• No results found

University of Groningen Field perturbations in general relativity and infinite derivative gravity Harmsen, Gerhard Erwin

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Field perturbations in general relativity and infinite derivative gravity Harmsen, Gerhard Erwin"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Field perturbations in general relativity and infinite derivative gravity

Harmsen, Gerhard Erwin

DOI:

10.33612/diss.99355803

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Harmsen, G. E. (2019). Field perturbations in general relativity and infinite derivative gravity. University of Groningen. https://doi.org/10.33612/diss.99355803

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

 Further research into the quasi normal modes of higher dimensional black holes would show us which features of quasi normal modes in four dimensions are unique.

 Obtaining non-singular non-linear metrics for the theory of infinite derivative gravity would provide us with a stronger test bed with which to test the theory.

 Experimental resolution of the cosmological singularity will provide us with a better understanding of cosmology.

 The experimental detection of super symmetric particles, and dark matter, will provide us with a new insight into the universe.

 Experimental evidence for, or against, higher dimensional physics will help resolve some of the burning questions in beyond the standard model physics.

 An increased amount of data from the gravitational wave detectors around the world would allow us to better test the limits of the theory of general relativity.

Referenties

GERELATEERDE DOCUMENTEN

F IGURE 3.6: In the above plot we have shown the relation between the QNMs for the non-TT eigenspinors for differing values of the di- mension, D, as well as the electric charge Q,

This results in QNMs modes that are far larger than the ones we have previously seen in the case of the Schwarzschild and Reissner-Nordström black holes. Note that this choice of

In this process we will show how to obtain the propagator for IDG as well as derive the field equations that we will use later in this thesis to derive the modified metrics

This does not prove that the metric is in fact non-singular, to prove that the metric is non-singular in the next section we look at the curvature terms of the metric and derive

Note that this choice of the stresss-energy tensor, in analogy with the static case, is compatible with the fact that in order for the Einstein equations and the Kerr metric to

We note that we have successfully obtained the effective potentials for spin-3/2 fields near a Reissner-Nordström black holes, as well as for a Schwarzschild black hole in (A)dS

During the derivation of the Super covariant derivative and subsequently the deriva- tion of the radial equations we have used the Dirac gamma matrices some of their identities. As

We note that we have successfully obtained the effective potentials for spin-3/2 fields near a Reissner-Nordström black holes, as well as for a Schwarzschild black hole in (A)dS