• No results found

A formal definition of derivation trees in systems of natural deduction

N/A
N/A
Protected

Academic year: 2021

Share "A formal definition of derivation trees in systems of natural deduction"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

A formal definition of derivation trees in systems of natural

deduction

Citation for published version (APA):

Balsters, H. (1982). A formal definition of derivation trees in systems of natural deduction. (Eindhoven University of Technology : Dept of Mathematics : memorandum; Vol. 8220). Technische Hogeschool Eindhoven.

Document status and date: Published: 01/01/1982

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computing Science

Memorandum 82-20 November 1982

A formal definition of derivation trees in systems of natural deduction

P.O. Box 513

5600 ~m Eindhoven

The Netherlands

by

(3)

Introduction

A FORMAL DEFINITION OF DERIVATION TREES IN SYSTEMS OF NATURAL DEDUCTION

by

H. Balsters

The motivation behind this note was a certain dissatisfaction with regard to the lack of formal rigour in familiar natural deduction presentations of first order logic. Usually such presentations are only in part formal and often use is made of intuitive pictures of so-called "derivation trees", without actually giving precise rules of their construction. The

tech-nique of "cancelling of hypotheses", for example, ususally lacks a proper formal treatment. Which hypotheses are to be cancelled and what cancelling formally amounts to "is not made clear. Sometimes one has the impression that the cancelling technique is governed onl'y by some pragmatic rule of thumb. In this paper a formal recursive definition will be given of the set of derivation trees in a classical first order system of predicate logic, based on natural deduction. For an exposition of the intuitive background of our subject, see [1].

(4)

2

-I. Preliminaries

O. Language

0.0. Alphabet

Our alphabet consists of the following symbols:

(i) k-ary predicate symbols PO' k

P.,

k P2' k

...

,

Pn' k

(H) k-ary function symbols fa, f k k 1 ' £2' k

...

,

fk n'

(iii) constant symbols cO' c

t ' c2,

...

,

c n'

(iv) variables x

o'

xl' x2'

...

,

xn '

(v) connectives A, .. , .L,

V

(vi) the cancellation symbol $ (from cancelled $entence)

(vii) auxiliary sYmbols (, )

,

where k, n E :N and. • {O,lt2, ••• }.

The set of variables is denoted by

VAR.

Furthermore, we shall use meta-variables c (for constant symbols) and x,y (for meta-variables).

0.1. We introduce three syntactical categories: TERM (the set of t~), FORM (the set of

6oromula4)

and CANCEL (the set of

cancelled

6or0muia4).

0.1.0. Definition

TERM is the smallest set X such that

(i) VAR C X (H) c E X n (1'1'1') 1 ' f tl, ••• ,t X h fk( ) X k E t en n t1, ••• ,tk E where k,n E: :N.

(5)

3

-0.1.1. Definition

FORM is the smallest set X such that (i) .L E X

(ii) if t1 ••••• t k E TERM then

P~(tl

••••• tk) E X

(iii) if ~.~ E X and 0 E {A. ~ } then (~ 0 ~) E X

(iv) if ~ E X then Vx ~ E X

n

where k.n Eli.

The formulas in (i) and (ii) are called ato~. In what follows we shall use I~ as an abbreviation for (~ ~ .L).

0.1.2. Definition

CANCEL:- {$(~)I~ E FORM}.

Our language now consists of FORM U CANCEL.

0.1.3. Remark. From now on we shall omit indices and just write an f or p

in-d f f k k 'd .

stea 0 or p to aVOl messy notatlon.

n n

I. Free variables

1.0. Definition

Let t E TERM. then the set FV(t) of 6~ee v~bleh

06

t is defined by

(i) FV(x):= {x} (ii) FV(c ):= f/J n k (iii) FV(f(t1 ••••• t k

»:=

j>= U FV(t.) 1 J where k,n E :IN.

(6)

4

-1. -1. Definition

Let ~ € FORM, then the set FV(~) of 6~ee v~ble4 06 , is defined by

(i) FV(.L):= f/J k (ii) FV(p(t1, ••• ,tk)}:a U FV(t.) j= 1 J (iii) FV(~

0

$):= FV(~) U FV(~) (iv) FV(Vx ~):= FV(~) - {x} where k € ::N and 0 E {J\, -+ }.

2. The substitution operator 2.0. Definition

Let 8,t E TERM, then [x:= t]s is defined by

t]y:- { t

,

if x.y (i) [x:= y t otherwise (ii) [x:= tJc:= c (iii) [x:: tJ f(t1, ••• ,tk) "" f([x:= tJt1, ••• ,[x:= t]tk) where k E :N. By i! we denote syntactical equality.

2.1. Definition

Let t E TERM and ~ € FORM, then [x:- tJ~ is defined by

(i) [x:= t].L := .L

(ii) [x:= t] p(t1, ••• ,tk):- p([x:- tJt1, ••• ,[x:- tJtk) (iii) [x:- tJ (,

0

~):= ([x:= t](jl

0

[x:= tJ~)

(iv) [x:= tJ Vy':=

{Vy

(jl

Vy[x:= tJ!p where k € ::N •

,ifxllY

(7)

2.2. Definition

Let t € TERM and ~ € FORM.

t -i.6 6lt.ee

60lt.

x in ftI iff (i) , is an atom

5

-(ii) ql a (,) 0 <IlZ) and t is free for x in both ') and ~Z (0 € {A, -+})

(iii) 1p .. Vy ljI and a) x .. y, or b) x

t

FV(ljI),

or c) y

i

FV(t) and t is free for x in IP.

II. Derivation trees

In this section we define the set of

deJt.ivation

~ee4 in a system of natural deduction in a completely formal way, without resorting to

two-dimensional diagrams. Ordered pairs will be denoted by <a,e> and ordered triples by <a.a,y>.

O. Defini tion

The set of

deJt.ivation

tJt.ee4~ T is the smallest set X such that (i) FORM u CANCEL c X

(ii) if T E X and IP € FORM then <T,1p> € X

(iii) if T1,T2 € X and ~ € FORM then <T1,TZ'IP> € X •

1. Defini don

Let T €

T,

then

the It.oot

R(T)

06

~ee T is defined by

(i) if q € FORM u CANCEL then R(q):- q

(ii) R«T,1p»:= IP (iii) R«T

(8)

6

-2. Definition (cancelling of leaves of a tree) C is the function defined by C € TTxFORM and

(i) i f q E FORM u CANCEL then C(q,'/'):= { $(q) , if q • !JJ

't' q otherwise

(iii) C«TI,T2'~>''''):= <C(TI,W) , C(T2,!JJ),,> C is called the

cancel 6unetion.

3. Definition

Let T E

T,

then L(T) the set of

uncancelted

lean tabel4 06

T is defined

by

(i) if q € FORM then L(q):- {q}

if q E CANCEL tpen L(q):=

¢

(ii) L«T,~»:= L(T)

(iii) L«TI,T2'~»:= L(T I) u L(T2) 4. Definition

The set of d~v~n tftee6

VeT

is the smallest set X such that

(i) FORM c X

(ii) if D

1,D2 E X then <DI,D2,(R(D1) A R(D2

»>

E X (A-introduction)

(iii) if D E X and R(D)

= (,

A W) then <D,~> E X and <D,W> E X

(A-elimination) (iv) if DI,D2 E X, R(D

I) = , and R(DZ) = (~ ~ !JJ) then <D1,D2,!JJ> c X ( ~ -elimination)

(v) if D E X, R(D) = '" and ~ E FORM then <C(D,,), (, ~ !JJ» E X ( ~ -introduction)

(vi) i f D E X, R(D) "" Tlcp then < D , q»' E X

(9)

·

. "

.

.,

.

..

7

-(vii) if D € X, R(D)

=

~ and x E VAR - u {FV($) 1$ E L(D)}

then <D,VxQ;I> E X (V-introduction)

(viii) if D E X, R(D)

=

Vx~, t E TERM and t is free for x in ~ then

<D,[x:- t } p E X (V-elimination) •

What we have presented here is a simple set-theoretic definition of the concept of derivation tree which is completely formal; it does not de-pend on any extra information or suggestive visual aids.

References

[lJ Van Dalen, D., : Logic and Structure Springer Verlag, Berlin 1980.

Referenties

GERELATEERDE DOCUMENTEN

Zeven jaar na de oorspronkelijke uitgave blijkt het werk ‘De Nederlandse zoetwatermollusken’ nog bepaald niet bekend onder verzamelaars van strandfossielen..

Het archief waarin hij zijn onderzoek wil doen blijkt echter ,,wegens omstandigheden'' te zijn gesloten en dan verschuift zijn belangstelling naar een ander onderzoeksobject: de

For instance, Toms et al.‟s (2014) study showed that the divergence of two lineages of the klipfish, Clinus cottoides, was linked to lowered sea levels that changed the topology

Die keuse van die navorsingsterrein vir hierdie verhandeling word teen die agtergrond van die bogenoernde uiteensetting, op die ontwikkeling van plaaslike be-

Subsidies zijn meestal wel nodig omdat het op eigen kosten onderzoeken van de markt en het in de markt zetten van het product vaak te veel kost voor de omvang van het initiatief..

Ik denk dat een kind, ongeacht zijn leeftijd, het in zich heeft om zelf een inschatting te maken over wat hij of zij wel of niet kan.. Wat is erop tegen, zeker wanneer

Een vreemd , maar vernuftig bouwsel, zo'n kruidenspiraal : een dozijn of meer (keuken- )kruiden­ soorten, ieder op de meest gunsti­ ge groeiplek gesitueerd.. Maar ook