• No results found

How strong is your product?

N/A
N/A
Protected

Academic year: 2021

Share "How strong is your product?"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

How strong is your product?

Citation for published version (APA):

Engels, T. A. P., Govaert, L. E., Peters, G. W. M., & Meijer, H. E. H. (2004). How strong is your product?. Poster session presented at Mate Poster Award 2004 : 9th Annual Poster Contest.

Document status and date: Published: 01/01/2004 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl

providing details and we will investigate your claim.

(2)

1

2

/department of mechanical engineering

PO Box 513, 5600 MB Eindhoven, the Netherlands

How strong is your product ?

T.A.P.Engels, L.E.Govaert, G.W.M.Peters and H.E.H.Meijer

Introduction

An attempt has been made to predict the development of me-chanical properties during processing. As a starting point the temperature dependence of the evolution of the yield stress

during annealing treatments on polycarbonate below Tg, as

derived by Klompen et al. [1], is used. In combination with the process-related thermal history, which can be derived from numerical simulations of the injection molding process, an estimate of the yield strength distribution throughout the product can be obtained.

Model

From yield data obtained by annealing at different temper-atures a master curve can be constructed using (annealing) time-temperature superposition, see figure 1.

103 105 107 109 65 70 75 80 85 annealing time [s]

yield stress [MPa]

Tref = 80 °C T mold = 140 °C T mold = 90 °C log(time) yield stress processing related service related ta

Figure 1 Annealing kinetics

The kinetics of the yield stress are captured by the follow-ing set of equations:

aT(T ) = exp  ∆Ua R ·  1 T − 1 Tref  (1) σy(t) = c0+ c1· log(tef f+ ta) (2) tef f= Z t 0 a−1 T (T (ξ))dξ (3)

The evolution of the yield stress is assumed to begin when

the glass transition temperature, Tg, is passed.

Experimental

From a commercial grade of polycarbonate, Lexan 141R, in-jection molded samples were made. Mold temperatures were

varied from 30◦C to 130C. Subsequently tensile bars were

machined from the injection molded samples to determine the resulting yield stress, see figure 2 below.

Figure 2 Injection molded part and tensile bars

Results

Evaluation of the thermal history of the injection molded samples as obtained by Moldflow; see figure 3 (left), leads to the predicted yield stresses as shown in figure 3 (right).

0 5 10 15 20 25 30 100 150 200 250 300 time [s] temperature [ ° C] from surface to center 0 0.25 0.5 0.75 1 55 60 65 70 center surface normalized thickness [−]

yield stress [MPa] 25 30 35

Sa

[−]

Figure 3 Temperature (left) and yield stress distributions (right) For different mold temperatures the resulting experimental verus numerical yield stresses are presented below.

0 0.25 0.5 0.75 1 50 60 70 center surface normalized thickness [−]

yield stress [MPa]

50°C 80°C 100°C 110°C 120°C 130°C 20 40 60 80 100 120 140 55 60 65 70 75 Tg 150°C 155°C 150°C 155°C mold temperature [° C]

yield stress [MPa]

4mm 1mm model predictions 20 25 30 35 40 Sa [−]

Figure 4 Numerical versus experimental results

Conclusions

A new simulation tool has been developed which enables the analysis of the development of yield stress during process-ing of glassy polymers. With the current state of the art in constitutive modeling, the knowledge of the yield stress dis-tribution is sufficient to perform life-time predictions in static and dynamic loadings [2]. In combination this opens a route to true product optimization without ever performing a single mechanical test.

Future work

2 Incorporate equilibrium kinetics; in this approach the

glass transition temperature is treated as a parameter rather then a result of kinetic vitrification.

2 Investigate the influence of pressure on the evolution

kinetics.

References:

[1] KLOMPEN, E.T.J., ENGELS, T.A.P., GOVAERT, L.E., MEIJER, H.E.H.: Elas-toviscoplastic modeling of the large strain deformation of glassy poly-mers: influence of thermo-mechanical history. (J.Rheol., submitted.) [2] KLOMPEN, E.T.J., ENGELS, T.A.P., VAN BREEMEN, L.C.A., SCHREURS,

P.J.G., GOVAERT, L.E., MEIJER, H.E.H.: A 3-D plasticity approach to time-dependent failure of polycarbonate.(J.Rheol., submitted.) [3] GOVAERT, L.E., ENGELS, T.A.P., KLOMPEN, E.T.J., PETERS, G.W.M.,

MEIJER, H.E.H.:Processing induced properties of glassy polymers: De-volopment of the yield stress in polycarbonate.(IPP, submitted.)

Referenties

GERELATEERDE DOCUMENTEN

In de aardappelteelt komt een nieuwe Dickeya-soort voor (D. solani) die sterk virulent is. Stammen van verschillende Dickeya-soorten zijn gemerkt met een groen fluorescent

Er is hier ook veel water, waar de ganzen zich veilig terug kunnen trekken?. In maart en april trekken ze weer terug naar hun broedgebieden rond

Uit de resultaten van de incubatie bleek dat zowel bij Meloidogyne als Pratylenchus in respectie- velijk 5,2% en 1,8% van de besmette monsters de aaltjes wel in de

Block copolymers, containing blocks with different physical properties have found high value applications like nano-patterning and drug delivery. By gaining control over the

Voor de belangrijkste bladluissoorten die PVY kunnen overbrengen is in het verleden bepaald hoe efficiënt deze bladluizen PVY kunnen overbrengen.. De mate van efficiëntie wordt

Dus door het TAN om te zetten tot nitraat kan men uit met minder water- verversing, echter er wordt nog steeds een vergelijkbare hoeveelheid stikstof geloosd als

Voor het monitoren van zuurgraad in habitatgebieden zou de volgende procedure gebruikt kunnen worden: - vaststellen welke habitattypen in principe gevoelig zijn voor bodemverzuring

Die veranderingen van normen en waarden begrijpen we niet of nauwelijks, maar die bepalen straks het succes van de heront - worpen veehouderij.. In dat onbegrip schuilt wel