• No results found

Density fluctuations in the 1D Bose gas - Bibliography

N/A
N/A
Protected

Academic year: 2021

Share "Density fluctuations in the 1D Bose gas - Bibliography"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Density fluctuations in the 1D Bose gas

Panfil, M.K.

Publication date

2013

Link to publication

Citation for published version (APA):

Panfil, M. K. (2013). Density fluctuations in the 1D Bose gas.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

[1] S. Weinberg. Lake Views: This World and the Universe. Belknap Press, 2010. [2] B. Greene. The Elegent Universe. W. W. Norton, 2003.

[3] R. B. Laughlin and David Pines. The theory of everything. Proceedings of the National Academy of Sciences, 97(1):28–31, 2000. doi: 10.1073/pnas.97.1.28. [4] Kenneth G. Wilson. The renormalization group: Critical phenomena and the kondo

problem. Rev. Mod. Phys., 47(4):773–840, 1975. doi: 10.1103/RevModPhys.47.773. [5] L. P. Kadanoff. Relating Theories via Renormalization. ArXiv:1102.3705, February

2011.

[6] P. W. Anderson. More is different. Science, 177(4047):393–396, 1972. doi: 10.1126/ science.177.4047.393.

[7] P. W. Anderson. More and Different: Notes from a Thoughtful Curmudgeon. World Scientific, 2011.

[8] R. B. Laughlin. A Different Universe. Basic Books, 2006.

[9] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Microscopic theory of superconduc-tivity. Phys. Rev., 106:162–164, Apr 1957. doi: 10.1103/PhysRev.106.162.

[10] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys. Rev., 108:1175–1204, Dec 1957. doi: 10.1103/PhysRev.108.1175.

[11] L. D. Landau and E. M. Lifshitz. Statistical Physics, Part 1. Vol. 5 . Butterworth-Heinemann, 1980.

[12] N. N. Bogolyubov and N. N. Bogolyubov Jr. Introduction to Quantum Statistical Mechanics. World Scientific Publishing Company, 2009.

[13] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75:3969–3973, Nov 1995. doi: 10.1103/PhysRevLett.75.3969.

(3)

Bibliography 152

[14] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269 (5221):198–201, 1995. doi: 10.1126/science.269.5221.198.

[15] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71:463–512, Apr 1999. doi: 10. 1103/RevModPhys.71.463.

[16] S. Stringari L. P. Pitaevskii. Bose-Einstein Condensation. Clarendon, Oxford, 2003. [17] P. C. Hohenberg. Existence of long-range order in one and two dimensions. Phys.

Rev., 158:383–386, Jun 1967. doi: 10.1103/PhysRev.158.383.

[18] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin. Quantum Inverse Scattering Method and Correlation Functions. Cambridge Univ. Press, 1993.

[19] L. Tonks. The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev., 50(10):955–963, 1936. doi: 10.1103/PhysRev. 50.955.

[20] M. Olshanii. Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Phys. Rev. Lett., 81(5):938–941, 1998. doi: 10.1103/ PhysRevLett.81.938.

[21] E. H. Lieb and W. Liniger. Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State. Phys. Rev., 130(4):1605–1616, 1963. doi: 10.1103/PhysRev.130.1605.

[22] M. Girardeau. Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. J. Math. Phys., 1(6):516–523, 1960. doi: 10.1063/1.1703687. [23] H. Bethe. Zur Theorie der Metalle. i. Eigenwerte und Eigenfunktionen der linearen

Atomkette. Zeit. für Physik, 71:205, 1931.

[24] S. R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69(19):2863–2866, 1992. doi: 10.1103/PhysRevLett.69.2863.

[25] U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77: 259–315, Apr 2005. doi: 10.1103/RevModPhys.77.259.

[26] Anders W. Sandvik. Stochastic series expansion method with operator-loop update. Phys. Rev. B, 59:R14157–R14160, Jun 1999. doi: 10.1103/PhysRevB.59.R14157. [27] D. Blume. Fermionization of a bosonic gas under highly elongated confinement:

A diffusion quantum monte carlo study. Phys. Rev. A, 66:053613, Nov 2002. doi: 10.1103/PhysRevA.66.053613.

(4)

[28] G. E. Astrakharchik and S. Giorgini. Quantum monte carlo study of the three- to one-dimensional crossover for a trapped bose gas. Phys. Rev. A, 66:053614, Nov 2002. doi: 10.1103/PhysRevA.66.053614.

[29] G. E. Astrakharchik and S. Giorgini. Correlation functions and momentum distri-bution of one-dimensional bose systems. Phys. Rev. A, 68:031602, Sep 2003. doi: 10.1103/PhysRevA.68.031602.

[30] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini. Beyond the Tonks-Girardeau gas: Strongly correlated regime in quasi-one-dimensional Bose gases. Phys. Rev. Lett., 95(19):190407, 2005. doi: 10.1103/PhysRevLett.95.190407. [31] P. Deuar, A. G. Sykes, D. M. Gangardt, M. J. Davis, P. D. Drummond, and K. V.

Kheruntsyan. Nonlocal pair correlations in the one-dimensional Bose gas at finite temperature. Phys. Rev. A, 79(4):043619, 2009. doi: 10.1103/PhysRevA.79.043619. [32] J. Brand and A. Yu. Cherny. Dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit. Phys. Rev. A, 72:033619, 2005. doi: 10.1103/PhysRevA.72.033619.

[33] A. Yu. Cherny and J. Brand. Polarizability and dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit at finite temperatures. Phys. Rev. A, 73(2):023612, 2006.

[34] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, and V. Terras. Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions. J. Stat. Mech.: Th. Exp., 2009(04):P04003, 2009.

[35] K. K. Kozlowski, J. M. Maillet, and N. A. Slavnov. Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas. J. Stat. Mech.: Th. Exp., 2011(03):P03018, 2011.

[36] K. K. Kozlowski, J. M. Maillet, and N. A. Slavnov. Correlation functions for one-dimensional bosons at low temperature. J. Stat. Mech.: Th. Exp., 2011(03):P03019, 2011.

[37] K. K. Kozlowski and V. Terras. J. Stat. Mech.: Th. Exp., 2011(09):P09013, 2011. [38] J.-S. Caux and P. Calabrese. Dynamical density-density correlations in the

one-dimensional Bose gas. Phys. Rev. A, 74(3):031605, Sep 2006. doi: 10.1103/ PhysRevA.74.031605.

[39] J.-S. Caux, P. Calabrese, and N. A. Slavnov. One-particle dynamical correlations in the one-dimensional Bose gas. J. Stat. Mech.: Th. Exp., 2007(01):P01008, 2007.

(5)

Bibliography 154

[40] J.-S. Caux. Correlation functions of integrable models: a description of the ABACUS algorithm. J. Math. Phys., 50(9):095214, 2009. doi: 10.1063/1.3216474.

[41] A. Brunello, F. Dalfovo, L. Pitaevskii, S. Stringari, and F. Zambelli. Momentum transferred to a trapped bose-einstein condensate by stimulated light scattering. Phys. Rev. A, 64:063614, Nov 2001. doi: 10.1103/PhysRevA.64.063614.

[42] N. Fabbri, D. Clément, L. Fallani, C. Fort, and M. Inguscio. Momentum-resolved study of an array of one-dimensional strongly phase-fluctuating bose gases. Phys. Rev. A, 83:031604, Mar 2011. doi: 10.1103/PhysRevA.83.031604.

[43] A. H. van Amerongen, J. J. P. van Es, P. Wicke, K. V. Kheruntsyan, and N. J. van Druten. Yang-Yang thermodynamics on an atom chip. Phys. Rev. Lett., 100(9): 090402, 2008. doi: 10.1103/PhysRevLett.100.090402.

[44] S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imambekov, V. Gritsev, E. Demler, and J. Schmiedmayer. Probing quantum and thermal noise in an interacting many-body system. Nat. Phys., 4:489, 2008.

[45] T. Kinoshita, T. Wenger, and D. S. Weiss. Observation of a One-Dimensional Tonks-Girardeau Gas. Science, 305(5687):1125–1128, 2004. doi: 10.1126/science.1100700. [46] T. Kinoshita, T. Wenger, and D. S. Weiss. Local Pair Correlations in One-Dimensional Bose Gases. Phys. Rev. Lett., 95(19):190406, 2005. doi: 10.1103/ PhysRevLett.95.190406.

[47] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G. Pupillo, and H.-C. Nagerl. Realization of an Excited, Strongly Correlated Quantum Gas Phase. Science, 325(5945):1224–1227, 2009. doi: 10.1126/science.1175850.

[48] B. Davies and V. E. Korepin. Higher conservation laws for the quantum non-linear Schroedinger equation. ArXiv e-prints, September 2011.

[49] C. N. Yang and C. P. Yang. Thermodynamics of a One-Dimensional System of Bosons with Repulsive Delta-Function Interaction. J. Math. Phys., 10(7):1115–1122, 1969. doi: 10.1063/1.1664947.

[50] P. Calabrese and J.-S. Caux. Dynamics of the attractive 1D Bose gas: analytical treatment from integrability. J. Stat. Mech.: Th. Exp., 2007(08):P08032, 2007. [51] N. A. Slavnov. Calculation of scalar products of wave functions and form factors in

the framework of the algebraic Bethe Ansatz. Theor. Math. Phys., 79:502, 1989. [52] M. Gaudin. La fonction d’onde de Bethe. Masson, Paris, 1983.

(6)

[53] V. E. Korepin. Calculation of norms of Bethe wave functions. Commun. Math. Phys., 86:391–418, 1982.

[54] N. A. Slavnov. Nonequal-time current correlation function in a one-dimensional bose gas. Theor. Math. Phys., 82:273, 1990.

[55] E. H. Lieb. Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum. Phys. Rev., 130(4):1616–1624, 1963. doi: 10.1103/PhysRev.130.1616.

[56] A. Shashi, M. Panfil, J.-S. Caux, and A. Imambekov. Exact prefactors in static and dynamic correlation functions of one-dimensional quantum integrable models: Applications to the Calogero-Sutherland, Lieb-Liniger, and XXZ models. Phys. Rev. B, 85:155136, 2012. doi: 10.1103/PhysRevB.85.155136.

[57] F. D. M. Haldane. Effective Harmonic-Fluid Approach to Low-Energy Properties of One-Dimensional Quantum Fluids. Phys. Rev. Lett., 47(25):1840–1843, 1981. doi: 10.1103/PhysRevLett.47.1840.

[58] M A Cazalilla. Bosonizing one-dimensional cold atomic gases. J. Phys. B: AMOP, 37(7):S1, 2004.

[59] T. Giamarchi. Quantum Physics in One Dimension. Oxford University Press, 2004. [60] A. Shashi, L. I. Glazman, J.-S. Caux, and A. Imambekov. Nonuniversal prefactors in the correlation functions of one-dimensional quantum liquids. Phys. Rev. B, 84 (4):045408, 2011. doi: 10.1103/PhysRevB.84.045408.

[61] A. Imambekov and L. I. Glazman. Exact Exponents of Edge Singularities in Dy-namic Correlation Functions of 1D Bose Gas. Physical Review Letters, 100(20): 206805, 2008. doi: 10.1103/PhysRevLett.100.206805.

[62] A. Imambekov, T. L. Schmidt, and L. I. Glazman. One-dimensional quantum liquids: Beyond the luttinger liquid paradigm. Rev. Mod. Phys., 84:1253–1306, Sep 2012. doi: 10.1103/RevModPhys.84.1253.

[63] K. D. Schotte and U. Schotte. Tomonaga’s Model and the Threshold Singularity of X-Ray Spectra of Metals. Phys. Rev., 182(2):479–482, 1969.

[64] V. V. Cheianov and M. Pustilnik. Threshold Singularities in the Dynamic Response of Gapless Integrable Models. Phys. Rev. Lett., 100(12):126403, 2008.

[65] A. Imambekov and L. I. Glazman. Universal Theory of Nonlinear Luttinger Liquids. Science, 323(5911):228–231, 2009.

(7)

Bibliography 156

[66] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and G. V. Shlyapnikov. Pair Correlations in a Finite-Temperature 1D Bose Gas. Phys. Rev. Lett., 91(4): 040403, 2003. doi: 10.1103/PhysRevLett.91.040403.

[67] A. G. Sykes, D. M. Gangardt, M. J. Davis, K. Viering, M. G. Raizen, and K. V. Kheruntsyan. Spatial Nonlocal Pair Correlations in a Repulsive 1D Bose Gas. Phys. Rev. Lett., 100(16):160406, 2008. doi: 10.1103/PhysRevLett.100.160406.

[68] E. M. Lifshitz L. P. Pitaevskii. Statistical Physics, Part 2. Vol. 9 . Butterworth-Heinemann, 1980.

[69] M. Panfil, J. De Nardis, and J.-S. Caux. Metastable criticality and the super tonks-girardeau gas. Phys. Rev. Lett., 110:125302, Mar 2013. doi: 10.1103/PhysRevLett. 110.125302.

[70] T. Bergeman, M. G. Moore, and M. Olshanii. Atom-atom scattering under cyldrical harmonic confinement: Numerical and analytic studies of the confinement in-duced resonance. Phys. Rev. Lett., 91:163201, Oct 2003. doi: 10.1103/PhysRevLett. 91.163201.

[71] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Colloquium : Nonequi-librium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83:863– 883, Aug 2011. doi: 10.1103/RevModPhys.83.863.

[72] M. T. Batchelor, M. Bortz, X. W. Guan, and N. Oelkers. Evidence for the super Tonks-Girardeau gas. J. Stat. Mech.: Th. Exp., 2005(10):L10001, 2005.

[73] S. Chen, X.-W. Guan, X. Yin, L. Guan, and M. T. Batchelor. Realization of effective super Tonks-Girardeau gases via strongly attractive one-dimensional Fermi gases. Phys. Rev. A, 81(3):031608, 2010. doi: 10.1103/PhysRevA.81.031608.

[74] M. D. Girardeau and G. E. Astrakharchik. Wave functions of the super-Tonks-Girardeau gas and the trapped one-dimensional hard-sphere Bose gas. Phys. Rev. A, 81(6):061601, 2010. doi: 10.1103/PhysRevA.81.061601.

[75] D. Muth and M. Fleischhauer. Dynamics of Pair Correlations in the Attractive Lieb-Liniger Gas. Phys. Rev. Lett., 105:150403, 2010. doi: 10.1103/PhysRevLett. 105.150403.

[76] M. Kormos, G. Mussardo, and A. Trombettoni. Local correlations in the super-Tonks-Girardeau gas. Phys. Rev. A, 83:013617, 2011. doi: 10.1103/PhysRevA.83. 013617.

[77] D. M. Gangardt and G. V. Shlyapnikov. Stability and phase coherence of trapped 1d bose gases. Phys. Rev. Lett., 90:010401, 2003. doi: 10.1103/PhysRevLett.90.010401.

(8)

[78] M. B. Zvonarev, V. V. Cheianov, and T. Giamarchi. Spin Dynamics in a One-Dimensional Ferromagnetic Bose Gas. Phys. Rev. Lett., 99(24):240404, 2007. doi: 10.1103/PhysRevLett.99.240404.

Referenties

GERELATEERDE DOCUMENTEN

Les cameleons de la finance populaire au Senegal et dans la Diaspora : dynamique des tontines et des caisses villageoises entre Thilogne, Dakar et la France.

Zich baserend op een resultaat van Jayne en Rogers heeft Andretta In 2006 een representatie door middel van spelen gegeven van de Δ 1 2 functies (in de taal van dit proefschrift is

A game for the Borel functions.. Institute for Logic, Language

It identifies the relevant primary obligations of states: international obligations on climate change mitigation; obligations on climate change adaptation; and the

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons.. In case of

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

In 2010, the Conference of the Parties to the United Nations Framework Convention on Climate Change (also UNFCCC, or the Convention) established a work programme on approaches