• No results found

Computation of a model milling machine (mathematical model II)

N/A
N/A
Protected

Academic year: 2021

Share "Computation of a model milling machine (mathematical model II)"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Computation of a model milling machine (mathematical model

II)

Citation for published version (APA):

Janssen, J. D., Janssen, L. G. J., Touwen, N. A. L., Veldpaus, F. E., & van der Wolf, A. C. H. (1971). Computation of a model milling machine (mathematical model II). (TH Eindhoven. Afd. Werktuigbouwkunde, Laboratorium voor mechanische technologie en werkplaatstechniek : WT rapporten; Vol. WT0261). Technische Hogeschool Eindhoven.

Document status and date: Published: 01/01/1971 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

COMPUTATION OF A MODEL MILLING MACHINE

(MATHEMATICAL MODEL II)

C.I.R.P. Group Ma, Co-operative Work on Computer Aided Design and Analysis of Machine Tool Structures.

by

J.D. Janssen, L.G.J. Janssen,

N.A.L. Touwen, F.E. Ve1dpaus, A.C.H. van der Wo 1£ •

Eindhoven, University of Technology, the Netherlands

RAPPORT No.0261 Code: P.7.c.10

(3)

-)-I. INTRODUCTION

This report deals with the results of the computation of a

model milling machine at the Eindhoven University of Technology. We started from the mathematical model (Fig. 1. and Table 1.) as proposed by the University of Lou vain (Mathematical Model II). The computations were carried out at an EL-Xa digital computer with program A-4112 version 21.

The program language was Algol-60.

2. THE COMPUTERPROGRAM

The program is based on results obtained with the aid of the finite-elements-method. It is useful for the computation of the static and dynamic behaviour of arbitrary framed structures. Lumped masses as well as uniformly distributed mass can be

taken into account.

The interesting stiffness-quantities of the elements are - in general - calculated from the length, the cross-sectional area, the second moments of area around the Y and Z axes and the

material properties.However, the program offers the possibility to characterize some of the elements by direct input of the stiffness-quantities. Thus, it is possible to approximate hinges in the construction.

For further details see the report "Computation of a Model

Milling Machine" of the Eindhoven University, which was presented to the C.I.R.P. Group Ma in Tirrenia 1970.

3. RESULTS OF THE COMPUTATION 3.]. General

For the computations we distinguish four versions of the

mathematical model as pointed out in note 3 of Table 1. As can be seen, these versions differ only with respect to the elements 7, 9 and 30.

(4)

-2-3.2. Static Results

Static deflection of all structural station points caused by unit forces applied between points 22 and 28 in X, Y and Z directions are calculated.

Table 2. and Figs. 2., 3. and 4. show the results of version 2. The four versions of the model did not show a significant

difference in the results as far as static loading is concerned. The preparation time for static computations was 193 sees.

The computing time for one loading case was 22 sees. The com-puter was used in a time-sharing system.

3.3. Dynamic Results

We calculated the natural frequencies of the lowest 10 modes of vibration.

Figs. 5., 6., 7., 8., 9., 10., 1 ] ., 12., I3. and 14. show the results of version 2. In addition to this, Table 3. gives the natural frequencies of the respective modes for the four versions of the model.

The preparation and computing time for these 10 modes was approximately 2500 sees.

4. DISCUSSION

As pointed out earlier, we computed four versions of the mathematical model.

All these versions had uniformly distributed mass with lumped masses in some station points (see Table 1., note 2).

From a static point of view, the mathematical model seems to be reliable. However, there are some contradictions in the input data as distributed by Louvain, for instance:

- the term L/EIY for element 18 cannot be correct - the remark "Shear influence is not taken into

(5)

-3-The input data of our computations are listed in Table I.

Dynamically, there are more objections against the proposed model.

Especially, the quantities of the elements 7, 9 and 30 are to be considered more carefully. For example, the fifth mode of version I and 2, does not exist in version 3 and 4.

(6)

ELEMENT

L[m)

A[m2]

IY[m4]

.IZ[m4]

J[m4]

M[kg]

1

0.0750

3.560E-4

0.1000E-4

0.2500E-4

0.7500E-2

0

2

0.2025

2.105&-2

0.2020E-3

0.7103E-3

0.3980E-3

33.25

3

0.1115

2.105E-2

0.1551E-3

0.5602E-3

0.3100E-3

19.39

4

0.0850

2.105E-2

0.1551E-3

0.5602E-3

0.3100E-3

13.95

5

0.0355

0

6

0.1150

1.787E-2

0.1054E-3

0.3969E-3

0.2150E-3

16.02

7

0

see note 3

0

8

0.2270

0 .. 70

9

0

see note 3

0

10

0.1150

0

11

0.0850

0

12

0.2625

0.70

13

0.1750

, .187E-2

0.7587E-4

0.7396E-4

0.1030E-3

16.20

14

0.1400

1.187E-2

0.7587E-4

0.7396E-4

0.1030E-3

12.96

15

0.1600

0

16

0.2750

4.49OE-3

0.5006F-5

0.1303F-4

0.669OE-5

9.63

17

0.2750

4.49OE-3

0.5006F-5

0.1303E-4

0.669OE-5

9.63

18

0.2150

1.787E-2

0.1054E-3

0.3969E-3

0.2150E-3

29.96

19

0.0320

0

20

0.1950

1.501E-2

0.6016F-4

0.2434E-3

0.129OE-3

25.56

21

0.1950

2.95

22

0.1150

7.100F-4

0.3976E-7

0.3916E-7

0.1950E-7

0.97

23

0.1400

7.100E-4

0.3976E-7

0.3916F-7

0.195OF-7

0.78

24

0.1350

1.501E-2

0.6016F-4

0.2434E-3

0.129OE-3

15.81

25

0.950

0

26

0.1750

3.660E-3

0.4717F-5

0.1136F-5

0.1320F-4

5.00

27

0.,400

3.66OE-3

0.4711E-5

0.1136F-5

0.1320E-4

4.00

28

0.3650

0

29

0.1350

3.42OE-3

0.1042E-4

0.2681E-5

0.868OE-5

3.60

30

0

see note 3

0

I

~

Table. 1.

I

L ... length

E ... 2.10E+ll N/m2

A ... beam. cross sectional area

G ... 0.81E+l1 N/m2

IY, IZ... second moment of area about Y and Z axes respectively

P ...

7.BE+3 ks/m3

J ... effective second polar moment of area

(7)

z

-5-Note 1) The flexibility of the elements 5,8, 10,11, 12, 15, 19,21,25 and 28 is supposed to be negligible.

Note 2) The lumped mass data: in station point

3 6 20 24 60 kg 2 kg 2 kg

0.7

kg 13.9 kg

Note 3) In order to define the elements 7, 9 and 30 we consider the following figures:

w

y

" - - - I .... X

m

w

N

forces and moments displacements and rotations

For the elements mentioned we define the following relation ship between forces and displacements in the respective versions of the model:

force version 1 version 2 version 3 version 4

N 0.lE+14ltu 0.lE+20*u 0.IE+J4*u 0.lE+20ltu

D y 1.2E+)4*v 1.2E+20*v

D

Z ].2E+14*w 1.2E+20ltw

-m 0.IE+14*0 O.1E+20*0 0.lE+14*0 0.lE+20*0 w

m 0.4E+4 * , 0.4E+4 * ,

y

m 0.4E+13*$ 0.4E+19*$

(8)

Load in X direction Load in Y direction Load in Z 'direction

station X Y Z X Y Z X Y Z

point deflection deflection deflection deflection deflection deflection deflection deflection deflection

1

0

0

0

0

-.8814F-10 -.1165&-9

0

+.6445E-9

+.5042&-9

2

0

0

0

0

-.5695&-9

-.1219&-9

0

+.4263E-8

+.5272E-9

3

0

0

0

0

-.8611F-9

-.1249F-9

0

+.6513E-8

+.5405&-9

4

0

0

0

+.7089&-9

-.1286E-9

0

-.6423F-9

+.1985&-7

5

0

0

0

0

+.7083F-9

-.2274E-8

0

-.6423&-9

+.2685&-7

6

0

0

0

0

+.2772F'-7

-.2280F-8

0

-.4986E-7

+.5762&-7

7

0

0

0

0

+.2772&-7

-.2280E-8

0

-.4986F-7

+.5762&-7

8

0

0

0

0

+.2772F-7

-.5338&-9

0

-.49B6F-7

-.4620F-8

9

0

0

0

0

+.2772F-7

+.5338&-9

0

-.4986F'-7

-.4620F-8

10

0

0

0

0

+.1128F-7

+.5338&-9

0

-.1745&-7

-.4620F-8

11

0

0

0

0

-.8611E-9

+.5338F-9

0

+.6513F-8

-.4620F-8

12

0

0

0

0

-.8611F-9

+.5338&-9

0

+.6513E-8

-.4620E-8

13

-.1150E-6

0

0

0

-.5892F-7

+.4801&-6

0

-.1745&-7

-.6742&-7

14

-.2531&-6

0

0

0

-.8592&-7

+.1267F-5

0

-.1745&-7

-.1625&-6

15

-~

1877F-5

0

0

0

-.9587F-6

+.4801&-6

0

+.9122&-7

-.6742&-7

16

-.1877E-5

+.271 &-6

+.3028F-5

0

-.9587E-6

+.4801&-6

0

+.9122&-7

-.6742F-7

17

-.1877E-5

-.2711&-6

-.3028F-5

0

-.9587F-6

+.4801&-6

0

+.9122F-7

-.6742&-7

18

+.3533&-6

0

0

0

+.2212&-6

-.2280E-8

0

-.3080&-6

+.1149&-6

19

+.5121&-6

0

0

0

+.2212&-6

-.4208E-7

0

-.3080E-6

+.1699&-6

20

+.1281F-5

0

0

0

+.5121&-6

-.42OBF-7

0

-.7809&-6

+.2318F'-6

21

+.3595F-5

0

0

0

+.5121&-6

-.3572&-6

0

-.7809F-6

+.8423&-6

22

+.3390F'-4

0

0

0

+.1544E-5

-.4640E-6

0

-.6050&-6

+.2226&-4

23

+.2782E-4

0

0

0

+.1 429F'-5

-.4186E-7

0

-.4643F-6

+.5209F'-5

24

+.1863F-5

0

0

0

+.7292&-6

-.4204F-7

0

-.1247E-5

+.2562&-6

25

+.4781F-5

0

0

0

+.7292&-6

-.3528F'-6

0

-.1247F-5

+.9902&-6

26

+.1390E-4

0

0

0

+.7568F-6

-.3802&-6

0

-.1281F-5

+.2964F-5

27

+.2525E-4

0

0

0

+.7789&-6

-.4203&-7

0

-.1308F'-5

+.5102F-5

28

-.5896&-5

0

0

0

-.3011F-5

+.4801&-6

0

+.3391&-6

-.6742&-7

29

+.2782E-4

0

0

0

+.1429F-5

-.4186&-7

0

-.4643F-6

+.5209F'-5

30

0

0

0

0

-.8611F-9

+.5338F-9

0

+.6513E-8

-.4620F'-8

Table

2.

Load

+1000

N at

22

and -1000 N at

28

in the X, Y, and Z directions separately. 0\ I

(9)

Mode

version

1

version 2

1

74

124

2

'13

171

3

269

282

4

287

376

5

444

517

6

638

644

7

756

781

8

904

921

9

1073

1087

10

1087

1088

Table 3.

Natural Frequencies

[Hz]

for the versions "

version 3

74

"3

275

287

638

692

900

978

1087

1286

2, 3,

and

4.

version 4

143

169

291

328

645

725

915

986

1088

1287

I '-I I

(10)

@

G

18 19

10

o

23.29 17

z

Fig. 1. Mathematical model II of the milling machine.

(11)

-8-z

z

-9-Fig. 2. Static deflections, load +J.OE03 at 22 and -I.OEO) at

28 in X direction.

Fig. 3. Static deflections, load +1.OE03 at 22 and -I.OEO) at 28 in Y Sireetion.

(12)

z

z

"':10-Fig. 4. Stat' 1C defl •

+1.OE03 ect10ns

at 28 . at 22 and

~Jload

1n Z direct' 10n. .OE03

Fig. 5. Mode 1

(13)

z

Fig. 6.

z

Fig. 7.

-11-Mode 2 171 HZ' natural fre

, version 2. quency

Mode 3 , natur 1 f

282 Hz, vers.a requency

(14)

z

z

-12-Fig. 8. Mode 4, natural frequency 376 Hz, version 2.

Fig. 9. Mode 5, natural frequency 517 Hz, ver$ion 2.

(15)

z

z

Fig. 10. Mode 6, natural frequency 644 Hz, version 2.

Fig. Ii. Mode 7, natural frequency 781 Hz, version 2.

(16)

,:,,14-z

Fig. J2. Mode 8 921 ,natural ~

Hz, version

2~equency

z

Fig. 13. Mode 9 1087 ,natural f

(17)

-15-z

Fig. 14. Mo e d 10 , natural frequency • . 1088 Hz, verSl.on 2 _.'

Referenties

GERELATEERDE DOCUMENTEN

The dragline is positioned on the lower bench and the upper ber:.(:h is removed ahead of the dragline by means of chop cutting (a digging method in which the bucket is dropped

In de aardappelteelt komt een nieuwe Dickeya-soort voor (D. solani) die sterk virulent is. Stammen van verschillende Dickeya-soorten zijn gemerkt met een groen fluorescent

Er is hier ook veel water, waar de ganzen zich veilig terug kunnen trekken?. In maart en april trekken ze weer terug naar hun broedgebieden rond

Uit de resultaten van de incubatie bleek dat zowel bij Meloidogyne als Pratylenchus in respectie- velijk 5,2% en 1,8% van de besmette monsters de aaltjes wel in de

Block copolymers, containing blocks with different physical properties have found high value applications like nano-patterning and drug delivery. By gaining control over the

Voor de belangrijkste bladluissoorten die PVY kunnen overbrengen is in het verleden bepaald hoe efficiënt deze bladluizen PVY kunnen overbrengen.. De mate van efficiëntie wordt

Dus door het TAN om te zetten tot nitraat kan men uit met minder water- verversing, echter er wordt nog steeds een vergelijkbare hoeveelheid stikstof geloosd als

Voor het monitoren van zuurgraad in habitatgebieden zou de volgende procedure gebruikt kunnen worden: - vaststellen welke habitattypen in principe gevoelig zijn voor bodemverzuring