• No results found

A measurement of the Z0 leptonic partial widths and the vector and axial vector coupling constants

N/A
N/A
Protected

Academic year: 2021

Share "A measurement of the Z0 leptonic partial widths and the vector and axial vector coupling constants"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

A measurement of the Z0 leptonic partial widths and the

vector and axial vector coupling constants

Citation for published version (APA):

L3 Collaboration, & Leytens, X. (1990). A measurement of the Z0 leptonic partial widths and the vector and axial

vector coupling constants. Physics Letters B, 238(1), 122-130. https://doi.org/10.1016/0370-2693(90)92111-U

DOI:

10.1016/0370-2693(90)92111-U

Document status and date:

Published: 29/03/1990

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl

(2)

Volume 238, number 1 PHYSICS LETTERS B 29 March 1990 A M E A S U R E M E N T O F T H E Z ° L E P T O N I C P A R T I A L W I D T H S A N D T H E V E C T O R A N D A X I A L V E C T O R C O U P L I N G C O N S T A N T S L3 C o l l a b o r a t i o n B. A D E V A a, O. A D R I A N I

b

M. A G U I L A R - B E N I T E Z ~, H. A K B A R I a, j. A L C A R A Z c, A. A L O I S I O e, G. A L V E R S O N f, M. G. A L V I G G I e, Q. A N g, H. A N D E R H U B h, A. L. A N D E R S O N i, V. P. A N D R E E V J, T. A N G E L O V i, L. A N T O N O V k, D. A N T R E A S Y A N ~, A. A R E F I E V m, T. A Z E M O O N n, T. A Z I Z o, p. V. K. S. BABA g, P. B A G N A I A P, J. A. B A K K E N q, L. B A K S A Y r, R. C. B A L L n, S. B A N E R J E E o.g, j. B A O d, L. B A R O N E P, A. BAY s, U. B E C K E R i,,,

S. B E I N G E S S N E R t, Gy. L. B E N C Z E u.r, j. B E R D U G O c, p. B E R G E S i, B. B E R T U C C I P, B. L. B E T E V k, A. B I L A N D h, R. B I Z Z A R R I P, J. J. B L A I S I N G t, p. B L ( ) M E K E v, B. B L U M E N F E L D '~, G. J. B O B B I N K w, M. B O C C I O L I N I b, W. B O H L E N ", A. B O H M v, T. B O H R I N G E R Y, B. B O R G I A P, D. B O U R I L K O V k, M. B O U R Q U I N ~, D. B O U T I G N Y t, J. G. B R A N S O N z, I. C. B R O C K '~, F. B R U Y A N T a, C. B U I S S O N ~, J. D. B U R G E R i, j. p. B U R Q ~, X. D. C A I h, D. C A M P A N A ~, C. C A M P S v, M. C A P E L L n, F. C A R B O N A R A e, F. C A R M I N A T I b, A. M. C A R T A C C I b, M. C E R R A D A c, F. C E S A R O N I P, Y. H. C H A N G i, U. K. C H A T U R V E D I g, M. C H E M A R I N I~, A. C H E N v, C. C H E N ~, G. M. C H E N ~, H. F. C H E N ~, H. S. C H E N 5, M. C H E N ~, M. L. C H E N n, G. C H I E F A R I e, C. Y. C H I E N d, C. C I V I N I N I b, I. C L A R E i, R. C L A R E i, G. C O I G N E T ~, N. C O L I N O a, V. C O M M I C H A U v, G. C O N F O R T O b, A. C O N T I N a, F. C R I J N S w, X. Y. C U I g, T. S. D A I i, R. D ' A L E S S A N D R O b, A. D E G R I ~ t, K. D E I T E R S r, E. D E N E S u P. D E N E S q, F. D E N O T A R I S T E F A N I v, M. D H I N A h, M. D I E M O Z v, H. R. D I M I T R O V k, C. D I O N I S I P, F. D I T T U S ~, R. D O L I N i, E. D R A G O e, T. D R I E V E R w, p. D U I N K E R w.~, I. D U R A N ax, M. E L K A C I M I ~, A. E N G L E R '~, F. J. E P P L I N G i, F. C. E R N E w, p. E X T E R M A N N ~, R. F A B B R E T T I u, G. F A B E R i, S. F A L C I A N O a,p, S. J. F A N 0, M. F A B R E h, j. FAY ta,

J. F E H L M A N N h, H. F E N K E R f, T. F E R G U S O N '~, G. F E R N A N D E Z ~, F. F E R R O N I P, H. F E S E F E L D T v, j. F I E L D ~, G. F O R C O N I ~, T. F O R E M A N w, K. F R E U D E N R E I C H h, W. F R I E B E L ~, M. F U K U S H I M A i, M. G A I L L O U D Y, Yu. G A L A K T I O N O V m, E. G A L L O b, S. N. G A N G U L I o, S. S. G A U v, S. G E N T I L E P, M. G E T T N E R f, M. G L A U B M A N f, S. G O L D F A R B n, Z. F. G O N G g'~, E. G O N Z A L E Z ~, A. G O R D E E V m, p. G O T T L I C H E R ", D. G O U J O N ~, C. G O Y t, G. G R A T T A '1, A. G R I M E S r, C. G R I N N E L L i, M. G R U E N E W A L D n, M. G U A N Z I R O L I g, A. G U R T U o, D. G O S E W E L L ", H. H A A N ", S. H A N C K E "t, K. H A N G A R T E R v, M. H A R R I S a, D. H A R T I N G w, F. G. H A R T J E S w, C. F. H E 0, A. H E A V E Y q, T. H E B B E K E R "/, M. H E B E R T ~, G. H E R T E N i, U. H E R T E N v, A. H E R V E a, K. H I L G E R S v, H. H O F E R h, L. S. H S U v, G. H U g, G. Q. H U e, B. I L L E 13, M. M. ILYAS g, V. I N N O C E N T E e, E. I S I K S A L h, E. J A G E L g, B. N. J I N ~, L. W. J O N E S n, p. K A A R E T q, R. A. K H A N g, Yu. K A M Y S H K O V ~, D. K A P L A N f, Y. K A R Y O T A K I S ~,a, V. K H O Z E J, D. K I R K B Y n, W. K I T T E L w, A. K L I M E N T O V m, p. F. K L O K w, A. C. K O N I G ,,i, O. K O R N A D T v, V. K O U T S E N K O m, R. W. K R A E M E R ~, T. K R A M E R i, V. R. K R A S T E V k, W. K R E N Z v, A. K U H N x, V. K U M A R g, A. K U N I N m, S. K W A N f, A. V A N L A A K v, V. L A L I E U ~, G. L A N D I b, K. L A N I U S ~, D. L A N S K E ", S. L A N Z A N O ~, P. L E B R U N 13, p. L E C O M T E h, p. L E C O Q ~, P. LE C O U L T R E h, I. L E E D O M f, J. M. LE G O F F a, L. L E I S T A M a, R. L E I S T E ~, J. L E T T R Y h, p. M. L E V C H E N K O J, X. L E Y T E N S w, C. LI ~, H. T. LI 5, J. F. LI g, L. LI h, p. j. LI 0, X. G. LI 8, j. y . L I A O e, R. L I U g, Y. L I U g, Z. Y. L I N ~, F. L. L I N D E ~, D. L I N N H O F E R a, W. L O H M A N N r,, S. L O K O S ~, E. L O N G O P, Y. S. L U ~, J. M. L U B B E R S w,

(3)

K. L U B E L S M E Y E R v, C. L U C I a, D. L U C K E Y ~.i, L. L U D O V I C I P, X. L U E ~, L. L U M 1 N A R I P, W. G. MA ~, M. M A C D E R M O T T h, R. M A G A H I Z r M. M A I R E t, p. K. M A L H O T R A o, A. M A L I N I N m, C. MAIqA ax, D. N. M A O n, y . F. M A O 5, M. M A O L I N B A Y r,, p. M A R C H E S I N I ~, A. M A R C H I O N N I b, j. p. M A R T I N Is, L. M A R T I N E Z c, F. M A R Z A N O P, G. G. G. MASSARO w, T. M A T S U D A i, K. M A Z U M D A R o, p. M c B R I D E ", Th. M E I N H O L Z v, M. M E R K w, L. M E R O L A e, M. M E S C H I N 1 b, W. J. M E T Z G E R ", Y. M1 g, M. M I C K E v, U. M I C K E "~, G. B. M I L L S ", Y. M I R g, G. M I R A B E L L I P, J. M N I C H ", L. M O N T A N E T a, B. M O N T E L E O N I b, G. M O R A N D s, R. M O R A N D t, S. M O R G A N T I P, V. M O R G U N O V m, R. M O U N T q, E. N A G Y ,.a, M. N A P O L I T A N O e H. N E W M A N q, L. N I E S S E N ", W. D. N O W A K ¢, J. O N V L E E w D. P A N D O U L A S v, G. P A T E R N O S T E R e, S. P A T R I C E L L I e, Y. J. PEI v, y . P E N G w, D. P E R R E T - G A L L I X t, j. P E R R I E R s, E. P E R R I N s, A. P E V S N E R d M. P I E R I b, p. A. PIROUt~ q, V. P L Y A S K I N m, M. P O H L r,, V. P O J I D A E V m, C. L. A. POLS w, N. P R O D U I T s, J. M. Q I A N i.g, K. N. QURESHI g, R. RAGHAVAN o G. R A H A L - C A L L O T h, j. V O N R A N G O 'I, P. R A Z I S h,

K. R E A D q, D. R E N h, Z. R E N g, S. R E U C R O F T ~ T. R I E M A N N ;, C. R I P P I C H '~, S. R O D R I G U E Z ~, B. P. R O E n, M. R O H N E R 'I, Th. R O M B A C H v, L. R O M E R O c, j. ROSE "¢, S. R O S I E R - L E E S ~, Ph. R O S S E L E T Y, J. A. R U B I O a.c, W. R U C K S T U H L s, H. R Y K A C Z E W S K I h, M. S A C H W 1 T Z ~, J. S A L I C I O c, G. S A U V A G E t A. SAVIN m, V. S C H E G E L S K Y J, P. S C H M I T T K, D. S C H M I T Z v, P. S C H M I T Z v M. S C H N E E G A N S ~, M. S C H O N T A G v, H. S C H O P P E R ~', D. J. S C H O T A N U S w, H. J. S C H R E I B E R ;, R. S C H U L T E ", S. S C H U L T E v, K. S C H U L T Z E v j. S C H U T T E ",

J. S C H W E N K E v, G. S C H W E R I N G v, C. SCIACCA e, p. G. SEILER h, j. C. SENS w, I. S H E E R ~, V. S H E V C H E N K O m, S. S H E V C H E N K O m, X. R. S H I '~, K. S H M A K O V m, V. S H O U T K O '~, E. S H U M I L O V m, N. S M I R N O V J, A. S O P C Z A K z, C. S O U Y R I t, T. S P I C K E R M A N N v, B. SPIESS x, P. S P I L L A N T I N I b, R. S T A R O S T A v M. S T E U E R ~,i, D. P. S T I C K L A N D q, B. S T O H R h, H. STONE s, K. S T R A U C H '~, K. S U D H A K A R o.v, G. S U L T A N O V a R. L. S U M N E R q, H. S U T E R ", R. B. S U T T O N '~, A. A. SYED g, X. W. T A N G ~, E. T A R K O V S K Y m, j. M. T H E N A R D t, E. T H O M A S g, C. T I M M E R M A N S '", Samuel C. C. T I N G i, S. M. T I N G i, y . p. T O N G v, M. T O N U T T I v, S. C. T O N W A R °, J. T O T H u, K. L. T U N G ~, J. U L B R I C H T x, L. URB,~N u, U. U W E R v, E. V A L E N T E P, R. T. VAN DE WALLE w, H. VAN D E R G R A A F w, I. V E T L I T S K Y m, G. V I E R T E L ", P. VIKAS g, M. V I V A R G E N T t,i, H. V O G E L '~, H. V O G T ~, M. V O L L M A R v G. V O N D A R D E L a, I. V O R O B I E V m, A. A. V O R O B Y O V J, An. A. V O R O B Y O V J, L. V U I L L E U M I E R Y, W. W A L K a, W. W A L L R A F F v C. R. W A N G ~, G. H. W A N G '~, J. H. W A N G ~, Q. F. W A N G ", X. L. W A N G ~, Y. F. W A N G b, Z. M. W A N G g'~, J. W E B E R h, R. WE1LL Y, T. J. W E N A U S i, j. W E N N I N G E R ~, M. W H I T E i R. W I L H E L M w, C. W I L L M O T T c F. W I T T G E N S T E I N a, D. W R I G H T q, R. J. W U 5, S. L. W U g, S. X. W U g, Y. G. W U ~, B. W Y S L O U C H i,a Z. Z. X U e, Z. t . X U E 0, D. S. YAN o, B. Z. Y A N G ~, C. G. Y A N G ~, G. Y A N G g, K. S. Y A N G ~, Q. Y. Y A N G ~, Z. Q. Y A N G 0, Q. YE g, C. H. YE i, S. C. Y E H ~', Z. W. Y I N 0, J. M. Y O U g, C. Z A B O U N I D I S f L. Z E H N D E R h, M. Z E N G g, Y. Z E N G v D. Z H A N G ~,

D. H. Z H A N G w, S. Y. Z H A N G ~, Z. P. Z H A N G ~, J. F. Z H O U v R. Y. Z H U ,i, A. Z I C H I C H I a,g and J. Z O L L a

a EuropeanLaboratoryforParticlePhysics, CERN, CH-1211 Geneva23, Switzerland

b INFN - Sezione di Firenze and University of Firenze, 1-50125 Florence, Italy

c CentrodelnvestigacionesEnergeticas. Medioambientalesy Tecnologicas, CIEMAT, Madrid, Spain d Johns Hopkins University, Baltimore, MD 21218, USA

I N F N - Sezione di Napoli and University of Naples, 1-80125 Naples, Italy f Northeastern University, Boston, MA 02115, USA

World Laboratory, FBLJA Project, CH-1211 Geneva, Switzerland

h EidgenOssische Technische Hochschule, ETH Ziirich, CH-8093 Zurich, Switzerland Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(4)

Volume 238, number 1 PHYSICS LETTERS B 29 March 1990

k Central Laboratory o f Automation and Instrumentation, CLANP, Sofia, Bulgaria INFN - Sezione di Bologna, 1-40126 Bologna, Italy

m Institute of Theoretical and Experimental Physics, ITEP, SU- 117 259 Moscow, USSR " UniversityofMichigan, AnnArbor, M148109, USA

° Tata Institute o f Fundamental Research, Bombay 400 005, India

P I N F N - Sezione di Roma and University ofRoma "La Sapienza'" 1-00185 Rome, Italy q Princeton University, Princeton, NJ 08544, USA

r Union College, Schenectady, N Y 12308, USA s University o f Geneva, CH-1211 Geneva 4, Switzerland

t Laboratoire de Physique des Particules, LAPP, F-74519 Annecy-le-Vieux, France

u Central Research Institute for Physics o f the Hungarian Academy of Sciences, H-1525 Budapest 114, Hungary v I. Physikalisches Institut, RWTH, D-51OOAachen, FRG 1

and lll. Physikalisches lnstitut, RWTH, D-51OO Aachen, FRG 1

w National Institute for High Energy Physics, NIKHEF, NL-IO09 DB Amsterdam, The Netherlands and NIKHEF-H and University o f Nijmegen, NL-6525 ED Nijmegen, The Netherlands

x PaulScherrer lnstitut ,PSI, Wiirenlingen, Switzerland Y University o f Lausanne, CH-IOI5 Lausanne, Switzerland z University o f California, San Diego, CA 92182, USA " CarnegieMellon University, Pittsburgh, PA 15213, USA

Institut de Physique Nuclbaire de Lyon, IN2P3-CNRS/Universitb Claude Bernard, F-69622 Villeurbanne Cedex, France High Energy Physics Group, Taiwan, ROC

Institute of High Energy Physics, IHEP, Beijing, P.R. China

Chinese University o f Science and Technology, USTC, Hefei, Anhui 230 029, P.R. China High Energy Physics Institute, DDR-1615 Zeuthen-Berlin, GDR

n California Institute o f Technology, Pasadena, CA 91125, USA o Shanghai Institute o f Ceramics, SIC, Shanghai, P.R. China

Harvard University, Cambridge, MA 02139, USA University o f Hamburg, D-2000 Hamburg, FRG

Received 7 February 1990

We have measured the partial widths of the Z ° into lepton pairs, and the forward-backward charge asymmetry for the process e+e- --. g + g - using the L3 detector at LEP. We obtain an average F~ of 83.0 + 2.1 _+ 1.1 MeV. From this result and the asymmetry

+ 0 , 0 4 6

measurement, we extract the values of the vector and axial vector couplings of the Z ° to leptons: gv = -0.066_o.027 and gA = 0 49 ~ +°'°°7 - - • J - - 0 . 0 0 7 ' 1. Introduction T h e m a s s a n d w i d t h o f t h e Z ° h a v e b e e n a c c u r a t e l y d e t e r m i n e d at L E P [ 1,2 ], u s i n g d a t a f r o m t h e reac- t i o n e + e - - ~ h a d r o n s . Precise m e a s u r e m e n t s o f F ~ , t h e p a r t i a l w i d t h o f t h e Z ° i n t o c h a r g e d l e p t o n s , a n d o f t h e l e p t o n c h a r g e a s y m m e t r i e s c a n b e u s e d to d e t e r - m i n e p a r a m e t e r s w i t h i n t h e s t a n d a r d m o d e l [ 3 ] a n d to test t h e v a l i d i t y o f t h a t m o d e l . I n this p a p e r we p r e s e n t o u r d e t e r m i n a t i o n o f F ~ a n d o f t h e Z ° v e c t o r a n d axial v e c t o r couplingg, g v a n d gA, tO c h a r g e d lep- tons. T h e results a r e b a s e d o n o u r m e a s u r e m e n t s o f 1 Supported by the German Bundesministerium f'tir Forschung

und Technologie. t h e e + e - ~ e + e - a n d e + e - --, g + g - cross s e c t i o n s a n d o n t h e f o r w a r d - b a c k w a r d c h a r g e a s y m m e t r y AFB in e + e - --, g + p.-. W i t h t h e i n c r e a s e d l u m i n o s i t y d e l i v - e r e d b y L E P ( ~ 1 p b - ~ ), we h a v e i n c r e a s e d t h e d a t a s a m p l e sizes by a f a c t o r o f f i v e r e l a t i v e to o u r pre- v i o u s a n a l y s i s [ 4 ] . T h e s y s t e m a t i c e r r o r s also h a v e b e e n r e d u c e d b y a c a r e f u l s t u d y o f t h e d e t e c t o r p e r f o r m a n c e . 2. Data collection T h e L3 d e t e c t o r has b e e n d e s c r i b e d in d e t a i l else- w h e r e [ 5 ]. It c o n s i s t s o f a c e n t r a l t r a c k i n g a n d v e r t e x c h a m b e r , a B G O e l e c t r o m a g n e t i c c a l o r i m e t e r , a had-

(5)

ron calorimeter m a d e o f uranium, brass and propor- tional wire chambers and a high precision m u o n c h a m b e r system. The calorimeter system covers 99% o f 4n. Luminosity is measured by detecting small an- gle Bhabha events in two forward B G O calorimeters. The e+e - data sample used in this analysis was ob- tained during O c t o b e r - D e c e m b e r 1989 at LEP. The luminosity corresponding to this data sample was measured with a systematic error o f 1.7%, as de- scribed in detail in ref. [1 ]. The ~t+p. - sample in- cludes data from the same period plus data from Sep- tember where the luminosity systematic error is 4%.

Events o f the type e+e - - , e + e - (T) were detected in the B G O barrel calorimeter. They were triggered using an "energy trigger" with a total energy require- ment o f 12 GeV, as well as clustered energy triggers [6]. The trigger efficiency has been studied using e + e - ~ e + e - (T) events selected by the off line anal- ysis. F r o m the comparison o f trigger data with the signals from the B G O readout, both o f which were digitized and recorded on tape, dead trigger channels have been located and the efficiency measured. The totally efficiency is determined to be 0.975 + 0 . 0 1 4

(stat) for the whole running period.

The principal trigger for e+e - ~ t + p - (T) events requires two or more tracks in the m u o n chambers and at least two hits in the plastic scintillators sur- rounding the B G O calorimeter. The scintillator trig- ger efficiency has been studied using a second, looser trigger, which requires at least one track in the m u o n chambers and at least one scintillator hit. The effi- ciency o f the m u o n track trigger was measured by analyzing inclusive m u o n events that are triggered by the energy trigger as well as the m u o n trigger. F r o m these studies we determine an efficiency greater than 99.5% for the di-muon trigger.

3. Event selection

Events from the process e+e - --, e+e - (T) in the an- gular region covered by the B G O electromagnetic calorimeter (42 °-138 ° ) were extracted from the data by requiring that the total energy measured in the B G O be above 0.72x/J. At least 2 clusters in the BGO, with energies between 10 and 55 GeV were required, and the two highest energy clusters were required to

have an acollinearity angle between them o f less than 90 ° .

The efficiency for selecting e+e - --,e+e - (T) events which enter the B G O angular region was obtained by Monte Carlo calculation [7]. The detector simula- tion took account o f the small n u m b e r o f inactive channels in the B G O calorimeter for each running period. We found an efficiency o f 0.961 + 0 . 0 1 0 for events within the defined angular region for the cuts described above.

For the same cuts, the background from z~ and e+e - - , h a d r o n s was found to be less than 0.3% o f the final e+e - event sample. The background due to e + e - ~ T T has been calculated according to ref. [8 ], and has been subtracted from the data at each value o f x/'s. For x / s = M z o , this background a m o u n t e d to 1.8% o f the signal cross section. The contribution o f the "two p h o t o n process" e + e - ~ e + e - e + e - to the final sample was calculated to be negligible.

Adding in quadrature the systematic errors in the trigger efficiency ( 1.4%), the acceptance (1.0%), the event selection (0.5%), the background subtractions (0.2%) and the luminosity measurement (1.7%), we obtain a total systematic error o f 2.5% in the e + e - ~ e + e - (T) cross section.

Events from the process e+e ---,~t+~t - (T) were se- lected by requiring:

( 1 ) two tracks in the m u o n chambers with a recon- structed m o m e n t u m greater than 2 GeV, with at least one track pointing to within 200 m m o f the vertex,

(2) total energy deposited in the h a d r o n calorim- eter less than 15 GeV,

(3) less than 15 shower peaks in the electromag- netic calorimeter, and

(4) acollinearity angle between the two muons less than 15 °.

In order to include final state radiation we define E~ as the m u o n m o m e n t u m plus the energy con- tained in a cone o f semi-aperture 15 ° around the m u o n trajectory in the B G O calorimeter. We required:

(5) 0.30x/~ < E~ < 0.70x/s, for muons measured in all three m u o n c h a m b e r planes. The sum o f the two E~ was required to be above 40 GeV.

Each m u o n track had to have a scintillator hit. Us- ing the scintillator timing, corrected for the flight path from the interaction region to the scintillator, we re- quired at least one o f the following:

(6)

Volume 238, number 1 PHYSICS LETTERS B 29 March 1990

( 6 a ) the t i m e s for b o t h m u o n s h a d to be w i t h i n

_+ 2.5 ns o f the b e a m crossing t i m e a n d t h e i r differ- ence less t h a n 2.5 ns, or

( 6 b ) the t i m e for one o f the m u o n s had to be within 2.5 ns o f the b e a m crossing, a n d b o t h m u o n s h a d to satisfy a tight vertex cut.

Cuts ( 2 ) a n d ( 3 ) were used m a i n l y to reject h a d - ron events with m u o n pairs while cuts ( 4 ) a n d ( 5 ) r e m o v e d events o f the t y p e e + e - ~ e + e - g + g - a n d

e + e - ~ z + x - ~ g + g - + v ' s . Cut ( 6 ) was a p p l i e d to

reject c o s m i c ray b a c k g r o u n d , w i t h o u t losing those e + e - -~ g + g - events where one scintillator was hit out o f t i m e due to a r a n d o m c o i n c i d e n c e with back- g r o u n d in the scintillator.

F r o m the analysis o f s i m u l a t i o n s for the process

e + e - - - , x + x - - , ~ t + g - + v ' s [ 9 ] , we e s t i m a t e a con-

t a m i n a t i o n o f (0.7 _+ 0.3 )% in the selected m u o n p a i r sample. The o t h e r b a c k g r o u n d sources m e n t i o n e d a b o v e ( c o s m i c rays, g + g - from the two p h o t o n p r o - cess) have been f o u n d to give negligible contributions.

The a c c e p t a n c e for e + e - ~ g + g - ( T ) was calcu-

lated by a p p l y i n g the same cuts on events g e n e r a t e d by a M o n t e Carlo p r o g r a m [ 9 ] a n d s i m u l a t e d in the L3 detector. We f o u n d an overall a c c e p t a n c e o f 0.505 ___ 0.009 ( M o n t e Carlo statistical e r r o r ) . A cor- rection v a r y i n g in t i m e d u r i n g the r u n n i n g p e r i o d has been a p p l i e d to the acceptance, in o r d e r to account for slight changes in the d e t e c t o r p e r f o r m a n c e . The sources o f s y s t e m a t i c error are then: 2.1% due to lu- m i n o s i t y m e a s u r e m e n t , 1.8% due to M o n t e Carlo statistics, 0.4% due to event selection, a n d 0.5% due to trigger efficiency. C o m b i n i n g the s y s t e m a t i c errors in q u a d r a t u r e we o b t a i n a total s y s t e m a t i c error in the e + e - ~ g + g - cross section o f 2.8 %.

4. Partial width for Z ° - ~ e ÷ e -

Because o f the lack o f a sufficiently accurate M o n t e Carlo g e n e r a t o r for the e+e - channel, the error on the t h e o r e t i c a l cross section c o r r e s p o n d i n g to our event sample, a n d hence on our d e t e r m i n a t i o n o f Fee could be significant. We have therefore used two m e t h o d s to d e t e r m i n e Fe~ from our electron data. In the first a n d m o s t direct m e t h o d , we s u b t r a c t e d the c o n t r i b u t i o n o f the t channel , / e x c h a n g e t e r m a n d its interference from the three d a t a p o i n t s a r o u n d the

peak. F o r these points, the s u b t r a c t i o n is only a ( 16 +_ 1.6 )% c o r r e c t i o n to the data.

In the s e c o n d m e t h o d a fit using an analytical for- m u l a given in ref. [ 10] was used. This has the a d v a n - tage o f using all o f the d a t a whether on or off the peak, b u t m a y be systematically less accurate because only s i m p l e cuts are available in the calculation. Results f r o m b o t h m e t h o d s are p r e s e n t e d below, a n d are in a g r e e m e n t within the theoretical systematic errors quoted. We consider the value o b t a i n e d using m e t h o d 1 as o u r basic result on Fee, a n d we have used it in the analysis in the following sections o f this paper.

F o r the first m e t h o d , the cross sections m e a s u r e d in the 42 ° - 1 3 8 ° p o l a r angle range are given in table 1. The errors shown are statistical only. The back- g r o u n d f r o m e+e - ~TT has been s u b t r a c t e d in these cross sections. To m a k e the t-channel subtraction, we o b t a i n e d the cross sections into di-electrons a n d into d i - m u o n s , aMce+e- a n d a~a~ ~ - , f r o m M o n t e Carlo sim- ulations [7,9] a n d we calculated the s-channel con- t r i b u t i o n to the cross section as

-(aMc - a ~ c

).

O ' Z 0 ~ O ' e x p e + e - + g -

We then find

Fee = 81.1 _+ 2.8 ( s t a t ) + 1.2 ( s y s t ) + 0.7 ( t h e o r y ) M e V .

T h e statistical error q u o t e d a b o v e includes a con- t r i b u t i o n o f 1.6 M e V from the statistical error on the m e a s u r e d total w i d t h o f the Z °, as d e t e r m i n e d from our h a d r o n d a t a ( F z = 2 . 5 3 9 + 0 . 0 5 4 GeV, M z = 9 1 . 1 6 0 + 0 . 0 3 8 G e V [11).

In the s e c o n d m e t h o d we fitted the cross section as a function o f x/s using the analytic expression [ 10] m e n t i o n e d above, which takes into account b o t h the ~, a n d the Z ° exchange d i a g r a m s in the s a n d t chan- nels with interference terms. Soft r a d i a t i o n is ac- c o u n t e d for b y e x p o n e n t i a t i o n , a n d h a r d p h o t o n s are included in the collinear a p p r o x i m a t i o n . F u r t h e r cuts h a d to be a p p l i e d to the d a t a in o r d e r to reject events

c o n t a i n i n g h a r d p h o t o n s ( o f energy k >

kmax)

emit-

t e d at large angles ( ~ > ~ma×) with respect to the direc- tion o f the electrons (or p o s i t r o n s ) , since these events are not a c c o u n t e d for by the fitting function. Events with h a r d acollinear p h o t o n s in the b e a m p i p e are re-

j e c t e d by an a c o l l i n e a r i t y cut Amax on the final state

(7)

Table 1

The number of events and the measured cross sections for e+e - - , e + e -, for the selection criteria used in methods 1 and 2 described above.

. ~ (GeV) Method 1 Method 2

~ . . . ~+e- (nb) Ne ... ~+e (nb) 88.279 29 0.34 _+ 0.06 26 0.30 __+ 0.06 89.277 42 0.64 _+ 0.10 39 0.60 -+ 0.10 90.277 52 0.86 _+ 0.12 50 0.83 _+ 0.12 91.030 136 1.08 -+ 0.09 129 1.02 _+ 0.09 91.278 161 1.01 _+0.08 156 0.98__+0.08 91.529 156 0.98 _+ 0.08 153 0.96 __+ 0.08 92.277 44 0.68 _+ 0.10 44 0.68 _+ 0.10 93.276 18 0.29 _+ 0.07 15 0.24_+ 0.07 94.278 13 0.15-+0.04 11 0.12_+0.04

T h e c h o i c e o f 5ma x a n d Area x has to d o n e b e a r i n g in m i n d t h a t h i g h v a l u e s o f t h e s e cuts m a k e t h e f o r m u l a less p r e c i s e w h i l e l o w v a l u e s m a k e t h e m e a s u r e m e n t s e n s i t i v e to f i n i t e r e s o l u t i o n o f t h e d e t e c t o r . A f t e r a c a r e f u l s t u d y o f t h e p e r f o r m a n c e o f o u r c a l o r i m e t e r we c h o s e fimax = 1 0 °, a n d ZJma x : 10 °, c o r r e s p o n d i n g to kmax= 7.3 G e V . We h a v e s t u d i e d t h e v a r i a t i o n in cross s e c t i o n , as m e a s u r e d u s i n g o n l y t h e t h r e e en- ergy p o i n t s close to t h e Z ° peak, a n d as p r e d i c t e d by t h e fitting f u n c t i o n c h a n g i n g t h e Z~ma x a n d 5max cuts b e t w e e n 5 ° a n d 15 °. T h e r e is a g r e e m e n t w i t h i n 1% b e t w e e n p r e d i c t i o n a n d e x p e r i m e n t . We e s t i m a t e a 2% e r r o r to t h e t h e o r e t i c a l p r e d i c t i o n o f t h e cross sec- t i o n in this s e c o n d m e t h o d .

T h e cross s e c t i o n s u s e d in t h e fit a r e also g i v e n in t a b l e 1. N o t e t h a t since s o m e w h a t m o r e r e s t r i c t i v e cuts w e r e r e q u i r e d to a l l o w use o f t h e f o r m u l a , t h e m e a s u r e d cross s e c t i o n s are s m a l l e r t h a n t h o s e u s e d in t h e p e a k s u b t r a c t i o n m e t h o d . F i t t i n g t h e d a t a w i t h M z a n d F z f i x e d to t h e v a l u e s we d e t e r m i n e d f r o m t h e h a d r o n i c cross s e c t i o n [1] we o b t a i n (fig. 1) F e e = 79.0 + 2 . 4 ( s t a t ) + 1.1 ( s y s t ) + 1 . 0 ( t h e o r y ) M e V . T h e d i f f e r e n c e b e t w e e n m e t h o d s 1 a n d 2 is par- tially statistical d u e to t h e e x c l u s i o n o f d a t a a w a y f r o m t h e p e a k in m e t h o d 1. T h e r e m a i n i n g d i f f e r e n c e is slightly larger t h a n t h e " t h e o r y e r r o r s " e s t i m a t e d . W e c o n s i d e r m e t h o d 1 to be m o r e reliable.

5. Partial width for Z°-~lt+li-

The e + e - - ~ ~ + ~ t - - + (7) cross s e c t i o n a n d its statis- tical e r r o r m e a s u r e d as a f u n c t i o n of,~/~ a r e s h o w n in E v ~0 1 50 1 . 0 0 0.50 ZO__. e + e - * 8 6 88 90 92 94 96 (GeV)

Fig. 1. Measured cross sections as a function of the CM energy for the reaction e+e - - , e + e - for the polar angle region from 42 ° to 138 °. The curve is the fit to the data obtained with method 2 as described in the text.

Table 2

Number of events and cross sections for e+e ~p+~t-.

~fs (GeV) g+~t-(T) events o~+._ (nb)

88.279 5 0.12_+0.05 89.277 8 0.29_+0.10 90.277 51 1.15_+0.16 91.030 82 1.44_+0.16 91.278 147 1.44_+0.12 91.529 110 1.32_+0.13 92.309 33 0.97_+0.17 93.276 32 0.70_+0.12 94.278 16 0.38_+0.09

(8)

Volume 238, number 1 PHYSICS LETTERS B 29 March 1990 20 1.5 10 0 5 0 I I I I I I 86 88 90 92 94 96 (GeV)

also completely correlated for the two measurements. We a v e r a g e d the d a t a from the two l e p t o n i c chan- nels, a s s u m i n g universality, a n d o b t a i n e d

F ~ =83.0+_2.1_+ 1.1 M e V .

I f we do not assume universality, we f i n d F , , = 87.6 +_ 5.6 M e V using the m e a s u r e d value o f Fee. The error q u o t e d includes b o t h statistical a n d systematic errors.

7. Simultaneous fit to lepton and hadron data Fig. 2. Measured cross sections as a function of the CM energy

for the reaction e+e--~g+g -. The curve is the fit to the data to obtain F[¢~.

table 2. We f i t t e d these d a t a using an analytic f o r m for the Z ° cross section [ 11 ], a n d o b t a i n e d M z = 91.11 _+ 0.13 G e V a n d F z = 2.49 _+ 0.28 G e V which is in excellent a g r e e m e n t with our p r e v i o u s measure- m e n t s o f the h a d r o n i c final state [ 1 ] . G i v e n this agreement, we fit the d a t a by fixing the m a s s a n d width o f the Z ° to the values d e t e r m i n e d f r o m o u r fit to the h a d r o n i c cross section. T h e m e a s u r e d e+e -

~+ p - ( y ) cross sections a n d the f i t t e d function are shown in fig. 2. U s i n g the p . + g - d a t a alone, we find

F ~ = ~

= 8 4 . 3 + 2 . 4 ( s t a t ) + 1.2 ( s y s t ) M e V .

T h e statistical error q u o t e d a b o v e includes a contri- b u t i o n o f 1.4 M e V f r o m the statistical error in o u r m e a s u r e d value o f Fz.

We have m a d e a s i m u l t a n e o u s fit to our cross sec- tions for h a d r o n [ 1 ], e+e - , a n d g + g - p r o d u c t i o n . The fit is m o d e l i n d e p e n d e n t with Mz, Fhaa, F ~ a n d Fi,v as free p a r a m e t e r s . As before, we have used the analytical forms for the Z ° cross section given in ref. [ 11 ]. These include initial state r a d i a t i o n a n d a B r e i t - W i g n e r with an energy d e p e n d e n t width. We find, with a Z 2 = 17 for 18 degrees o f freedom,

M z = 91.156 +_ 0.026 +_ 0.030 G e V , Fhad = 1.744 +_ 0.053 G e V ,

F ~ = 82.8 +_ 2.4 M e V , F~nv = 537 +_ 48 M e V ,

I f we assume the p a r t i a l width o f the Z ° to n e u t r i n o pairs from the s t a n d a r d model, this value o f Finv yields the n u m b e r o f n e u t r i n o s N v = 3.23 -4-_ 0.29. T h i s value should be c o m p a r e d with our d e t e r m i n a t i o n within the s t a n d a r d m o d e l using the h a d r o n d a t a alone o f N v = 3.29 _+ (J.17.

6. Average leptonicwidth

T h e correct d e t e r m i n a t i o n o f the average l e p t o n i c width, a n d its error, requires t h a t the c o r r e l a t i o n s be- tween the errors in Fee a n d in F ~ be t a k e n into ac- count. T h e statistical errors o f 1.6 M e V on the p a r t i a l w i d t h for e + e - final states, a n d o f 1.4 M e V on the p a r t i a l w i d t h for g + g - final states, which are due to the statistical error on o u r m e a s u r e m e n t o f F z [ 1 ], are c o m p l e t e l y correlated. The s y s t e m a t i c errors on Fee a n d F~'~ b o t h c o n t a i n a 0.85% c o n t r i b u t i o n f r o m the s y s t e m a t i c e r r o r on luminosity. These errors are

8. Determination of gA and gv

U s i n g o u r e+e - - - , g + g - (~) event sample, we have also m e a s u r e d the f o r w a r d - b a c k w a r d charge asym- m e t r y AFB d e f i n e d as

a F - - a B

AFB -- -

-rYE + ~B "

By fitting d ~ / d ( c o s 0) to our d a t a s a m p l e and ex- t r a p o l a t i n g cos 0 to the full range we o b t a i n e d AFB(x/~= 89.94 G e V ) = - ( 2 5 . 0 + 1 5 . 2 ) % ,

(9)

0.6 0.4 0.2 o -0.2 -0.4 -0.6 89 L I I I 90 91 92 93 '/~ (GoV) 94

Fig. 3. Measured forward-backward charge asymmetry AFB as a function of the CM energy for the reaction e+e--~t+~t -. The curve is the prediction of the standard model.

A F B ( x f S = 9 1 . 0 3 G e V ) = - (9.0_+ 1 0 . 7 ) % , AVB ( X / ~ = 91.28 G e V ) = ( 17.9 _+ 8.4 ) % ,

AFB(x/SS=

9 1.53 G e V ) = (8.7 _+ 10.2 ) % , A F B ( X / ~ = 9 3 . 0 9 G e V ) = (8.2_+ 1 1 . 7 ) % , Fig. 3 shows t h e m e a s u r e d a s y m m e t r i e s c o m p a r e d w i t h v a l u e s p r e d i c t e d b y the s t a n d a r d m o d e l (Mtoo = 100 G e V a n d M H = 100 G e V ) . U s i n g t h e e q u a t i o n

GuM 3

F ~ - 6x//~n (g~ +g2 ) ,

we f o u n d g ~ +g~, = 0.250_+ 0.007 . F r o m a fit to o u r a s y m m e t r y d a t a a n d

F~,

i n c l u d i n g Q E D r a d i a t i v e c o r r e c t i o n s [ 12 ] a n d u s i n g the Z ° m a s s we h a v e p r e v i o u s l y m e a s u r e d [ 1 ], we o b t a i n e d : _ ~ q 4 0 ~ + 0 . 0 0 7 c~ (~KK+0.046 g A - - - - ' ~ . J J - - o . o 0 7 , gv = - - u ' u u u - - O . 0 2 7 w h e r e t h e errors i n c l u d e systematics. N o t e t h a t d a t a f r o m o t h e r e x p e r i m e n t s [ 1 3 - 1 7 ] are u s e d to deter- m i n e t h e signs. Fig. 4 c o m p a r e s o u r d e t e r m i n a t i o n o f gA a n d gv to p r e v i o u s m e a s u r e m e n t s [ 1 3 - 1 8 ] ~' -0.3 -0.4

gA

-0,5 -0.6 -0.7 J ~ ~ J J ." I ." m L3 ~- ~ ~ I~ x" _._./ ________.--- -0.2 -0.1 0 0.1 0.2 gv

Fig. 4. Results obtained from neutrino experiments and the e+e - experiments expressed as contours in gA and gv. Area (A) is the result of the CHARM Collaboration (68% confidence level ) l 13 ], area (B) is the combined e+e - result from PETRA and PEP (95% confidence level) 114], area (C) is the reactor 9ee result (68% confidence level) l 15 ], area (D) is the BNL result (68% confi- dence level) [ 16], and area (E) is the CHARM II result (68% confidence level) [ 18 ]. The black area represents our measure- ment based on the L3 measurements of FQ~ and the asymmetry (68% confidence level). 9. C o n c l u s i o n We h a v e m e a s u r e d F ~ i n b o t h the e + e - a n d ~t+~t - c h a n n e l s . T h e average result o f F ~ = 8 3 . 0 _ + 2 . 1 + 1.1 M e V is i n g o o d a g r e e m e n t w i t h t h e e x p e c t a t i o n o f the s t a n - d a r d m o d e l . C o m b i n i n g o u r l e p t o n i c a n d h a d r o n i c m e a s u r e m e n t s , we get a m o d e l i n d e p e n d e n t deter- m i n a t i o n o f the n u m b e r o f n e u t r i n o species o f 3 . 2 3 + 0 . 2 9 . We h a v e also m e a s u r e d the f o r w a r d - b a c k w a r d charge a s y m m e t r y in ~t+~t - p r o d u c t i o n for 5 v a l u e s o f x/s. T h e a s y m m e t r y is c o n s i s t e n t w i t h t h e s t a n d a r d m o d e l a n d allows us to d e t e r m i n e the axial v e c t o r a n d v e c t o r c o u p l i n g s o f the l e p t o n s to the Z°: c~ 4 0 ~ + 0 . 0 0 7 ~ c~ (~t~K+0.046 g A ~ - - ~ J . J J - - 0 . 0 0 7 ~ ,~V -~" - - v - v u V - - O . 0 2 7 - ~l N o t e i n fig. 4, t h a t i n o r d e r t o c o m p a r e w i t h o u r r e s u l t , w e h a v e p l o t t e d t h e r e s u l t o f ref. 116 ] b y a d d i n g in q u a d r a t u r e t h e i r s t a t i s t i c a l a n d s y s t e m a t i c e r r o r s . A c k n o w l e d g e m e n t

(10)

Volume 238, number 1 PHYSICS LETTERS B 29 March 1990 W e w a n t p a r t i c u l a r l y t o e x p r e s s o u r g r a t i t u d e t o t h e L E P d i v i s i o n : it is t h e i r e x c e l l e n t a c h i e v e m e n t s w h i c h m a d e t h i s e x p e r i m e n t p o s s i b l e . W e a c k n o w l e d g e t h e s u p p o r t o f all t h e f u n d i n g a g e n c i e s w h i c h c o n t r i b u t e d t o t h i s e x p e r i m e n t . References

[ 1 ] L3 Collab., B. Adeva el al., Phys. Lett. B 237 (1990) 136. [ 2 ] L3 Collab., B. Adeva et al., Phys. Lett. B 231 (1989) 509; ALEPH Collab., D. Decamp et al., Phys. Lett. B 231 (1989) 519;

OPAL Collab., M.Z. Akrawy et al., Phys. Lett. B 231 (1989) 53O;

DELPHI Collab., P. Aarnio et al., Phys. Lett. B 231 (1989) 539;

ALEPH Collab., D. Decamp et al., Phys. Lett. B 235 (1990) 399.

[3] S.L. Glashow, Nucl. Phys. 22 ( 1961 ) 579; S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264;

A. Salam, Elementary particle theory, ed. N. Svartholm (Almquist and Wiksell, Stockholm, 1968 ) 367.

[4] L3 Collab., B. Adeva et al., Phys. Lett. B 236 (1990) 109. [5 ] L3 Collab., B. Adeva et al., The construction of the L3

experiment, Nucl. Instrum. Methods A 289 (1990) 35. [6] R. Bizzarri et al., Nucl. Instrum. Methods A 283 (1989)

799.

[ 7 ] R. Kleiss, F.A. Berends and W. Hollik, BABAMC, Proc. Workshop on Z physics at LEP, eds. G. Altarelli, R. Kleiss and C. Verzegnassi, CERN Report 89-08 (CERN, Geneva, 1989), Vol. III, p. I.

[ 8 ] R. Kleiss and F.A. Berends, Nucl. Phys. B 186 ( 1981 ) 22; programs supplied to L3 by the authors.

[9] S. Jadach et al., KORALZ, Proc. Workshop on Z physics at LEP, eds. G. Altarelli, R. Kleiss and C. Verzegnassi, CERN Report 89-08 (CERN, Geneva, 1989), Vol. III, p. 69, Comput. Phys. Commun., to be published.

[ 10] M. Greco, Phys. Lett. B 177 (1986) 97;

M. Caffo, E. Remiddi and F. Semeria, in: Z physics at LEP, CERN Report 89-08, eds. G. Altarelli, R. Kleiss and C. Verzegnassi, Vol. I (CERN, Geneva, 1989)p. 171. [ 11 ] R.N. Cahn, Phys. Rev. D 36 (1987) 2666;

A. Borelli et al., preprint CERN-TH 5441/89. [ 12 ] D. Bardin et al., Phys. Len. B 206 ( 1988 ) 539;

D. Bardin et al., ZBIZON, a program package for the precision calculation of observables for the process e+e---,f+f - around the Z peak, L3 Internal Note 679

(September 1989 ), unpublished;

D. Bardin et al., Berlin-Zeuthen preprint PHE 89-19, to be published.

[ 13 ] CHARM Collab., J. Dorenbosch et al., Z. Phys. C 41 (1989) 567.

[ 14 ] Mark J Collab., D.P. Barber et al., Phys. Rev. Lett. 46 ( 1981 ) 1663;

JADE Collab., W. Bartel et al., Phys. Lett. B 99 ( 1981 ) 281; TASSO Collab, R. Brandelik et al., Phys. Len. B 117 (1982) 365;

CELLO Collab., H.J. Behrend et al., Z. Phys. C 16 (1983) 301;

Mark II Collab., M.E. Levi et al., Phys. Rev. Lett. 51 ( 1983 ) 1941;

MAC Collab., W.W. Ash et al., Phys. Rev. Lett. 55 (1985) 1831;

HRS Collab., M. Derrick et al., Phys. Rev. D 31 (1985) 2352.

[ 15] F. Reines, H.S. Gurr and H.W. Sobel, Phys. Rev. Lett. 37 (1976) 315.

[ 16] K. Abe et al., Phys. Rev. Lett. 62 (1989) 1709. [ 17 ] F. Avignone et al., Phys. Rev. D 16 ( 1977 ) 2383;

W. Krenz, Aachen University Report No. P1THA 84/42 (1984), unpublished;

U. Amaldi et al., Phys. Rev. D 36 (1987) 1385.

[ 18] CHARM I1 Collab., D. Geiregat et al., Phys. Lett. B 232 (1989) 539.

Referenties

GERELATEERDE DOCUMENTEN

8 Eupoecilia ambiguella, Grape berry moth Lepidoptera, Tortricidae Grapholita molesta, Oriental fruit moth Lepidoptera, Tortricidae Helicoverpa spp., budworm moths

Materialen en methoden 19 2.1 Alternatieven voor actualisatie van de grondwaterdynamiek 19 2.2 Uitwerking alternatieve karteringsmethoden 21 2.3 Gegevens 22 2.4

In de zomervakantie heeft de website groot onder- houd gehad. Er is nieuwe veilingsoftware geïnstal- leerd en de werkgroep bedankt Erik van den Hout voor zijn bijdrage en

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

the static switches. This usually employs a high-frequency trans- former with magnetic core to obtain the necessa,ry isolat,ion between information electronics and power

If the middle part of the n-th line is not EB, and if catCnl = k, then 5 is the EXPRESSION string consisting of just one entry, viz. the category part of the n-th

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Intermittent on line (vivo) measurement of pO/sub 2/, pCO/sub 2/, pH and K/sup +/ by means of automatic sampling of blood and automatic calibration of electrodes and amplifiers..