• No results found

Fast Radio Burst Tomography of the Unseen Universe

N/A
N/A
Protected

Academic year: 2021

Share "Fast Radio Burst Tomography of the Unseen Universe"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Fast Radio Burst Tomography of the Unseen Universe

Ravi, Vikram; Battaglia, Nicholas; Burke-Spolaor, Sarah; Chatterjee, Shami; Cordes, James; Hallinan, Gregg; Law, Casey; Lazio, T. Joseph W.; Masui, Kiyoshi; McQuinn, Matthew Published in:

Astro2020

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Final author's version (accepted by publisher, after peer review)

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Ravi, V., Battaglia, N., Burke-Spolaor, S., Chatterjee, S., Cordes, J., Hallinan, G., Law, C., Lazio, T. J. W., Masui, K., McQuinn, M., Muñoz, J. B., Palliyaguru, N., Prochaska, J. X., Seymour, A., Vedantham, H., & Zheng, Y. (2019). Fast Radio Burst Tomography of the Unseen Universe. In Astro2020: Decadal Survey on Astronomy and Astrophysics, science , White papers (Vol. 420). (Bulletin of the American Astronomical Society; Vol. 51, No. 3). American Astronomical Society.

https://ui.adsabs.harvard.edu/abs/2019BAAS...51c.420R

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Astro2020 Science White Paper

Fast Radio Burst Tomography

of the Unseen Universe

Thematic Areas: Cosmology and Fundamental Physics, Galaxy Evolution Vikram Ravi1 (Center for Astrophysics | Harvard & Smithsonian; Caltech);

Nicholas Battaglia (Cornell); Sarah Burke-Spolaor (West Virginia

University/Center for Gravitational Waves and Cosmology/CIFAR Azrieli Global Scholar); Shami Chatterjee (Cornell); James Cordes (Cornell); Gregg Hallinan (Caltech);

Casey Law (UC Berkeley); T. Joseph W. Lazio (JPL/Caltech); Kiyoshi Masui (MIT); Matthew McQuinn (University of Washington); Julian B. Mu˜noz (Harvard University); Nipuni Palliyaguru (Arecibo Observatory); J. Xavier Prochaska (UC

Santa Cruz); Andrew Seymour (Green Bank Observatory); Harish Vedantham (ASTRON); Yong Zheng (UC Berkeley).

Description: The discovery of Fast Radio Bursts (FRBs) at cosmological distances has opened a powerful window on otherwise unseen matter in the Universe. Observations of > 104 FRBs will assess the baryon contents and physical conditions in the hot/diffuse

cir-cumgalactic, intracluster, and intergalactic medium, and test extant compact-object dark matter models.

From left, Panel [1] : A single burst from the repeating Fast Radio Burst (FRB) source 121102 detected at Arecibo, showing the frequency-dependent dispersion delay caused by the intervening electron column. [2 ]: HST (F110W) image of the dwarf host-galaxy at a redshift z = 0.19273, showing a star-forming knot associated with this burst source. [3 ]: Gemini-N/GMOS image of the FRB 121102 field, showing foreground stars and potentially intervening galaxies. [4 ]: A simulation of the z = 0 large-scale structure of the Universe on a 15 Mpc/h scale, showing dark matter density on left, fading into the gas density on the right (Credit: The Illustris Simulation).

1Cahill Center for Astronomy and Astrophysics, MC 249-17, California Institute of Technology, Pasadena

(3)

Fast Radio Bursts (FRBs) are millisecond-duration impulses of extragalactic origin that offer a radically new means of observing the Universe [1–4]. At least 103 events occur over

the sky each day [5, 6], and a population of repeating sources is emerging [7, 8]. FRBs are already detected on a daily basis in commensal searches with sensitive, widefield radio telescopes [9–11]. The next decade promises 104–106 FRBs [5, 6], observed along unique

extragalactic sightlines [12, 13] to redshifts z & 2 [14–16]. Here we describe how this bounty of FRBs will address three key questions:

1. How are cosmic baryons in the low-redshift Universe allocated between galax-ies, their surroundings, and the intergalactic medium (§1)?

2. What do galaxy halos look like on the smallest scales? Are there parsec-scale cold clouds in the circum-galactic medium, and can even a fraction of dark matter be composed of compact objects (§2)?

3. What are the physical conditions in the interstellar medium of galaxies besides the Milky Way (§3)?

The dispersive delays observed in all FRBs, estimated to sub-percent accuracy [e.g., 4], are significantly greater than expected from the Milky Way ionized interstellar and circum-galactic medium (ISM and CGM, respectively) [see, e.g., 17]. FRB dispersion measures (DMs) quantify the total line-of-sight electron-column densities, and can include contribu-tions from the host-galaxy ISM, the CGM and intra-cluster medium (ICM) of intervening systems, and the intergalactic medium (IGM) [see Fig. 1; 15, 18–25]. Just as radio pulsars help us model the Galactic ISM [26–29], FRBs encode rich information on extragalactic warm/hot diffuse matter. Besides their DMs, FRBs provide the only means of measuring sub-ms time delays imparted by extragalactic lensing phenomena, which can be caused by both plasma-refractive and gravitational light bending.

The scientific outcomes outlined in this white paper are largely independent of the nature of FRB progenitors. Widespread interest in FRBs has so far been driven by the problem of their unknown origins – e.g., the life cycles of their progenitors, and the mechanism of their emission [for a catalog of FRB progenitor models, see 30]. In the coming few years, several tens of FRBs will be localized with arcsecond accuracy [e.g., 9, 10]. Although these data will significantly advance our understanding of FRB progenitors [e.g., 31–33], ongoing FRB searches will likely be required to characterize FRB engines and explore their diversity. FRB survey data sets can also be used to search for other undiscovered, unexpected radio-astronomical phenomena.

(4)

1

The distribution of baryons in the low-z universe

The Universe has been mostly ionized for the last 13 billion years [34]. Much of the IGM [∼ 50% of the cosmic baryon density, Ωb; 35] is now at & 107K, heated by shocks

associ-ated with structure formation and gas-accretion onto dark-matter halos [36], and through thermal/kinetic feedback [e.g., 37] from galaxies. Galactic outflows and IGM accretion also led to the establishment of the multi-phase CGM [38] and ICM [39]. The missing baryon problem refers to the difficulty of directly observing most cosmic baryons at redshifts z . 2 [40–42]. Approximately 0.3Ωb is in fact entirely absent from accounts of low-redshift baryons

[35]. Recent observations of galactic coronae [43] and the thermal Sunyaev-Zeldovich (tSZ) effect in IGM filaments [44, 45], and measurements of UV and X-ray quasar absorption lines [e.g., 46, 47], support a scenario wherein the missing baryons are hot (> 106K) and diffusely

distributed in the CGM, ICM, and IGM.

Large FRB/DM samples will enable a direct accounting of the z . 2 baryon contents of the CGM, ICM, and IGM respectively, without detailed cosmological and photo-chemical simulations [e.g., 47–49] to interpret the observations. Just 101 − 102 arcsecond-localized

FRBs, with host- and intervening-system redshift measurements, are sufficient to make a statistical detection of the CGM and measure its corresponding fraction of Ωb [50]. Stacking

102− 103 arcminute-localized FRBs in individual bins of impact parameter to intervening

galaxies will additionally probe the radial density profile of the CGM [Fig. 2; 20]. Larger FRB samples will measure the CGM electron-column density profiles for different galaxy types, addressing a major uncertainty in interpreting observations based on UV metal-absorption lines and X-ray emission measures [e.g., 35, 42, 47]. Further, the correlation of ∼ 104 arcminute-localized FRBs and their DMs with cosmic microwave background (CMB) maps will measure the electron-scattering optical depths corresponding to the cosmic-web tSZ effect at higher redshifts than are currently possible [51]. Finally, the measurement of the DM-z relation to z > 2 with samples of ∼ 104 FRBs to mitigate cosmic variance will ascertain

the precise epoch and duration of He ii reionization at z ∼ 2 [52, 53].

Although  104 FRB DMs with associated redshifts are required to improve estimates of cosmological parameters [13, 55, 56], three important cosmological measurements are more readily achievable. The DM-space clustering of ∼ 104− 105 arcminute-localized events will

probe large-scale structure through baryon acoustic oscillations, and characterize the bias parameter of cosmic baryons [57]. Further, FRBs can be used to improve galaxy-cluster ki-netic SZ (kSZ) measurements of the growth rate and amplitude of cosmic density fluctuations [58]. This is an important goal of Stage-4 CMB experiments, and the Dark Energy Spec-troscopic Instrument (DESI) surveys. KSZ constraints are degenerate with galaxy-cluster CMB optical depths [e.g., 59, 60], which are currently calibrated using cosmological sim-ulations. 105 − 106 arcsecond-localized FRBs with even photometric-redshift information,

jointly with DESI survey data, can break this degeneracy and improve kSZ constraints by factors of ∼ 2 [58]. Finally, the DMs and Faraday rotation measures (RMs – which are the sightline-averaged products of the electron density and magnetic field) of linearly polarized FRBs enable uniquely direct estimates of mean line-of-sight extragalactic magnetic fields [e.g., 61, 62]. A handful of FRB RMs have already been measured [3], and & 103 FRBs with

extragalactic RM uncertainties of a few rad m−2 will distinguish between leading models for seeding the as-yet undetected IGM magnetic field [63, 64].

(5)

Figure 2: Left: The sensitivity of different FRB sample sizes to the CGM in a 1012M z = 0.5 dark-matter halo [20]. The black curves show different models for the CGM density profile. The red and blue stepped lines show the 1σ uncertainties in the CGM DM, assuming 102 and 103 FRBs per bin respectively. Right: The constraints on the fraction of dark matter (fDM) in primordial black holes for different masses (ML) if none out of 104 FRBs are micro- or nano-lensed (grey) [54]. A set of current constraints is shown as red, green and blue regions.

2

Extragalactic sub-microlensing of FRBs

FRBs are the shortest-duration extragalactic transients, and the most compact known extra-galactic sources of electromagnetic radiation. FRBs hence resolve smaller time-delays caused by multi-path propagation on cosmological scales than any other probe, due to gravitational and plasma-refractive light bending. FRBs refracted in inhomogeneous plasma arrive at the observer along several paths, and propagation along gravitationally deflected paths likewise enables multiple burst copies to be detected. Few-microsecond temporal structure exists in some FRBs [62, 65], implying sensitivity to comparable propagation delays in total-power time series. Time delays, τ , comparable to the inverse of the observing bandwidths (∼ 1 ns) can be detected through the (frequency-dependent) interference of differently delayed rays. The corresponding angular scale at the plasma or gravitational “lens”, at a distance Dl, is

θl =pcτ /Dl ≈p[τ /(1 µs)][(1 Gpc/Dl] µas. Such angular scales are difficult to spatially

re-solve with even mm Very Long Baseline Interferometry (VLBI), and transient lensing events are inaccessibly long except in special cases [66], making FRB observations the best means to detect extragalactic micro- and nano-lenses. Gravitational lensing is achromatic, unlike plasma-refractive lensing, and lensing unlike intrinsic temporal structure imposes a strong temporal coherence on the radiation.

A major, unexpected challenge to our understanding of the CGM [e.g., 67–69] is the ubiq-uitous detection of cool (∼ 104K), dense (∼ 1 cm−3) material admixed with 105− 107K gas

[38]. The cool CGM gas could originate from galactic outflows [70, 71], or cooling instabilities may be amplified by magnetic fields [72]. Alternatively, the gas may cool in situ on scales below simulation resolutions, fragmenting into a fog of cold clumps (∼ 0.1 pc, ∼ 1 cm−3) [73]. These clumps are likely only detectable through the resulting ‘scattering’ (stochastic multi-path propagation) of FRB pulses by CGM halos on timescales of ∼ (ν/GHz)−4ms

(6)

[74]. More halo intercepts will result in increased scattering; FRBs at z > 1 will intersect ∼ 10 Milky Way-sized halos. Such chromatic scattering has long been observed in Galactic pulsars due to the Milky Way ISM [e.g., 26], and is seen in several FRBs [3, 4, 75]. The FRB sample in hand and experience with Galactic pulsars together suggests that establishing a scattering-redshift relation will require well over 103 (arcsecond-localized) FRBs.

Gravitational lensing is a classic probe of unseen matter in the Universe, and FRB time-delay observations can probe extragalactic mass concentrations on otherwise inaccessible scales. If the entirety of cosmological dark matter is composed of compact objects, such as 10 − 100M black holes (that are not probed by the usual stellar-microlensing searches)

[e.g., 76–78], lensed FRB echoes on 10−6 − 10−3s timescales will exist for ∼ 1/100 events [Fig 2; 54]. Gravitational-lensing searches with 104FRBs will assess whether even 1% of dark

matter consists of compact objects [54, 79, 80]. Finally, repeating FRBs can be used to probe temporal changes in larger-scale lensing potential time delays with unprecedented accuracy, providing the most promising means to directly observe transverse motion on cosmological scales, and even the Hubble expansion of the Universe [81–83].

3

FRB sightlines through extragalactic (and Galactic) ISM

The remarkable scientific outcomes forecast above first require the characterization of FRB-propagation effects in their host galaxies, and in the Milky Way. This presents a unique opportunity to study extragalactic ISM.

Known FRBs are viewed along a wide variety of plasma sightlines. FRB 150807, for example, likely has a small host-galaxy DM, together with an undetectable extragalactic RM, and a scattering delay of 5 − 10 µs [62]. The repeating FRB 121102 has a host-galaxy DM of ∼ 200 pc cm−3 (comparable to its IGM DM at z = 0.19273) [32], among the highest RMs ever observed among radio sources [84], but with only Galactic-ISM scattering [33]. FRBs with measurable extragalactic scattering appear not to be scattered in environments typical of the Milky Way ISM [61, 62, 85]. Although the predictions made above for the utility of FRB DMs account for realistic uncertainties estimated for host- and Galactic-DM contributions, the former can be assessed through joint analyses of FRB DMs, scattering measurements, and RMs [62, 75, 85]. For FRBs where Milky Way scattering is identified, the locations of additional scattering instances (i.e., the CGM, or the host galaxies) can be deduced through geometric-optics arguments [61, 65]. With large FRB samples, it will become possible to identify the DMs, RMs, and plasma-refractive scattering phenomena contributed by different FRB host-galaxy types. Repeated bursts from some FRBs can be used to monitor the host-galaxy ISM properties on timescales of years, probing AU-scale density inhomogeneities in extragalactic ISM. DM and RM variations in the repeating FRB 121102 have indeed already been reported [86], with important consequences for the progenitor environment [87].

Models of the density distribution and physical conditions of foreground Galactic ionized ISM [e.g., 28, 29] will be improved by factors of a few by next-generation pulsar surveys [yielding ∼ 104 discoveries; 88, 89], and more VLBI parallax measurements of pulsars. The next generation of polarimetric radio-continuum sky surveys will lead to similarly improved models for the Galactic RM foreground [e.g., 90]. & 104 FRB sightlines through the Galactic

(7)

4

Prospects and requirements for the 2020s

At least 103 FRBs occur over the sky each day, and the boundaries of the parameter space of

FRB properties remain unknown. Current telescopes can achieve detection rates of a few per day. A sample of 104−106 events, with a substantial repeating fraction, is therefore expected

over the coming decade. Evidence from FRB sky-localization regions [31, 62], analyses of the FRB fluence distribution [6, 91, 92], and a nascent FRB fluence – DM correlation [93] together evince a population of events at cosmologically significant distances. Although the FRB engines are currently unknown, the merits of & 104 extragalactic sightlines along

which matter column-densities can be measured are manifest. FRBs are additionally the best probes of extragalactic plasma inhomogeneities and massive compact objects that result in sub-millisecond multi-path delays. Scientific possibilities of various FRB samples: 103− 104 FRBs. Statistical detections of CGM gas densities at different impact parameters

to intervening galaxies (. 1000 localizations) — characterization (if present) of a scattering-redshift relation, testing CGM-cooling models (. 100 localizations) — ascertaining if all of dark matter is composed of compact objects.

104− 105 FRBs. Measurements of the mean IGM density and magnetic field in the cosmic

web (. 6000 localizations) — global detection of He ii reionization (. 100 localizations) — detection of baryon acoustic oscillations in DM-space clustering (. 6000 localizations). > 105 FRBs. Improve kSZ constraints on large-scale structure growth rate (. 300 localiza-tions) — detect extragalactic baryonic gravitational micro- and nano-lenses.

These outcomes may rely on the assembly of carefully controlled subsamples of FRBs, much as subsamples of galaxies are used for cosmological applications. This may require total FRB samples that are up to an order of magnitude larger. The ideal FRB-detection radio telescope for the next decade must occupy the intersection of moderate sensitivity, arcsecond localization capability, and an immense (several tens of deg2) field of view.

These scientific milestones require the synthesis of additional inputs. Improved mod-els for the Milky Way ionized-ISM distribution and physical conditions will be important for foreground characterization in DM, RM, and scattering measurements of FRBs. The characterization of FRB host galaxies may require substantial pointed optical/infrared spec-troscopic observations [e.g., 32, 94], although large-scale photometric redshift catalogs (e.g., from the Large Synoptic Survey Telescope) will prove sufficient in several cases [e.g., 58]. Multiplexed spectroscopic surveys (e.g., with DESI) covering much of the sky are required in addition to optical imaging surveys to identify intervening systems along FRB sightlines. The studies described here elegantly complement and synergize with multi-wavelength probes of unseen matter. Optical / UV / X-ray absorption-line studies of the CGM and IGM often probe small gas fractions at z . 2 (by temperature and composition), whereas FRB DMs correspond to the bulk gas contents. Thermal X-ray observations of the CGM and ICM are largely sensitive to the densest parts of the gas distributions, because of the density-squared dependence of the emission measure. Stellar microlensing searches for un-seen massive compact objects are most efficacious in the Milky Way, whereas FRB lensing studies (like ground-based gravitational-wave searches) are more sensitive to these systems at extragalactic distances. FRBs are hence poised to become a leading means of characterizing the unseen matter of the Universe.

(8)

References

[1] D. R. Lorimer, M. Bailes, M. A. McLaughlin, D. J. Narkevic, and F. Crawford. A Bright Millisecond Radio Burst of Extragalactic Origin. Science, 318:777, November 2007. [2] D. Thornton, B. Stappers, M. Bailes, B. Barsdell, S. Bates, N. D. R. Bhat, M. Burgay,

S. Burke-Spolaor, D. J. Champion, P. Coster, N. D’Amico, A. Jameson, S. Johnston, M. Keith, M. Kramer, L. Levin, S. Milia, C. Ng, A. Possenti, and W. van Straten. A Population of Fast Radio Bursts at Cosmological Distances. Science, 341:53–56, July 2013.

[3] E. Petroff, E. D. Barr, A. Jameson, E. F. Keane, M. Bailes, M. Kramer, V. Morello, D. Tabbara, and W. van Straten. FRBCAT: The Fast Radio Burst Catalogue. PASA, 33:e045, September 2016.

[4] V. Ravi. The observed properties of fast radio bursts. MNRAS, 482:1966–1978, January 2019.

[5] S. Bhandari, E. F. Keane, E. D. Barr, A. Jameson, E. Petroff, S. Johnston, M. Bailes, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, M. Caleb, R. P. Eatough, C. Flynn, J. A. Green, F. Jankowski, M. Kramer, V. V. Krishnan, V. Morello, A. Possenti, B. Stappers, C. Tiburzi, W. van Straten, I. Andreoni, T. Butterley, P. Chandra, J. Cooke, A. Coro-ngiu, D. M. Coward, V. S. Dhillon, R. Dodson, L. K. Hardy, E. J. Howell, P. Jaroenjit-tichai, A. Klotz, S. P. Littlefair, T. R. Marsh, M. Mickaliger, T. Muxlow, D. Perrodin, T. Pritchard, U. Sawangwit, T. Terai, N. Tominaga, P. Torne, T. Totani, A. Trois, D. Turpin, Y. Niino, R. W. Wilson, A. Albert, M. Andr´e, M. Anghinolfi, G. Anton, M. Ardid, J.-J. Aubert, T. Avgitas, B. Baret, J. Barrios-Mart´ı, S. Basa, B. Belhorma, V. Bertin, S. Biagi, R. Bormuth, S. Bourret, M. C. Bouwhuis, H. Brˆanza¸s, R. Bruijn, J. Brunner, J. Busto, A. Capone, L. Caramete, J. Carr, S. Celli, R. C. E. Moursli, T. Chiarusi, M. Circella, J. A. B. Coelho, A. Coleiro, R. Coniglione, H. Costantini, P. Coyle, A. Creusot, A. F. D´ıaz, A. Deschamps, G. De Bonis, C. Distefano, I. D. Palma, A. Domi, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, I. E. Bojaddaini, N. E. Khayati, D. Els¨asser, A. Enzenh¨ofer, A. Ettahiri, F. Fassi, I. Felis, L. A. Fusco, P. Gay, V. Gior-dano, H. Glotin, T. Gregoire, R. Gracia-Ruiz, K. Graf, S. Hallmann, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hern´andez-Rey, J. H¨oßl, J. Hofest¨adt, C. Hugon, G. Illuminati, C. W. James, M. de Jong, M. Jongen, M. Kadler, O. Kalekin, U. Katz, D. Kießling, A. Kouchner, M. Kreter, I. Kreykenbohm, V. Kulikovskiy, C. Lachaud, R. Lahmann, D. Lef`evre, E. Leonora, S. Loucatos, M. Marcelin, A. Margiotta, A. Marinelli, J. A. Mart´ınez-Mora, R. Mele, K. Melis, T. Michael, P. Migliozzi, A. Moussa, S. Navas, E. Nezri, M. Organokov, G. E. Pˇavˇala¸s, C. Pellegrino, C. Perrina, P. Piattelli, V. Popa, T. Pradier, L. Quinn, C. Racca, G. Riccobene, A. S´anchez-Losa, M. Salda˜na, I. Sal-vadori, D. F. E. Samtleben, M. Sanguineti, P. Sapienza, F. Sch¨ussler, C. Sieger, M. Spu-rio, T. Stolarczyk, M. Taiuti, Y. Tayalati, A. Trovato, D. Turpin, C. T¨onnis, B. Vallage, V. Van Elewyck, F. Versari, D. Vivolo, A. Vizzocca, J. Wilms, J. D. Zornoza, and J. Z´u˜niga. The SUrvey for Pulsars and Extragalactic Radio Bursts - II. New FRB discoveries and their follow-up. MNRAS, 475:1427–1446, April 2018.

(9)

[6] C. W. James, R. D. Ekers, J.-P. Macquart, K. W. Bannister, and R. M. Shannon. The slope of the source-count distribution for fast radio bursts. MNRAS, 483:1342–1353, February 2019.

[7] L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, F. Camilo, S. Chat-terjee, J. M. Cordes, F. Crawford, J. Deneva, R. D. Ferdman, P. C. C. Freire, V. M. Kaspi, P. Lazarus, R. Lynch, E. C. Madsen, M. A. McLaughlin, C. Patel, S. M. Ransom, A. Seymour, I. H. Stairs, B. W. Stappers, J. van Leeuwen, and W. W. Zhu. A repeating fast radio burst. Nature, 531:202–205, March 2016.

[8] CHIME/FEB Collaboration, M. Amiri, K. Bandura, M. Bhardwaj, P. Boubel, M. M. Boyce, P. J Boyle, C. . Brar, M. Burhanpurkar, T. Cassanelli, P. Chawla, J. F. Cliche, D. Cubranic, M. Deng, N. Denman, M. Dobbs, M. Fandino, E. Fonseca, B. M. Gaensler, A. J. Gilbert, A. Gill, U. Giri, D. C. Good, M. Halpern, D. S. Hanna, A. S. Hill, G. Hinshaw, C. H¨ofer, A. Josephy, V. M. Kaspi, T. L. Landecker, D. A. Lang, H.-H. Lin, K. W. Masui, R. Mckinven, J. Mena-Parra, M. Merryfield, D. Michilli, N. Milutinovic, C. Moatti, A. Naidu, L. B. Newburgh, C. Ng, C. Patel, U. Pen, T. Pinsonneault-Marotte, Z. Pleunis, M. Rafiei-Ravandi, M. Rahman, S. M. Ransom, A. Renard, P. Scholz, J. R. Shaw, S. R. Siegel, K. M. Smith, I. H. Stairs, S. P. Ten-dulkar, I. Tretyakov, K. Vanderlinde, and P. Yadav. A second source of repeating fast radio bursts. Nature, 566:235–238, January 2019.

[9] J.-P. Macquart, M. Bailes, N. D. R. Bhat, G. C. Bower, J. D. Bunton, S. Chat-terjee, T. Colegate, J. M. Cordes, L. D’Addario, A. Deller, R. Dodson, R. Fender, K. Haines, P. Halll, C. Harris, A. Hotan, S. Johnston, D. L. Jones, M. Keith, J. Y. Koay, T. J. W. Lazio, W. Majid, T. Murphy, R. Navarro, C. Phillips, P. Quinn, R. A. Preston, B. Stansby, I. Stairs, B. Stappers, L. Staveley-Smith, S. Tingay, D. Thompson, W. van Straten, K. Wagstaff, M. Warren, R. Wayth, L. Wen, and CRAFT Collabora-tion. The Commensal Real-Time ASKAP Fast-Transients (CRAFT) Survey. PASA, 27:272–282, June 2010.

[10] C. J. Law, G. C. Bower, S. Burke-Spolaor, B. J. Butler, P. Demorest, A. Halle, S. Khudikyan, T. J. W. Lazio, M. Pokorny, J. Robnett, and M. P. Rupen. realfast: Real-time, Commensal Fast Transient Surveys with the Very Large Array. ApJS, 236:8, May 2018.

[11] CHIME/FRB Collaboration, M. Amiri, K. Bandura, P. Berger, M. Bhardwaj, M. M. Boyce, P. J. Boyle, C. Brar, M. Burhanpurkar, P. Chawla, J. Chowdhury, J.-F. Cliche, M. D. Cranmer, D. Cubranic, M. Deng, N. Denman, M. Dobbs, M. Fandino, E. Fonseca, B. M. Gaensler, U. Giri, A. J. Gilbert, D. C. Good, S. Guliani, M. Halpern, G. Hinshaw, C. H¨ofer, A. Josephy, V. M. Kaspi, T. L. Landecker, D. Lang, H. Liao, K. W. Masui, J. Mena-Parra, A. Naidu, L. B. Newburgh, C. Ng, C. Patel, U.-L. Pen, T. Pinsonneault-Marotte, Z. Pleunis, M. Rafiei Ravandi, S. M. Ransom, A. Renard, P. Scholz, K. Sig-urdson, S. R. Siegel, K. M. Smith, I. H. Stairs, S. P. Tendulkar, K. Vanderlinde, and D. V. Wiebe. The CHIME Fast Radio Burst Project: System Overview. ApJ, 863:48, August 2018.

(10)

[12] M. Caleb, B. W. Stappers, K. Rajwade, and C. Flynn. Are all fast radio bursts repeating sources? MNRAS, 484:5500–5508, April 2019.

[13] M. Jaroszynski. Fast radio bursts and cosmological tests. MNRAS, 484:1637–1644, April 2019.

[14] A. Fialkov and A. Loeb. A Fast Radio Burst Occurs Every Second throughout the Observable Universe. ApJ, 846:L27, September 2017.

[15] J. M. Shull and C. W. Danforth. The Dispersion of Fast Radio Bursts from a Structured Intergalactic Medium at Redshifts z < 1.5. ApJ, 852:L11, January 2018.

[16] N. Locatelli, M. Ronchi, G. Ghirlanda, and G. Ghisellini. The luminosity–volume test for cosmological Fast Radio Bursts. arXiv e-prints 1811.10641, November 2018.

[17] S. R. Kulkarni, E. O. Ofek, J. D. Neill, Z. Zheng, and M. Juric. Giant Sparks at Cosmological Distances? ApJ, 797:70, December 2014.

[18] K. Ioka. The Cosmic Dispersion Measure from Gamma-Ray Burst Afterglows: Probing the Reionization History and the Burst Environment. ApJ, 598:L79–L82, December 2003.

[19] S. Inoue. Probing the cosmic reionization history and local environment of gamma-ray bursts through radio dispersion. MNRAS, 348:999–1008, March 2004.

[20] M. McQuinn. Locating the “Missing” Baryons with Extragalactic Dispersion Measure Estimates. ApJ, 780:L33, January 2014.

[21] K. Dolag, B. M. Gaensler, A. M. Beck, and M. C. Beck. Constraints on the distribu-tion and energetics of fast radio bursts using cosmological hydrodynamic simuladistribu-tions. MNRAS, 451:4277–4289, August 2015.

[22] J. Xu and J. L. Han. Extragalactic dispersion measures of fast radio bursts. Research in Astronomy and Astrophysics, 15:1629, October 2015.

[23] Y.-P. Yang and B. Zhang. Extracting Host Galaxy Dispersion Measure and Constraining Cosmological Parameters using Fast Radio Burst Data. ApJ, 830:L31, October 2016. [24] C. R. H. Walker, Y.-Z. Ma, and R. P. Breton. Constraining Redshifts of Unlocalised

Fast Radio Bursts. arXiv e-prints 1804.01548, April 2018.

[25] J. X. Prochaska and Y. Zheng. Probing Galactic haloes with fast radio bursts. MNRAS, 485:648–665, May 2019.

[26] J. M. Cordes, J. M. Weisberg, D. A. Frail, S. R. Spangler, and M. Ryan. The Galactic distribution of free electrons. Nature, 354:121–124, November 1991.

[27] J. H. Taylor and J. M. Cordes. Pulsar distances and the galactic distribution of free electrons. ApJ, 411:674–684, July 1993.

(11)

[28] J. M. Cordes and T. J. W. Lazio. NE2001.I. A New Model for the Galactic Distribution of Free Electrons and its Fluctuations. arXiv e-prints astro-ph/0207156, July 2002. [29] J. M. Yao, R. N. Manchester, and N. Wang. A New Electron-density Model for

Esti-mation of Pulsar and FRB Distances. ApJ, 835:29, January 2017.

[30] E. Platts, A. Weltman, A. Walters, S. P. Tendulkar, J. E. B. Gordin, and S. Kandhai. A Living Theory Catalogue for Fast Radio Bursts. arXiv e-prints 1810.05836, October 2018.

[31] S. Chatterjee, C. J. Law, R. S. Wharton, S. Burke-Spolaor, J. W. T. Hessels, G. C. Bower, J. M. Cordes, S. P. Tendulkar, C. G. Bassa, P. Demorest, B. J. Butler, A. Sey-mour, P. Scholz, M. W. Abruzzo, S. Bogdanov, V. M. Kaspi, A. Keimpema, T. J. W. Lazio, B. Marcote, M. A. McLaughlin, Z. Paragi, S. M. Ransom, M. Rupen, L. G. Spitler, and H. J. van Langevelde. A direct localization of a fast radio burst and its host. Nature, 541:58–61, January 2017.

[32] S. P. Tendulkar, C. G. Bassa, J. M. Cordes, G. C. Bower, C. J. Law, S. Chatterjee, E. A. K. Adams, S. Bogdanov, S. Burke-Spolaor, B. J. Butler, P. Demorest, J. W. T. Hessels, V. M. Kaspi, T. J. W. Lazio, N. Maddox, B. Marcote, M. A. McLaughlin, Z. Paragi, S. M. Ransom, P. Scholz, A. Seymour, L. G. Spitler, H. J. van Langevelde, and R. S. Wharton. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102. ApJ, 834:L7, January 2017.

[33] B. Marcote, Z. Paragi, J. W. T. Hessels, A. Keimpema, H. J. van Langevelde, Y. Huang, C. G. Bassa, S. Bogdanov, G. C. Bower, S. Burke-Spolaor, B. J. Butler, R. M. Campbell, S. Chatterjee, J. M. Cordes, P. Demorest, M. A. Garrett, T. Ghosh, V. M. Kaspi, C. J. Law, T. J. W. Lazio, M. A. McLaughlin, S. M. Ransom, C. J. Salter, P. Scholz, A. Seymour, A. Siemion, L. G. Spitler, S. P. Tendulkar, and R. S. Wharton. The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales. ApJ, 834:L8, January 2017.

[34] M. McQuinn. The Evolution of the Intergalactic Medium. ARA&A, 54:313–362, September 2016.

[35] J. M. Shull, B. D. Smith, and C. W. Danforth. The Baryon Census in a Multiphase Intergalactic Medium: 30% of the Baryons May Still be Missing. ApJ, 759:23, November 2012.

[36] R. Cen and J. P. Ostriker. Where Are the Baryons? ApJ, 514:1–6, March 1999. [37] R. Cen and J. P. Ostriker. Where Are the Baryons? II. Feedback Effects. ApJ, 650:560–

572, October 2006.

[38] J. Tumlinson, M. S. Peeples, and J. K. Werk. The Circumgalactic Medium. ARA&A, 55:389–432, August 2017.

[39] P. Rosati, S. Borgani, and C. Norman. The Evolution of X-ray Clusters of Galaxies. ARA&A, 40:539–577, 2002.

(12)

[40] M. Fukugita, C. J. Hogan, and P. J. E. Peebles. The Cosmic Baryon Budget. ApJ, 503:518–530, August 1998.

[41] J. N. Bregman. The Search for the Missing Baryons at Low Redshift. ARA&A, 45:221– 259, September 2007.

[42] M. E. Anderson and J. N. Bregman. Do Hot Halos Around Galaxies Contain the Missing Baryons? ApJ, 714:320–331, May 2010.

[43] J. N. Bregman, M. E. Anderson, M. J. Miller, E. Hodges-Kluck, X. Dai, J.-T. Li, Y. Li, and Z. Qu. The Extended Distribution of Baryons around Galaxies. ApJ, 862:3, July 2018.

[44] A. de Graaff, Y.-C. Cai, C. Heymans, and J. A. Peacock. Probing the missing baryons with the Sunyaev-Zel’dovich effect from filaments. arXiv e-prints 1709.10378, Septem-ber 2017.

[45] H. Tanimura, G. Hinshaw, I. G. McCarthy, L. Van Waerbeke, N. Aghanim, Y.-Z. Ma, A. Mead, A. Hojjati, and T. Tr¨oster. A search for warm/hot gas filaments between pairs of SDSS Luminous Red Galaxies. MNRAS, 483:223–234, February 2019.

[46] A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, and M. Galeazzi. A Huge Reservoir of Ionized Gas around the Milky Way: Accounting for the Missing Mass? ApJ, 756:L8, September 2012.

[47] J. K. Werk, J. X. Prochaska, J. Tumlinson, M. S. Peeples, T. M. Tripp, A. J. Fox, N. Lehner, C. Thom, J. M. O’Meara, A. B. Ford, R. Bordoloi, N. Katz, N. Tejos, B. D. Oppenheimer, R. Dav´e, and D. H. Weinberg. The COS-Halos Survey: Physical Conditions and Baryonic Mass in the Low-redshift Circumgalactic Medium. ApJ, 792:8, September 2014.

[48] I. G. McCarthy, J. Schaye, S. Bird, and A. M. C. Le Brun. The BAHAMAS project: calibrated hydrodynamical simulations for large-scale structure cosmology. MNRAS, 465:2936–2965, March 2017.

[49] B. D. Oppenheimer, J. Schaye, R. A. Crain, J. K. Werk, and A. J. Richings. The mul-tiphase circumgalactic medium traced by low metal ions in EAGLE zoom simulations. MNRAS, 481:835–859, November 2018.

[50] V. Ravi. Measuring the Circumgalactic and Intergalactic Baryon Contents with Fast Radio Bursts. ApJ, 872:88, February 2019.

[51] Julian B. Muoz and Abraham Loeb. Finding the Missing Baryons with Fast Radio Bursts and Sunyaev-Zeldovich Maps. Phys. Rev., D98(10):103518, 2018.

[52] Z. Zheng, E. O. Ofek, S. R. Kulkarni, J. D. Neill, and M. Juric. Probing the Intergalactic Medium with Fast Radio Bursts. ApJ, 797:71, December 2014.

(13)

[53] M. Caleb, C. Flynn, and B. W. Stappers. Constraining the era of helium reionization using fast radio bursts. MNRAS, February 2019.

[54] J. B. Mu˜noz, E. D. Kovetz, L. Dai, and M. Kamionkowski. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter. Physical Review Letters, 117(9):091301, August 2016.

[55] B. Zhou, X. Li, T. Wang, Y.-Z. Fan, and D.-M. Wei. Fast radio bursts as a cosmic probe? Phys. Rev. D, 89(10):107303, May 2014.

[56] A. Walters, A. Weltman, B. M. Gaensler, Y.-Z. Ma, and A. Witzemann. Future Cos-mological Constraints From Fast Radio Bursts. ApJ, 856:65, March 2018.

[57] K. W. Masui and K. Sigurdson. Dispersion Distance and the Matter Distribution of the Universe in Dispersion Space. Physical Review Letters, 115(12):121301, September 2015.

[58] M. S. Madhavacheril, N. Battaglia, K. M. Smith, and J. L. Sievers. Cosmology with kSZ: breaking the optical depth degeneracy with Fast Radio Bursts. arXiv e-prints 1901.02418, January 2019.

[59] N. Battaglia. The tau of galaxy clusters. J. Cosmology Astropart. Phys., 8:058, August 2016.

[60] S. Flender, D. Nagai, and M. McDonald. Constraints on the Optical Depth of Galaxy Groups and Clusters. ApJ, 837:124, March 2017.

[61] K. Masui, H.-H. Lin, J. Sievers, C. J. Anderson, T.-C. Chang, X. Chen, A. Ganguly, M. Jarvis, C.-Y. Kuo, Y.-C. Li, Y.-W. Liao, M. McLaughlin, U.-L. Pen, J. B. Peterson, A. Roman, P. T. Timbie, T. Voytek, and J. K. Yadav. Dense magnetized plasma associated with a fast radio burst. Nature, 528:523–525, December 2015.

[62] V. Ravi, R. M. Shannon, M. Bailes, K. Bannister, S. Bhandari, N. D. R. Bhat, S. Burke-Spolaor, M. Caleb, C. Flynn, A. Jameson, S. Johnston, E. F. Keane, M. Kerr, C. Tiburzi, A. V. Tuntsov, and H. K. Vedantham. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science, 354:1249–1252, December 2016. [63] T. Akahori, D. Ryu, and B. M. Gaensler. Fast Radio Bursts as Probes of Magnetic

Fields in the Intergalactic Medium. ApJ, 824:105, June 2016.

[64] F. Vazza, M. Br¨uggen, P. M. Hinz, D. Wittor, N. Locatelli, and C. Gheller. Probing the origin of extragalactic magnetic fields with Fast Radio Bursts. MNRAS, 480:3907–3915, November 2018.

[65] W. Farah, C. Flynn, M. Bailes, A. Jameson, K. W. Bannister, E. D. Barr, T. Bate-man, S. Bhandari, M. Caleb, D. Campbell-Wilson, S.-W. Chang, A. Deller, A. J. Green, R. Hunstead, F. Jankowski, E. Keane, J.-P. Macquart, A. M¨oller, C. A. Onken, S. Os lowski, A. Parthasarathy, K. Plant, V. Ravi, R. M. Shannon, B. E. Tucker, V. Venkatraman Krishnan, and C. Wolf. FRB microstructure revealed by the real-time detection of FRB170827. MNRAS, 478:1209–1217, July 2018.

(14)

[66] L. V. E. Koopmans and A. G. de Bruyn. Microlensing of multiply-imaged compact radio sources. Evidence for compact halo objects in the disk galaxy of B1600+434. A&A, 358:793–811, June 2000.

[67] Y. Birnboim and A. Dekel. Virial shocks in galactic haloes? MNRAS, 345:349–364, October 2003.

[68] D. Kereˇs, N. Katz, D. H. Weinberg, and R. Dav´e. How do galaxies get their gas? MNRAS, 363:2–28, October 2005.

[69] C. A. Correa, J. Schaye, F. van de Voort, A. R. Duffy, and J. S. B. Wyithe. The impact of feedback and the hot halo on the rates of gas accretion on to galaxies. MNRAS, 478:255–269, July 2018.

[70] Z. Hafen, C.-A. Faucher-Giguere, D. Angles-Alcazar, J. Stern, D. Keres, C. Hummels, C. Esmerian, S. Garrison-Kimmel, K. El-Badry, A. Wetzel, T. K. Chan, P. F. Hopkins, and N. Murray. The Origins of the Circumgalactic Medium in the FIRE Simulations. arXiv e-prints 1811.11753, November 2018.

[71] J. Suresh, D. Nelson, S. Genel, K. H. R. Rubin, and L. Hernquist. Zooming in on accretion - II. Cold circumgalactic gas simulated with a super-Lagrangian refinement scheme. MNRAS, 483:4040–4059, March 2019.

[72] S. Ji, S. P. Oh, and M. McCourt. The impact of magnetic fields on thermal instability. MNRAS, 476:852–867, May 2018.

[73] M. McCourt, S. P. Oh, R. O’Leary, and A.-M. Madigan. A characteristic scale for cold gas. MNRAS, 473:5407–5431, February 2018.

[74] H. K. Vedantham and E. S. Phinney. Radio wave scattering by circumgalactic cool gas clumps. MNRAS, 483:971–984, February 2019.

[75] J. M. Cordes, R. S. Wharton, L. G. Spitler, S. Chatterjee, and I. Wasserman. Radio Wave Propagation and the Provenance of Fast Radio Bursts. arXiv e-prints 1605.05890, May 2016.

[76] Simeon Bird, Ilias Cholis, Julian B. Mu˜noz, Yacine Ali-Hamoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess. Did LIGO detect dark matter? Phys. Rev. Lett., 116(20):201301, 2016.

[77] B. Carr, F. K¨uhnel, and M. Sandstad. Primordial black holes as dark matter. Phys. Rev. D, 94(8):083504, October 2016.

[78] B. Carr, M. Raidal, T. Tenkanen, V. Vaskonen, and H. Veerm¨ae. Primordial black hole constraints for extended mass functions. Phys. Rev. D, 96(2):023514, July 2017. [79] D. Eichler. Nanolensed Fast Radio Bursts. ApJ, 850:159, December 2017.

(15)

[80] R. Laha. Lensing of fast radio bursts: future constraints on primordial black hole density with an extended mass function and a new probe of exotic compact fermion/ boson stars. arXiv e-prints 1812.11810, December 2018.

[81] Z.-X. Li, H. Gao, X.-H. Ding, G.-J. Wang, and B. Zhang. Strongly lensed repeating fast radio bursts as precision probes of the universe. Nature Communications, 9:3833, September 2018.

[82] A. Zitrin and D. Eichler. Observing Cosmological Processes in Real Time with Repeating Fast Radio Bursts. ApJ, 866:101, October 2018.

[83] J. Wagner, J. Liesenborgs, and D. Eichler. Multiply imaged time-varying sources behind galaxy clusters. Comparing fast radio bursts to QSOs, SNe, and GRBs. A&A, 621:A91, January 2019.

[84] D. Michilli, A. Seymour, J. W. T. Hessels, L. G. Spitler, V. Gajjar, A. M. Archibald, G. C. Bower, S. Chatterjee, J. M. Cordes, K. Gourdji, G. H. Heald, V. M. Kaspi, C. J. Law, C. Sobey, E. A. K. Adams, C. G. Bassa, S. Bogdanov, C. Brinkman, P. Demorest, F. Fernandez, G. Hellbourg, T. J. W. Lazio, R. S. Lynch, N. Maddox, B. Marcote, M. A. McLaughlin, Z. Paragi, S. M. Ransom, P. Scholz, A. P. V. Siemion, S. P. Tendulkar, P. van Rooy, R. S. Wharton, and D. Whitlow. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature, 553:182–185, January 2018.

[85] CHIME/FRB Collaboration, M. Amiri, K. Bandura, M. Bhardwaj, P. Boubel, M. M. Boyce, P. J. Boyle, C. Brar, M. Burhanpurkar, P. Chawla, J. F. Cliche, D. Cubranic, M. Deng, N. Denman, M. Dobbs, M. Fandino, E. Fonseca, B. M. Gaensler, A. J. Gilbert, U. Giri, D. C. Good, M. Halpern, D Hanna, A. S. Hill, G. Hinshaw, C. H¨ofer, A. Josephy, V. M. Kaspi, T. L. Landecker, D. A. Lang, K. W. Masui, R. Mckinven, J. Mena-Parra, M. Merryfield, N. Milutinovic, C. Moatti, A. Naidu, L. B. Newburgh, C. Ng, C. Pa-tel, U. Pen, T. Pinsonneault-Marotte, Z. Pleunis, M. Rafiei-Ravandi, S. M. Ransom, A. Renard, P. Scholz, J. R. Shaw, S. R. Siegel, K. M. Smith, I. H. Stairs, S. P. Ten-dulkar, I. Tretyakov, K. Vanderlinde, and P. Yadav. Observations of fast radio bursts at frequencies down to 400 megahertz. Nature, 566:230–234, January 2019.

[86] J. W. T. Hessels, L. G. Spitler, A. D. Seymour, J. M. Cordes, D. Michilli, R. S. Lynch, K. Gourdji, A. M. Archibald, C. G. Bassa, G. C. Bower, S. Chatterjee, L. Connor, F. Crawford, J. S. Deneva, V. Gajjar, V. M. Kaspi, A. Keimpema, C. J. Law, B. Marcote, M. A. McLaughlin, Z. Paragi, E. Petroff, S. M. Ransom, P. Scholz, B. W. Stappers, and S. P. Tendulkar. FRB 121102 Bursts Show Complex Time-Frequency Structure. arXiv e-prints 1811.10748, November 2018.

[87] H. K. Vedantham and V. Ravi. Faraday conversion and magneto-ionic variations in Fast Radio Bursts. arXiv e-prints 1812.07889, December 2018.

[88] M. Bailes. The Future of Pulsar Research and Facilities. In P. Weltevrede, B. B. P. Perera, L. L. Preston, and S. Sanidas, editors, Pulsar Astrophysics the Next Fifty Years, volume 337 of IAU Symposium, pages 165–170, August 2018.

(16)

[89] L. Levin, W. Armour, C. Baffa, E. Barr, S. Cooper, R. Eatough, A. Ensor, E. Giani, A. Karastergiou, R. Karuppusamy, M. Keith, M. Kramer, R. Lyon, M. Mackintosh, M. Mickaliger, R. van Nieuwpoort, M. Pearson, T. Prabu, J. Roy, O. Sinnen, L. Spitler, H. Spreeuw, B. W. Stappers, W. van Straten, C. Williams, H. Wang, K. Wiesner, and SKA TDT Team. Pulsar Searches with the SKA. In P. Weltevrede, B. B. P. Perera, L. L. Preston, and S. Sanidas, editors, Pulsar Astrophysics the Next Fifty Years, volume 337 of IAU Symposium, pages 171–174, August 2018.

[90] N. Oppermann, H. Junklewitz, M. Greiner, T. A. Enßlin, T. Akahori, E. Carretti, B. M. Gaensler, A. Goobar, L. Harvey-Smith, M. Johnston-Hollitt, L. Pratley, D. H. F. M. Schnitzeler, J. M. Stil, and V. Vacca. Estimating extragalactic Faraday rotation. A&A, 575:A118, March 2015.

[91] H. K. Vedantham, V. Ravi, G. Hallinan, and R. M. Shannon. The Fluence and Distance Distributions of Fast Radio Bursts. ApJ, 830:75, October 2016.

[92] J.-P. Macquart and R. D. Ekers. Fast radio burst event rate counts - I. Interpreting the observations. MNRAS, 474:1900–1908, February 2018.

[93] R. M. Shannon, J.-P. Macquart, K. W. Bannister, R. D. Ekers, C. W. James, S. Os lowski, H. Qiu, M. Sammons, A. W. Hotan, M. A. Voronkov, R. J. Beresford, M. Brothers, A. J. Brown, J. D. Bunton, A. P. Chippendale, C. Haskins, M. Leach, M. Marquarding, D. McConnell, M. A. Pilawa, E. M. Sadler, E. R. Troup, J. Tuthill, M. T. Whiting, J. R. Allison, C. S. Anderson, M. E. Bell, J. D. Collier, G. G¨urkan, G. Heald, and C. J. Riseley. The dispersion-brightness relation for fast radio bursts from a wide-field survey. Nature, 562:386–390, October 2018.

[94] T. Eftekhari and E. Berger. Associating Fast Radio Bursts with Their Host Galaxies. ApJ, 849:162, November 2017.

Referenties

GERELATEERDE DOCUMENTEN

We did this by extracting 6 min of data on J1927 + 7358 at the hour angle that the burst was detected, applying the same calibration solutions as applied to the burst, and imaging

Figure 7.10: Plotted is the density field around the void present in lower left corner of the z-slice.. The first column show this density field when no threshold was applied and

For the radio halo, we created a T –T plot using the flux densities extracted in 30 ″ square boxes from the same S- and L-band image used for the spectral index analysis at 30

The main lines (largest optical depth in each source) and the secondary lines are indicated separately; their distributions are discussed in Sect.. 1997, in The Nature of

The detection of low-frequency RRLs is greatly aided to- wards bright radio sources as the intensity of stimulated tran- sitions is proportional to the strength of the radio

The discovery that the most massive galaxies are always on as a radio source at the luminosity levels that LoTSS reaches and that stellar mass appears to be a more important driver

In this paper Bayesian estimation for the steady state availability of a one -unit system with a rest-period for the repair facility is studied.. The assumption is that the

Since no neutrino signal is detected in coincidence with any of the selected FRBs, constraints on the fluence of neutrinos that would have been observed by the ANTARES detector