• No results found

Statistical mechanics and numerical modelling of geophysical fluid dynamics - Bibliography

N/A
N/A
Protected

Academic year: 2021

Share "Statistical mechanics and numerical modelling of geophysical fluid dynamics - Bibliography"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Statistical mechanics and numerical modelling of geophysical fluid dynamics

Dubinkina, S.B.

Publication date

2010

Link to publication

Citation for published version (APA):

Dubinkina, S. B. (2010). Statistical mechanics and numerical modelling of geophysical fluid

dynamics.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

Bibliography

[1℄ Abramov,R. andMajda, A.J.,Statistically relevant conserved quantities

for truncated quasi-geostrophic flow.Pro .Natl.A ad.S i.U.S.A.100(7) (2003),38413846.

[2℄ Arakawa,A.,Computational design for long-term numerical integration of

the equations of fluid motion: two-dimensional incompressible flow. Part I.J.Comput.Phys.1(1966),119143.

[3℄ Arnold, V.I., Mathematical methods of classical mechanics. Springer-Verlag,NewYork,se onded., 1989.

[4℄ Benettin,G.andGiorgilli,A.,On the Hamiltonian interpolation of near to

the identity symplectic mappings with application to symplectic integration algorithms.J.Stat.Phys.74(1994),11171143.

[5℄ Bokhove, O. andOliver,M., Parcel Eulerian-Lagrangian fluid dynamics

of rotating geophysical flows.Pro .R.So .Lond.Ser.AMath.Phys.Eng. S i.462(2073) (2006),25752592.

[6℄ Bond,S.D.,Leimkuhler,B.J.andLaird,B.B.,The Nos´e-Poincar´e method

for constant temperature molecular dynamics.J. Comput. Phys. 151 (1) (1999),114134.

[7℄ Bridges, Th.J. and Rei h, S., Multi-symplectic integrators: numerical

schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A284(2001),184193.

[8℄ Bulga , A. and Kusnezov, D., Canonical ensemble averages from

pseu-domicrocanonical dynamics.Phys.Rev.A 42(1990),50455048.

[9℄ Bühler, O., Statistical mechanics of strong and weak point vortices in a

cylinder.Physi sofFluids14(2002),21392149.

[10℄ Bühler, O., A Brief Introduction to Classical, Statistical, and Quantum

Mechanics. Courant Le ture Notes, vol. 13, AMS Bookstore, Rhode Is-land,2006.

[11℄ Carnevale,G.F.andFrederiksen,J.S., Nonlinear Stability and Statistical

Mechanics of Flow Over Topography.J.FluidMe h.175(1987),157181. [12℄ Chartier, P. and Faou, E., Geometric integrators for piecewise smooth

(3)

98 Bibliography

[13℄ Chavanis,P.H.,Statistical mechanics of 2D turbulence with a prior

vortic-ity distribution.Phys.DNonlinearPhenomena237(14-17)(2008),1998 2002.

[14℄ Cohen, D., Hairer, E. and Lubi h, C. Conservation of energy,

momen-tum and actions in numerical discretizations of nonlinear wave equations.

Numer.Math. 110(2008),113143.

[15℄ Cottet,G.H.andKoumoutsakos,P.D.,Vortex Methods: Theory and

Prac-tice.CambridgeUniversityPress,Cambridge,2000.

[16℄ Cotter,C.,Frank,J.andRei h,S.,Hamiltonian particle-mesh method for

two-layer shallow-water equations subject to the rigid-lid approximation.

SIAMJ.Appl.Dyn.Syst.3(1)(2004),6983(ele troni ).

[17℄ Cotter,C.andRei h,S.,Geometric Integration of a Wave-Vortex Model. Appl.Numer.Math. 48(2004),293305.

[18℄ Dubinkina,S.andFrank,J.,Statistical mechanics of Arakawa’s

discretiza-tions.J.Comput.Phys.227(2007),12861305.

[19℄ Dubinkina,S.andFrank,J.,Statistical relevance of vorticity conservation

with the Hamiltonian Particle-Mesh method. J. Comput. Phys. (2010), publishedonline: doi:10.1016/j.j p.2009.12.012.

[20℄ Dubinkina, S., Frank, J. and Leimkuhler, B., A thermostat closure for

point vortices.submitted(2009).

[21℄ Durran,D.R.,Numerical methods for wave equations in geophysical fluid

dynamics. Texts in Applied Mathemati s, vol. 32, Springer-Verlag, New York, 1999.

[22℄ Ellis,R.S.,Haven,K.and Turkington,B.,Nonequivalent statistical

equi-librium ensembles and refined stability theorems for most probable flows.

Nonlinearity15(2)(2002),239255.

[23℄ Feynman, R.P., Statistical mechanics. Perseus Books, Advan ed Book Program,Reading, MA,1998.

[24℄ Frank, J., Geometric space-time integration of ferromagnetic materials. Appl.Numer.Math. 48(3-4)(2004),307322.

[25℄ Frank, J., Gottwald, G. and Rei h, S., A Hamiltonian particle-mesh

method for the rotating shallow-water equations.InMeshfree methods for

partial differential equations,Le t.NotesComput.S i.Eng..26,Springer, Berlin,2003,131142.

[26℄ Frank,J.,Huang,W.andLeimkuhler,B.,Geometric integrators for

(4)

[27℄ Frank,J.,Moore,B.E.andRei h,S.Linear PDEs and numerical methods

that preserve a multisymplectic conservation law.SIAMJ. S i. Comput. 28(1) (2006),260277(ele troni ).

[28℄ Frank,J.andRei h,S.,Conservation properties of smoothed particle

hy-drodynamics applied to the shallow water equation. BIT 43 (1) (2003), 4155.

[29℄ Frank, J.and Rei h, S., The Hamiltonian Particle-Mesh Method for the

Spherical Shallow Water Equations.Atmospheri S ien eLetters5(2004), 8995.

[30℄ Frenkel, D.and Smit,B.,Understanding Molecular Simulation: from

al-gorithms to applications.A ademi Press,SanDiego,2002.

[31℄ Frutos,J.,Ortega,T.andSanz-Serna,J.M.,A Hamiltonian, explicit

algo-rithm with spectral accuracy for the ’good’ Boussinesq equation.Comput. MethodsAppl.Me h.Egrg.80(1990),417423.

[32℄ Frutos, J. and Sanz-Serna, J.M., An easily implementable fourth-order

method for the time integration of wave problems.J.Comput. Phys.103 (1992),160168.

[33℄ Ge,Z. and Marsden J.E., Poisson Hamilton-Jacobi theory and

Lie-Poisson integrators.Phys.Lett.A133(1988),134139.

[34℄ Hairer, E., Backward analysis of numerical integrators and symplectic

methods.Annals ofNumer.Math. 1(1994),107132.

[35℄ Hairer, E., Lubi h, C. and Wanner, G., Geometric Numerical

Integra-tion: Structure-Preserving Algorithms for Ordinary Differential Equa-tions. Springer Series in Computational Mathemati s, se ond ed., vol. 31,Springer-Verlag,Berlin,2006.

[36℄ Hairer, E., Nørsett, S.P. and Wanner, G., Solving Ordinary Differential

Equations I: Nonstiff Problems.SpringerSeries inComputational Math-emati s,vol.8,se onded.,Springer-Verlag,Berlin,1993.

[37℄ Hoover, W.G., Canonical dynamics: Equilibrium phase-space

distribu-tions.Phys.Rev.A 31(1985),16951697.

[38℄ Hundsdorfer, W. and Verwer, J., Numerical solution of time-dependent

advection-diffusion-reaction equations. SpringerSeries in Computational Mathemati s,vol.33,Springer-Verlag,Berlin,2003.

[39℄ Khin hin, A.I.,Mathematical Foundations of Statistical Mechanics.New York: Dover,1960.

(5)

100 Bibliography

[41℄ Kullba k, S. and Leibler, R.A., On Information and Sufficiency. Ann. Math.Statist.22(1)(1951),7986.

[42℄ Lan zos,C., The Variational Principles of Mechanics. Toronto: Univer-sityofTorontoPress,1970.

[43℄ Leimkuhler, B., Generalized Bulgac-Kusnezov Methods for Sampling of

the Gibbs-Boltzmann Measure.Inpreparation,2009.

[44℄ Leimkuhler,B.,Noorizadeh,E. andTheil,F.,A Gentle Stochastic

Ther-mostat for Molecular Dynamics.J.Stat.Phys.135 (2)(2009),261277. [45℄ Leimkuhler,B. and Rei h, S., Simulating Hamiltonian Dynamics,

Cam-bridgeMonographsonAppliedandComputationalMathemati s,vol.14, CambridgeUniversityPress,Cambridge,2004.

[46℄ Lorenz,E.N.,Energy and numerical weather prediction.Tellus12(1960), 364-373.

[47℄ Lynden-Bell,D.,Statistical mechanics of violent relaxation in stellar

sys-tems.Mon.Not.R. astr.So .136(1967),101121.

[48℄ Majda, A.J. andWang, X., Non-linear dynamics and statistical theories

for basic geophysical flows.CambridgeUniversityPress,Cambridge,2006. [49℄ Marsden,J.E.andRatiu,T.,Mechanics and Symmetry.Springer-Verlag,

NewYork,se ond ed.,1998.

[50℄ M La hlan,R.I.,Explicit Lie-Poisson integration and the Euler equations. Phys.Rev.Lett.71(19)(1993),30433046.

[51℄ M La hlan, R.I., Symplectic integration of Hamiltonian wave equations. Numer.Math. 66(4)(1994),465492.

[52℄ M Williams, J.C., Fundamentals of geophysical fluid dynamics. Cam-bridgeUniversityPress,NewYork, 2006.

[53℄ Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., Equation of State Calculations by Fast Computing Machines. J.Chem. Phys.21(1953),10871092.

[54℄ Miller, J., Statistical mechanics of Euler equations in two dimensions. Phys.Rev.Lett.65(17)(1991),21372140.

[55℄ Miller,J.,Wei hman,P.B.andCross,M.C.,Statistical mechanics, Euler’s

equation, and Jupiter’s Red Spot.Phys.Rev.A45(4)(1992),23282359. [56℄ Mol hanov, V., Particle-Mesh and Meshless Methods for a Class of

(6)

[57℄ Morrison, P.J., Hamiltonian description of the ideal fluid. Rev. Modern Phys.70(2)(1998),467521.

[58℄ Morrison,P.J.andGreene,J.M.,Noncanonical Hamiltonian Density

For-mulation of Hydrodynamics and Ideal Magnetohydrodynamics.Phys.Rev. Lett.45(1980),790794.

[59℄ Nambu, Y., Generalized Hamiltonian dynamics.Phys. Rev. D 7 (1973), 24052412.

[60℄ Névir, P. and Blender, R., A Nambu representation of incompressible

hydrodynamics using helicity and enstrophy.J. Phys. A 26 (22) (1993), L1189L1193.

[61℄ Nosé, S.,A molecular dynamics method for simulations in the canonical

ensemble.Mol. Phys.52(1984),255268.

[62℄ Nosé, S., A unified formulation of the constant temperature molecular

dynamics methods.J.Chem. Phys.81(1984),511519.

[63℄ Oliver,M.andBühler,O.,Transparent boundary conditions as dissipative

subgrid closures for the spectral representation of scalar advection by shear flows.J.Math. Phys.48(6)(2007),065502-065502-26.

[64℄ Olver, P.J., Applications of Lie Groups to Differential Equations. Springer-Verlag,NewYork,1986.

[65℄ Onsager, L., Statistical hydrodynamics. Nuovo Cimento, Suppl. 6 (2) (1949),279287.

[66℄ Pavliotis, G.A. and Stuart, A.M., Multiscale Methods: Averaging and

Homogenization.Springer,NewYork,2008.

[67℄ Pedlosky, J., Geophysical Fluid Dynamics. Springer, New York, se ond ed.,1987.

[68℄ Petersen, K.E.,Ergodic theory.CambridgeUniversity Press,Cambridge, 1989.

[69℄ Rei h, S.,Numerical integration of the generalized Euler equation. Te h-ni alReportTR93-20,UniversityoftheBritishColumbia,1993.

[70℄ Rei h, S., Backward error analysis for numerical integrators. SIAM J. Numer.Anal.36(1999),475491.

[71℄ Robert, R., A maximum-entropy principle for two-dimensional perfect

fluid dynamics.J.Statist.Phys.65(3-4)(1991),531553.

[72℄ Robert, R. and Sommeria, J., Statistical equilibrium states for

(7)

102 Bibliography

[73℄ Salmon, R., Hamiltonian fluid mechanics. Ann. Rev. Fluid Me h. 20 (1988),225256.

[74℄ Salmon, R., Lectures on geophysical fluid dynamics. Oxford University Press,NewYork,1998.

[75℄ Salmon,R.,A general method for conserving quantities related to potential

vorticity in numerical models.Nonlinearity18(5)(2005),R1R16. [76℄ Salmon,R.,HollowayG.andHendershottM.C.,The Equilibrium

Statis-tical Mechanics of Simple Quasi-Geostrophic Models. J. Fluid Me h. 75 (1976),691703.

[77℄ Sanz-Serna, J.M., Runge-Kutta schemes for Hamiltonian systems. BIT 28,877883.

[78℄ Sanz-Serna, J.M., Symplectic integrators for Hamiltonian problems: an

overview.A tanumeri a(1992),243286.

[79℄ Sanz-Serna,J.M.andCalvo,M.P.,Numerical Hamiltonian problems. Ap-pliedMathemati s and Mathemati alComputation, vol. 7,Chapman & Hall,London,1994.

[80℄ S hli k, T., Molecular Modeling and Simulation: An Interdisciplinary

Guide.Springer,NewYork, vol.21,2002.

[81℄ Shannon, C.E., A Mathematical Theory of Communication. Bell Syst. Te h.J.27(1948),379423and623656.

[82℄ Shepherd,T.G.,Symmetries, conservation laws, and Hamiltonian

struc-ture in geophysical fluid dynamics.Adv.Geophys.32(1990),287-338. [83℄ ShinS. and Rei h S., Hamiltonian particle-mesh simulations for a

non-hydrostatic vertical slice model.Atmos.S i.Lett.(2009),publishedonline. [84℄ Stuart, A.M. and Humphries, A.R., Dynamical Systems and Numerical

Analysis.CambridgeMonographs onAppliedandComputational Math-emati s,vol.2,CambridgeUniversityPress,Cambridge,1996.

[85℄ Walters, P., An Introduction to Ergodic Theory. Springer-Verlag, New York, 1982.

[86℄ Weiss,J.B.and M Williams,J.C.,Nonergodicity of point vortices.Phys. FluidsA3 (5part1) (1991),835844.

[87℄ Wilkinson, J.H., Error analysis of floating-point computation. Numer. Math.2(1960),319340.

[88℄ Zeitlin,V., Finite-mode analogues of 2D ideal hydrodynamics: Coadjoint

Referenties

GERELATEERDE DOCUMENTEN

Immediately after (at 150 ms) the aforementioned fear-related motor reaction, we observed (Chapter 3), using single-pulse TMS, that the right motor cortex continued to show

Hajcak G, Molnar C, George MS, Bolger K, Koola J, Nahas Z (2007) Emotion facilitates action: a transcranial magnetic stimulation study of motor cortex excitability during

Als uw artikel door een tijdschrift is geaccepteerd en als dat met een revisie voor het tijdschrift gepaard is gegaan, dan is het een goede gewoonte om een overeenkomstige nieuwe

Pneumocystis carinii pneumonia (PCP) is an opportunistic infection in patients with the acquired immunodeficiency syndrome (AIDS), in premature babies [1] and in patients

particles coming from the left. The solution is the sum of the two gaussians.. Now each time a particle arrives from the right to go to left, a particle will arrive from the left to

Voor zover moerassen in het Zeekleigebied te maken krijgen met meer peildynamiek door periodieke aanvoer van grote hoeveelheden zoet water uit grote rivieren is dit naar

The wide distribution of information converters with non-regular time quantization requires the designing of special methods of dynamic system identification which

Figure 3.1: A 2D picture of the micromechanical model, showing basilar membrane (BM), pillar cells (PC), cuticular plate (CP), outer hair cells (OHC), cilia and tectorial