoutthedevice.

ForACTapplications,nospecialsamplepreparationisneeded.

Thebufferfluidcanbeanykindofbufferorsalinesincealmostall havesimilaracousticproperties.Particleswithhighcontrastfactors canbemanipulatedmoreeffectively.Asignorasignificantvalue differencein acoustic contrastfactor of bio-particles are desir- ableforeffectivedifferentiationofbio-particles.Whentheacoustic propertiesandsizesofparticlesthatneedtobeseparatedareclose toeachother,acousticpropertiesofthesuspensionmediumcan

beadjustedsuchthattheacousticcontrastfactorshowninEq.(14) ispositiveforonetypeofparticlesandnegativefortheothertype.

Utilizingthisidea,redbloodcells(RBCs)andplateletshavebeen separatedsuccessfully[61].Although,nobio-particlepreparation (otherthandilution)andlabelingisnecessaryforacousticmanip- ulation,labelingofparticleswereutilizedtohavebetterselectivity in a very limited number of studies where bio-particles were taggedwithbeadswhichhavenegativeacousticcontrastfactors [62].Thiswaywhentheacousticfieldwasemployed,thelabeled bio-particlescanmoveintheoppositedirectionoftheremaining particles.Moreover,thebio-particlemaybelabeledwithfluores- centdyetoimprovethevisibilityoftheparticlesmovement[63].

Considering the MG applications, both the diamagnetic and immunomagneticmanipulationmethodsrequiresampleprepara- tionpriortothebio-particlemanipulation.Inimmunomagnetic bio-particlemanipulation, theparticles need toincubated with thebio-particlesamplesothat thetargetcells arelabeled. The labelingoccurs dueto biochemicalreactionsbetween theanti- gensandantibodiesonthebio-particlesandthemagneticparticles.

The duration of the incubation is in between 10 and 30min dependingonthemixing,temperatureandbead-cellconcentra- tions.Moreover,ifthemanipulatedbio-particlesaretobeinfused backtothehost,themagneticparticlesneedtobewashedaway fromtheselectedbio-particles.However,thesamplepreparation stepallowstheimmunomagneticprocesstobehighlyselective.

It is possibletoseparate targetedcells which do not have sig- nificantphysical differences fromother cell groups even ifthe number of total totarget cellratio is in theorder of 109 [64].

Forthecaseofadiamagneticparticleseparation,thebio-particles need to be suspended in a paramagnetic fluid or ferro fluid.

Theselectivityofthismethodcanbeextendedbyswitchingthe magnetic field using an electro-magnet [65]. Common choices for paramagnetic fluids are MnCl2 (Managnese (II) Chloride), GdCl3 (Gadolonium (III)Chloride)andGd-DTPA(gadolinium(III) diethylene-triaminepentaaceticacid) whichis anFDA approved MRIcontrastagent.Inferrofluids,themostcommonchoiceisthe useofEMG408fromFerrrotecwhichisawaterbasedproductwith nano-sizedironparticles.Attheendofthemanipulationprocess, theparamagneticfluidorferrofluidmayneedtobewashedaway fromthebio-particlesifinfusionintoaliveorganismistobefol- lowed.Duetothesample preparationand postprocessing,MG methodsrequirerelativelycomplexprocedures.Therearesome examplesofmicroscalesystemswhichperformtheincubationstep in-line.Onesuchsystemusessix rotatingmagnets[66] tomix micro-particlessothatincubationwiththebio-particlescanoccur onthemicrofluidicdevice.Aftertaggingthebio-particles,theincu- batedbio-particlesaresenttothemicrofluidicdeviceandcanbe positivelyselectedbymeansofamagneticfield.Theprocessof immunomagneticseparation is generallyused forseparation of rarebio-particlesratherthanfocusinglargenumberofbio-particles sincetheimmunomagnetictaggingofbio-particlesisnoteconom- icallyfeasibleandistimeconsuminginlargenumbers.

In the case of OP applications, it is important to know the physicalcharacteristicsofthefluidandthetrappedobjectduring opticaltrappingexperiments.Refractiveindexchangesaccording tomediumwhichthebio-particleisinandthebio-particletype.

Forinstance,therefractiveindexofthecellmediamaychangedur- ingcellculturegrowth,althoughtherefractiveindexofindividual cellstypicallystaysthesame(∼1.38).Itisbeneficialtomeasure themediumsrefractiveindex(usuallyaround∼1.33–1.35)with a refractometer if suspended bio-particles are used. Moreover, refractiveindexofanybio-chemical stimuliagentintroducedto microfluidic channels shouldbe knownbefore hand.The main advantageofOPmethodsistheabilitytosensedifferentcolorsof light emittedfromdifferent fluorophores. Broad-spectrumlight detectorscanbeadjustedwithopticalfilterstodetectonlycertain

(9)

portionsofspectral window.Thisability isusefulin activeand passivefeedbacksystemswheretheamountofspectralsensitivity is the identifier for the state of a bio-particle. Fluorescence or immunofluorescence staining (labeling) of bio-particles is per- formedusingin-vitromethodsdependingonthesizeofthedye molecule.Besidesdyestainingthecells,thepathogensintroduced togrowthmediaduringcellpreparationcanalsobefluorescently labeledandusedasthediagnosticmarkerduringopticalmanip- ulation[67].InOPapplications,thechannelsneedtobeprimed withcertainchemicals priortoflow of bio-particles toprevent adhesionespeciallyduringanextendedstopoftheflow.Inthecase ofbiologicalcells,thecellmediacontainingproteins,glucose,salt, lipidsandothernutrientsaregoodprimingagents,andneedto beappliedpriortotheoperation.Bovineserumalbuminisalsoan effectiveagentthatpreventsadhesionofenzymestoglasssurfaces.

3.2. Flow-rateandthroughput

Forfilteringapplications,theparticleswithalargersizecanbe immobilizedand/orparticleswithsmallersizecanflowthroughthe desiredoutlet.Cloggingistypicalforfilterapplications.Moreover, theshearstressinducedonthebio-particlesmaycauselysis.As moreandmorebio-particlesaretrappedwithinthemicrochannels, highershearforcesareinduced,andhigherpressuresarerequired to maintain the desired flow rate. For other HD applications, bio-particlesflowinamicrochannelinaforce-freemanner.How- ever,forDLD,PFFandhydrophoresisapplications,theflowneeds to controlledprecisely, and regarding both thefabrication (for hydrophoresisthegapsizeofthecontractionsiscriticalandneeds tobecomparablewiththebio-particlesize)andtheoperational concerns,theyneedtobeoperatedwithrelativelysmallflow-rates (intheorderof␮L/h).Thisleadstolowthroughputformanyclin- icalapplications.Asanexample,ithasbeenshownthatinertial effectsdecreasethesortingefficiencyforhydrophoresisapplica- tions[26].Atthispoint,inertialmicrofluidicsoffersapromising perspectively.InertialmicrofluidicsutilizesthehighRecharacteris- ticoftheflow;therefore,inherentlyflow-ratesarehighintheorder ofml/hwhichleadstohighthroughput(>∼106particles/min),and thismakesinertialmicrofluidicssuitableformanyclinicalappli- cations.However,thepredictionoftheflowfieldandtheparticle motioninthisregimeisalsochallenging.Thethroughputofsev- eralHDapplicationcanbeseeninFig.6.Thehighestthroughput forHDmanipulationisaround∼1011particles/min,andbelongsto anapplicationinwhichtheplasmaisseparatedfromwholeblood ratherthanadifferentiationofbio-particles.

Thesuccessfulmanipulationofbio-particlesinEKapplications dependsonthebalancebetweenthedragforceandtheEKforces.

AnincreaseindragforcerequiresanincreaseinEKforceandthis indicatestheuseofhigherelectricalfieldstrength.Sincehigher electricfieldsarenotdesirableduetoJouleheatingphenomena [42],thedragforceandtheflow-ratearelimitedfortheseapplica- tions.InthecaseofeDEPapplications,theelectricfieldisanissue onlywithinthevicinityoftheelectrodes;therefore,higherelectric fieldscanbetolerated.However,onemajordisadvantageofthe eDEPdeviceswithplanarelectrodesisthattheelectricfieldgradi- entdecreasesrapidlyastheparticlesflowawayfromtheelectrodes.

Therefore,aneffectivemanipulationregionisgeneratedwithinthe vicinityoftheelectrodeswhichreducestheeffectivenessofthe manipulation.Iftheelectrodesaredepositedonthebottomwall ofthemicrofluidicchannel,thentheheightofthechannelneeds tobelimited.Thislimitationcanbesolvedbyintroducing3Delec- trodeswithinthedevice.Manyresearchershaverecentlyrealized thisaspectandproposeddifferentfabricationtechniquestofabri- cateembedded3Delectrodes[68].Byintroducing3Delectrodes, theflow-ratesandthethroughputoftheDEP-baseddevicescanbe enhancedalthoughthroughputofEKmethodsisrelativelylow,and

atthispointnotsuitableforclinicalapplications.Thethroughput ofseveralEKapplicationscanbeseeninFig.6.

In terms of throughput, ACT devices have relatively higher throughputcompared tothat of othermethods. Theflow rates generally range from1␮l/minto 1L/h.The throughputof ACT devicesforsomestudiescanbeseeninFig.6.Thefigureshows eightordersofmagnitudedifferenceinthebio-particlethrough- puts.Thestudieswithhighthroughputsaregenerallystudieswhich processwholebloodsamples.Thenormalbloodcountofamaleis approximately5×109RBCsinamilliliterofblood.Fortheappli- cationswhichdonotincludefractionationofdifferentcellgroups fromeachothersuchasseparationofplasmafromwholeblood, thethroughputreachesashighas1011particles/min[69].

ThroughputofMGmanipulationmethodsisalsopromising.The throughputofseveralMGapplicationscanbeseeninFig.6.The largestofthetwothroughputvalues[70,71]belongtoasystem wheretheborediameterofthechannelisroughly8mm.Itmay bearguedthatthisdiameteristoolargeforamicrofluidicsystem.

Mostofthehigherflowratesbelongtosystemswithimmunomag- neticbio-particlemanipulationsystems,anddiamagneticparticle manipulationsystemshavelowerthroughputs.However,itshould benotedthatthethroughputsarepurelybasedonthetimethat cellsspendinthemicrofluidiccircuit.Intheimmunomagneticpar- ticlemanipulationcases,asignificantportionofthetimeisspent on thepre-processing of bio-particles (considering the incuba- tiontimefortaggingofbio-particleswiththemagneticparticles), hencethethroughputsmaynotberepresentativeofthetotaltime requiredforthebio-particlestobeprocessed.Generally,flowveloc- itiesinthemicrochannelsareintheorderofmm/sorless.

ForOPapplications,activemicrofluidiccellsorterscompared toitspassivecounterpartsuseinformationsuchasfluorescence, sizeandshapebymeansofphotodetectorsorimageprocessing to dynamically steer thebio-particles to desired outlets.These systems canoperatequitefastbasedonthetype offorceused formanipulation. Forinstance,activesorterseitherutilizeopti- cal forces for grabbing or deflection of bio-particles. Grabbing anddeflectionoccurwhenthegradientorscatteringforcedom- inates each other.Active sortersbased ondeflection are much faster since there is no need for steering the focused optical beam.6354cells/min[72] and 1320cells/min[67] hasbeenfor deflection-based sorters. Grabbing-based sorters are almost an orderofmagnitudeslowerwithreportedvaluesof300cells/min [73]and84cells/min[74](thethroughputofseveralOPapplica- tioncanbeseeninFig.6).Foractivemicrofluidicsystemsinvolving OPmanipulation,theflow-rateinthechannelandthedragforce onthebio-particlecompetesagainsttheopticalforce.Considering theopticalforceonaparticleintherangeofafewtotensofpN,the fluidvelocityneedstobeadjustedtoachievedesiredmanipulation forthebio-particle.

3.3. Channelgeometry

The filteringapplicationsin HD methods typically include a microfluidicchannelwithpoststructures.Thespacingofthepost structures is critical to trap the bio-particles with target size.

Dependingonthesizeofthetargetparticles,thespacingcanvary between5and15␮m.Tointroduceasmany poststructuresas possibleforagivenvolume,thediameter(orwidth)ofthepost structuresaretypicallyaroundcoupleoftensofmicrometers.For DLDapplications,againsomepost(orpillar)structuresarealso needed.Thesepoststructuresmayhavedifferentshapes(circular, square,etc.).Sincesomeamountoflateraldisplacementisdesired tomanipulatethebio-particles,thesectionwiththepoststructures needstohavesomethresholdlengthwhichistypicallycoupleof centimeters.ForthePFFapplications,rectangularmicrochannels withsharpcornersarerequired.Althoughtheinletsectionofthe

(10)

Fig.6. (a)Throughputdataforseveralmicrofluidicdevices.(b)Throughputrangefordifferentmethods.

deviceiscomposedofamicrochannelwith∼100␮m,toachieve fractionationwithagoodresolution,theexitsectionofthedevice needstobewide,andthegeometryoftheexitsectionneedsto becriticallydesignedtoobtainthedesiredoutput.Fortheinertial applications,sincetheflow-ratesarehightoachievehighReflows, certainlengthisrequiredtoachievetherequiredlateraldisplace- mentofbio-particles.Toutilizeanycirculationwithintheflowfield, itistypicaltointroduceanexpansion/contractionsectionsand/or poststructureswithintheflow field.Morerecently,theexpan- sion/contractionintheheightdirectionhasalsobeenutilizedfor bothsortingandfocusing[38].ToutilizetheDeanflowforparticle manipulation,spiralandserpentinechannelsarerequired,andthe radiusofcurvatureofthechannelsiscritical[32].Forhydrophore- sisapplications,expansions/contractionsintheheightdirections arenecessary.Thesizeofthesecontractionsarecritical,andcer- taindesignproceduresneedtobefolloweddependingonthesizeof thebio-particleofinterest.Typicallytheminimumchannelheight inthecontractedpartneedsbelargerthanthebio-particlesizeto avoidclogging,andlessthantwotimestheparticlesizeforsuc- cessfulmanipulation.Onecommonpoint aboutthemicrofluidic channelnetworkwithpoststructuresisthattheheightofthechan- nelislimitedconsideringthelimitoftheaspectratioduetothe fabricationconstraints.

ForEKapplicationswithoutinternalelectrodes,atypicalchan- nelwidthisintheorderof100␮mtogetherwithsomespecially designedstructures.Theheightofthemicrochannelisnotcritical

aslongasthefabricationisnotproblematic.ForeDEPapplications withinternalelectrodes,theheightiscriticalif3Delectrodesare notused.Typically,channelheightvariesbetween20and50␮m.

ForeDEPapplicationswith3Delectrodes,microchannelstructures withlargerheightispossible(typically20–100␮m).Intheseappli- cations,thelimitationsfortheheightcomesfromthefabrication stepoftheelectrodes.

Channelgeometryisquiteimportantforsuccessfulimplemen- tationofACTmethods.Thechannelsgenerallyhave rectangular crosssections. It issignificantly easiertocouplea piezoelectric patchto a rectangularsurface compared toa circular one.The widthofthechannel(widthistheprimarydirectionalongwhich acousticradiationforceactsonbio-particles)needstobecarefully selectedasanintegermultipleofhalfwavelengthoftheacoustic waveswithinthefluidfortheselectedfrequency.Ifthetransversal configurationisselectedforthepiezoelectricmaterialplacement (piezoelectricmaterialssurfacenotalignedwiththeacousticradia- tionforcedirection),thechannelwidthalsoneedstobeselectedas thehalfwavelengthoftheacousticwavesinthesuspensionfluid.

However,ifthelayeredconfigurationispreferred,thenthechannel widthcanbeseveralwavelengthsoftheacousticwavesinthesus- pensionmedium.Notonlythechannelwidth,butalsothewidthof thedeviceneedstobeselectedasanintegermultipleoftheacoustic wavelength.Thedepthofthechannelisgenerallyselectedsignifi- cantlylessthantheacousticwavelengthinthefluidtoavoidfitting astandingwavealongitsdirection.Thelengthofthechannelis

(11)

generallyintheorderofseveralcentimeterswhichcanfitseveral wavelengths.Sincetheacousticwavesarerequiredtofitbothinto thechannelandthedevice,thesensitivityoftheperformanceto thechannelanddevicegeometryissignificantlyhigh.Therefore, thedimensionsoftheACTbio-particlemanipulatordevicesneed tobecontrolledprecisely.

MGmanipulationhasveryfewconstraintsonthegeometryof thechannel.UnliketheACTmethod,theperformanceofthesystem isnothighlysensitivetochannelanddevicegeometry.Typically, thewidthofthemicrochannelsisintheorderof100–700␮m,the depthisintheorderof10–100␮m,andthelengthofthechannel isseveralcentimeters.Althoughpreferredgeometryisarectan- gularcross-sectioned microchannel,thecapillarytubescanalso beutilized[75,76].Ifpermanentmagnetsareused,generallythe polesofeachmagnetisbroughttothevicinityofthechannelwalls.

Thecloserthepolesaretoeachother,thestrongerthegradientof themagneticfieldis,the(B·∇)BterminEq.(15),whichresultsin strongermagneticforceontheparticles.

InOPapplications,thechannelgeometryneedstobeadjusted dependingontheopticalbeamcharacteristics.ThefocusedTEM00 modebeamsize,dependingonthemicroscopeobjectiveused,is smallerthanmostbio-particles,anddoesnotbringanychannelsize limitations. However,rectangularchannel geometriesis prefer- abletoavoidopticalbeamshapechange(e.g.circulartoelliptical), andtoobtainbetterimaging.Opticalclarityisstronglyaffected bycurvedchannelwalls.FordivergingsinglemodeGaussian-like beams, thebeamdiameter and opticalpower both have direct impactontheopticalforceandstressprofile.Fortheapplications withhighnumericalaperture(NA)objectives,theworkingdistance oftheobjectivemaybelessthanamillimeter,andanindexmatch- inggelmaybeneededtotakeadvantageofhighNA.Thedistance betweenthebeamoriginandthelight-particleinteractionarea;

hence,thechannelgeometryshouldbecarefullydesigned both toaccommodatetheopticalsetupandtoachievedesiredphysical effects.

3.4. Materialandfabrication

Whenthefabricationofthemicrofluidicdevicesisconcerned, there are basically two common approaches: direct substrate manufacturing(photolithography,etching,laserablationetc.)and mold-based techniques (hot embossing, injection molding or soft-lithography)[77].Photolithographyhasgoodabilitytomanu- factureverysmallandcomplicatedmicrochannelstructures,butit usuallyinvolvesmulti-stepprocesseswhichtakeconsiderabletime and specificchemical requirementsespecially for etchingsteps inhightechfacilitiessuchasaclean-roomenvironment.Mold- basedtechniquesrequireamold(sometimesmoldisreferredas themask)tobefabricated.Althoughthefabricationofthemold may need lithography-based, relatively complicated fabrication process;oncethemoldisfabricated,themoldmaywellbeusedfor severaltimes.Afterthecompletionofthemold,therestofthefab- ricationprocedureissimpleandhighlyreproducible(i.e.low-cost replication),whichmakesmold-basedtechniquesverysuitablefor massproduction.Acommonmaterialusedinthefabricationof themicrochannelsisthePolydimethylsiloxane(PDMS)duetoits lowcost,lowtoxityandtransparency.BondingPDMSwithglass canbeachievedusingastraightforwardsurfacetreatmentprocess withoxygenplasma(asealedPDMSmicrochannelcanwithstand pressuresuptofivebars[1]).Soft-lithographyusingPDMSisavery commontechniqueusedinthefabricationofmanymicrofluidic devicesfordifferentaforementionedapplications.

Fordirectsubstratemanufacturing,acommonapproachisto etchthewafer and seal it withPDMS.Especially, for microflu- idicchannels withhighaspect ratiopost structures(AR∼1–5), itis preferredtouseetchingof thesilicon waferinsteadofthe

fabricationofamold.Forlowaspectratiopoststructures,molding isabetterchoice.Fordirectsubstratemanufacturing,analternative techniqueislaserablation,whichislocalized,non-contactremoval ofthematerialfromthesurfacebyexposingthesurfacetoalaser beam.Unlikephotolithography,laserablationdoesnotrequirea maskandmaybeappliedtoawidevarietyofsubstratematerials [1].Althoughthecostoftheprocessisrelativelylow,theinvest- mentcostoftheequipmentisrelativelyhigh.Moreover,generally thesurfaceroughnessofthelaserablatedchannelsarenotsuperior thanthatofmold-basedtechniques[78].

For thefabrication of thedevices for HD applications, soft- lithography and photolithography is a common approach, and fusedsilica,PDMS,PMMAandsiliconarethecommonmaterials.

Insomeinertial[38]andhydrophoretic[27–31]applications,3D geometriesareneeded.3Dgeometriescanbeachievedbyutilizing two-steplithography.If3Dstructuresarebothonthebottomand thetopwall,lithographicaligningprocedureisrequired[27,28].

For the fabrication of devices for EK applications, soft- lithography with PDMS is a common method. For many EK applications, embedded electrode structures are also required whicharedesignedandlocatedstrategicallywithinthemicroflu- idicstructure.Asacommonpractice,theplanarelectrodeswithin themicrofluidicdevicesarefabricatedusingmetaldepositionona substrate.Additionalfabricationstepsneedstobeintroducedfor thedeviceswith3Delectrodes.Differentfabricationstrategiesfor DEP-basedmicrofluidicdeviceshavebeenreviewedrecentlybyLi etal.[68].Titanium,gold,silverandcarbonarecommonmaterials fortheelectrodes[68].Copperhasalsobeenusedintheliterature, butsomeadverseeffectswerereported[79,80].

ForthefabricationofdevicesforACTapplications,thereisawide varietyofmaterialsusedforthemicrofluidicdevicesuchassilicon [61,81,69],steel[82–84],glass[85,86]andPDMS[87–91]aswell asotherpolymers[92,93].Thechoiceofmaterialforthetransver- salconfiguration shouldhave highacoustic impedancesuchas silicon,whereasthelayeredconfigurationmaybemanufactured fromawiderangeofmaterialsrangingfromdifferentpolymers tosteel.Thematerialofchoiceforacoustofluidicdevices,whichis excitedwithsurfaceacousticwaves,ispolymerswithlowacous- ticimpedanceandwithgoodshearwavecarryingcapacitysuchas PDMS[87–89].Forthesilicon-baseddevices,fabricationthrough standard photolithographyand wetor dryetchingarecommon approaches[61,94,69,95,47,96].Inthecaseofpolymersandpartic- ularlyPDMSdevices,standardsoftlithographymethods[87,89,93]

andrapidprototypingarecommonlyemployed[97].Typically,a transparentmaterialwithhigheracousticimpedancesuchasglass orfusedsilicaisusedasalidtoformthechannel.Thislidisalso utilizedasanacousticreflectorintransversalconfigurations.

ForthefabricationofdevicesforMGapplications,thereisno significantconstraintotherthanmaterialofthedevicenotbeing amagneticmaterial.Duetotheeaseofprocessandpossibilityof embeddingthemagnetsintothedevice,mostwidelyusedmaterial isPDMS[48,64,98,99,65,100–102].Othermaterialsarealsousedin thismethodsuchasPMMA[66]andsilica[76].TheuseofNDFeB magnetic powdertogetherwithPDMScan formself-assembled magneticconfigurationandachievebetterdeviceperformancefor capturingapplications[99].

ForOPapplications,microfluidicchannelswithopticallytrans- parentwallsarerequired.Mosttransparentmaterialssuchasglass, fusedsilica,PDMS,PMMAaresuitableowingtotheirtransparency tovisibleandnear-infraredspectrum.Siliconisreflectivetolight aboveitsbandgap(below∼1100nm),andthetrappinglasershould emitatopticalwavelengthsabovethislimitinthecaseofsilicon asthetrappingsurface. Asnotedinthenextsection,biological viabilityisreducedathigherwavelengthsduetoincreasedwater absorption.Thus,materialstransparenttovisiblelightarepreferred over siliconfor bio-particlemanipulation. Forthefabricationof

(12)

Fig.7.(a)PhotographofthemoldfabricatedwithconventionalCNC-machine.(b)Photographofthemicro-machiningcenter,themoldandthechannels.

devicesforOPapplications,standardaforementionedmicrofabri- cationtechniquescanbeapplied.Well-knownprocessessuchas softlithographytofabricatePDMSandwetordryetchingtofabri- categlasschannelsarepopularamongothertechniquesduetoease ofuse.Alternatively,3Dlasermicromachiningandhotembossing arealsogoodcandidatestoformrigidpolymericchannels.

One alternative method tofabricate the microfluidic device istousemechanicalmicromachining(i.e.CNC-machining)either for direct substratemanufacturing or forthe fabricationof the mold.For directsubstrate manufacturing,thelimitsofthepro- cessisconstrainedbythesizeofthemillingtoolwhichmaylead tounsatisfactoryend-productformicrofluidicapplications.How- ever,for the fabrication ofthe mold,the process is limited by thexyz-accuracy ofthe tool-positionerof a CNC-machine since the negative of the microfluidic structure is fabricated as the mold.Withtoday’s technology, by usingmagnetic bearings for theirpositioningsystems,thexyz-accuracyofaconventionalCNC- machinesarearound5␮m.Therefore, amoldcanbefabricated usingmechanicalmachiningwithincoupleofhourswithoutany need for clean-room equipment within the desirable accuracy limitsformicrofluidicdevices.Moreover,CNC-machiningcangen- erate3Dstructureswithoutanydifficulty.Commonmoldmaterials formold-basedtechniquesaresilicon(quartz/glass),SU-8photo- resist,polymerbasedmaterials(e.g.plexiglas)oranymetalbased materials(titanium,stainlesssteel,etc.).Polymer-andmetal-based mold materials are superior over silicon or photo-resist based moldmaterialsintermsofdurabilityandrobustness.Inthecase of mechanical micro-machining, any of thesematerials can be selected.Machinability,costandtheexpectedlife-spanofthemold aretheimportantparameterswhichneedtobeconsideredduring theselectionofthemoldmaterial.Anotherimportantparameter istheexpectedlifeofthemold.Consideringtheuseofthemold toproducemorethan7,000–10,0000parts,metal-basedmaterials arethebestchoice.However,usingmetal-basedmaterialscomes withaprice.Machiningofmetal-basedmaterialsiscostlydueto thereducedtoollifeandincreasedmachiningtime.Ontheother hand,machiningofpolymerbasedmaterialsislessproblematicin termsoftoollifeandmachiningtime,yetthemoldstillcanbeused formanytimes.

TheaccuracyoftheCNC-machiningcanbefurtherimproved bytheintroductionofspeciallydesigned micro-machiningcen- ters.Thesemicro-machiningcenterscanoperatewithanimproved spindlespeed which leadstoa superior surface finish withan

improvedxyz-accuracy. WithinBilkentUniversityMicro System DesignandManufacturingCenter,oneconventionalCNCmachine withmagneticbearingsandonecustom-mademicro-machining centerisavailableandusedforthefabricationofthemoldsofthe variousmicrofluidicdevices[103,104].Anexamplemoldfabricated withconventionalCNC-machine,andamoldfabricatedwiththe micro-machiningcentercanbeseeninFig.7.Thefabricationof metalelectrodeswithCNCmachiningisalsopossiblewhichleadsto 3Dmetalelectrodes.Aninitialattempthasbeenmadeforthefabri- cationofaneDEPdevicewith3Delectrodes.Amicrochannelwitha widthof100␮mandaheightof100␮mwasfabricated.Thedevice andthemoldcanbeseeninFig.8.Totalmachiningtimeforthe moldandtheelectrodestookapproximately180min.Theembed- dedelectrodeswerealsoremovedfromthedeviceandreusedfor thefabricationofaduplicatedevicewithoutanyproblems.

Fig.8.TheDEP-basedmicrofluidicdevicewith3Delectrodesfabricatedbymachin- ing:(a)themoldtogetherwiththeelectrodes,(b)theassembleddevice.

Referenties

GERELATEERDE DOCUMENTEN

Six commercial membranes were selected from literature, two (Udel Polysulfone and Teflon AF 2400) of which are currently used in gas separation applications and the

The photophysical studies on this donor-acceptor polymer reveal that photoexcitation of the polymer results in a photoinduced electron transfer reaction from the conjugated

The experiments done on dialogue act segmentation on the AMI corpus show that reasonable results can be achieved using a variety of word related, time related, online-, and

Condensed rotational separation is a process of bulk separation based on flash evaporation or pres- sure distillation.. The rotational particle separator provides the means to

Het doel van dit rapport is aan te geven hoe bij een gegeven be- schrijving van een (gekromd) oppervlak diverse geometrische groot- heden zoals raakvlak, normaalvector en

Bovengrens roestvlekken (t.o.v. MV): Bodemc lassific atie: Afbeel din gsn u mmer boor punt enka art: 10 Afbeel din gsn u mmer foto(' s): Observaties: Interpretatie:

Ook de oplossingsrichtingen die zijn genoemd bij vraagstuk 1: Betere samenwerking tussen organisaties in zorg en welzijn 3 en Benutten van digitale en technologische hulpmiddelen

Much has been said about the Colombian conflict. Not just within the international community and academia but also at the national level the discussions are endless. In the state