• No results found

Dearomatieve cycloaddities op indolen en een formele synthese van phalarine

N/A
N/A
Protected

Academic year: 2021

Share "Dearomatieve cycloaddities op indolen en een formele synthese van phalarine"

Copied!
107
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

β

β

(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)

2

°

(73)
(74)
(75)
(76)
(77)

δ

(78)
(79)

δ

(80)

g mmol

(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)

1. Wetzel, S., Bon, R. S., Kumar, K. & Waldmann, H. Biology-oriented synthesis. Angewandte Chemie - International Edition (2011) doi:10.1002/anie.201007004.

2. Dias, D. A., Urban, S. & Roessner, U. A Historical overview of natural products in drug discovery. Metabolites (2012) doi:10.3390/metabo2020303.

3. Newman, D. J. & Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products (2016) doi:10.1021/acs.jnatprod.5b01055.

4. Liu, R., Li, X. & Lam, K. S. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol. 38, 117–126 (2017).

5. Welsch, M. E., Snyder, S. A. & Stockwell, B. R. Privileged scaffolds for library design and drug discovery. Current Opinion in Chemical

Biology (2010) doi:10.1016/j.cbpa.2010.02.018.

6. Atanasov, A. G. et al. Discovery and resupply of

pharmacologically active plant-derived natural products: A

review. Biotechnology Advances (2015)

doi:10.1016/j.biotechadv.2015.08.001.

7. Hullaert, J. & Winne, J. M. (5,6-Dihydro-1,4-dithiin-2-yl)methanol as a Versatile Allyl-Cation Equivalent in (3+2) Cycloaddition

Reactions. Angew. Chemie - Int. Ed. (2016)

doi:10.1002/anie.201606411.

8. Evans, B. E. et al. Methods for Drug Discovery: Development of Potent, Selective, Orally Effective Cholecystokinin Antagoniststs.

J. Med. Chem. (1988) doi:10.1021/jm00120a002.

9. Tam, S. W., Worcel, M. & Wyllie, M. Yohimbine: a clinical review.

Pharmacol. Ther. 91, 215–243 (2001).

10. Makarovsky, I. et al. Strychnine - A killer from the past. Isr. Med.

Assoc. J. (2008).

11. Höglund, E., Øverli, Ø. & Winberg, S. Tryptophan metabolic pathways and brain serotonergic activity: A comparative review.

Frontiers in Endocrinology (2019)

doi:10.3389/fendo.2019.00158.

12. Cockrum, P. A. et al. (-)-Phalarine, a furanobisindole alkaloid from

Phalaris coerulescens. Phytochemistry (1999)

doi:10.1016/S0031-9422(98)00725-0.

(93)

the total synthesis of phalarine: a survey of some biomimetic

possibilities. Tetrahedron Lett. (2006)

doi:10.1016/j.tetlet.2006.05.041.

14. Li, C., Chan, C., Heimann, A. C. & Danishefsky, S. J. Total synthesis of phalarine. Angew. Chemie - Int. Ed. (2007) doi:10.1002/anie.200604072.

15. Ding, H. & Chen, D. Y. K. Formal syntheses of (-)- and

(+)-phalarine. Angew. Chemie - Int. Ed. (2011)

doi:10.1002/anie.201006367.

16. Li, L., Yuan, K., Jia, Q. & Jia, Y. Eight-Step Total Synthesis of Phalarine by Bioinspired Oxidative Coupling of Indole and Phenol.

Angew. Chemie - Int. Ed. (2019) doi:10.1002/anie.201900199.

17. Trzupek, J. D., Lee, D., Crowley, B. M., Marathias, V. M. & Danishefsky, S. J. Total synthesis of enantiopure phalarine via a stereospecific pictet-spengler reaction: Traceless transfer of chirality from L -tryptophan. J. Am. Chem. Soc. (2010) doi:10.1021/ja1030968.

18. de Sa Alves, F., Barreiro, E. & Manssour Fraga, C. From Nature to Drug Discovery: The Indole Scaffold as a ‘Privileged

Structure’ Mini-Reviews Med. Chem. (2009)

doi:10.2174/138955709788452649.

19. Moudi, M., Go, R., Yien, C. Y. S. & Nazre, M. Vinca alkaloids.

International Journal of Preventive Medicine (2013) doi:10.2165/00128415-200711380-00080.

20. Ndongo, J. T. et al. Indoline alkaloids from Tabernaemontana contorta with cancer chemopreventive activity. Phytochemistry (2017) doi:10.1016/j.phytochem.2017.09.013.

21. Xu, H. & Lv, M. Developments of Indoles as Anti-HIV-1 Inhibitors.

Curr. Pharm. Des. (2009) doi:10.2174/138161209788489168.

22. Bain, J. The many faces of testosterone. Clinical interventions in

aging (2007) doi:10.2147/cia.s1417.

23. Abdallah, M. S. The Best Use of Systemic Corticosteroids in the Intensive Care Units, Review. J. Steroids Horm. Sci. (2015) doi:10.4172/2157-7536.1000.149.

24. Su, H. M., Corso, T. N., Nathanielsz, P. W. & Brenna, J. T. Linoleic acid kinetics and conversion to arachidonic acid in the pregnant and fetal baboon. J. Lipid Res. (1999).

25. Ricciotti, E. & Fitzgerald, G. A. Prostaglandins and inflammation.

Arterioscler. Thromb. Vasc. Biol. (2011)

(94)

26. Baldwin, J. E. Rules for ring closure. J. Chem. Soc. Chem.

Commun. (1976) doi:10.1039/C39760000734.

27. Baldwin, J. E. & Kruse, L. I. Rules for ring closure. Stereoelectronic control in the endocyclic alkylation of ketone

enolates. J. Chem. Soc. Chem. Commun. (1977)

doi:10.1039/C39770000233.

28. Bailey, W. F. & Rossi, K. Tandem Anionic Cyclization Approach to Polycarbocyclic Products. J. Am. Chem. Soc. (1989) doi:10.1021/ja00184a073.

29. Kotha, S., Cheekatla, S. R. & Fatma, A. Synthetic Approach to the ABCD Ring System of Anticancer Agent Fredericamycin A via Claisen Rearrangement and Ring-Closing Metathesis as Key Steps. ACS Omega (2019) doi:10.1021/acsomega.9b01178. 30. Urgoiti, J. B., Añorbe, L., Serrano, L. P., Domínguez, G. &

Pérez-Castells, J. The Pauson-Khand reaction, a powerful synthetic tool for the synthesis of complex molecules. Chem. Soc. Rev. (2004) doi:10.1039/b300976a.

31. Vázquez-Romero, A., Cárdenas, L., Blasi, E., Verdaguer, X. & Riera, A. Synthesis of prostaglandin and phytoprostane B1 via regioselective intermodular pauson-khand reactions. Org. Lett. (2009) doi:10.1021/ol901213d.

32. Hudlicky, T. Design constraints in practical syntheses of complex molecules: Current status, case studies with carbohydrates and alkaloids, and future perspectives. Chemical Reviews (1996) doi:10.1021/cr950012g.

33. Grant, T. N., Rieder, C. J. & West, F. G. Interrupting the Nazarov reaction: Domino and cascade processes utilizing cyclopentenyl

cations. Chemical Communications (2009)

doi:10.1039/b908515g.

34. Laplace, D. R. & Winne, J. M. A rapid and stereocontrolled synthesis of the zizaane ring system by using an intramolecular (4+3) cycloaddition reaction. Synlett (2014) doi:10.1055/s-0034-1378924.

35. Masuya, K., Domon, K., Tanino, K. & Kuwajima, I. Highly regio- and stereoselective [3+2] cyclopentanone annulation using a 3-(alkylthio)-2-siloxyallyl cationic species. J. Am. Chem. Soc. (1998) doi:10.1021/ja972879x.

36. Li, H., Hughes, R. P. & Wu, J. Dearomative indole (3 + 2)

cycloaddition reactions. J. Am. Chem. Soc. (2014)

doi:10.1021/ja412435b.

(95)

Cycloaddition of 3-Nitroindoles with Vinylcyclopropanes: An Entry to Stereodefined 2,3-Fused Cyclopentannulated Indoline

Derivatives. Organic Letters (2017)

doi:10.1021/acs.orglett.7b00784.

38. Mei, G. et al. Dearomative indole [5+2] cycloaddition reactions:

Stereoselective synthesis of highly functionalized

cyclohepta[b]indoles. Angew. Chemie - Int. Ed. (2014) doi:10.1002/anie.201406278.

39. Jia, M., Monari, M., Yang, Q. Q. & Bandini, M. Enantioselective gold catalyzed dearomative [2+2]-cycloaddition between indoles

and allenamides. Chem. Commun. (2015)

doi:10.1039/c4cc08736d.

40. Anderton, N., Cockrum, P. A., Colegate, S. M., Edgar, J. A. & Flower, K. New alkaloids from Phalaris spp.: A cause for concern?

ACS Symp. Ser. (1999).

41. Li, C., Chan, C., Heimann, A. C. & Danishefsky, S. J. On the rearrangement of an azaspiroindolenine to a precursor to phalarine: Mechanistic insights. Angew. Chemie - Int. Ed. (2007) doi:10.1002/anie.200604071.

42. Muñiz, K. Advancing palladium-catalyzed C-N bond formation: Bisindoline construction from successive amide transfer to

internal alkenes. J. Am. Chem. Soc. (2007)

doi:10.1021/ja075655f.

43. Douki, K., Shimokawa, J. & Kitamura, M. Synthesis of the core

structure of phalarine. Org. Biomol. Chem. (2019)

doi:10.1039/c8ob02320d.

44. Lim, K. H. et al. Biologically active indole alkaloids from Kopsia arborea. J. Nat. Prod. (2007) doi:10.1021/np0702234.

45. Zhu, J., Giggisberg, A. & Hesse, M. Indole alkaloids from Kopsia hainanensis. Planta Med. (1986) doi:10.1055/s-2007-969073. 46. Kam, T. S. & Choo, Y. M. Venalstonine and dioxokopsan

derivatives from Kopsia fruticosa. Phytochemistry (2004) doi:10.1016/j.phytochem.2004.03.027.

47. Mitaine, A. C. et al. Alkaloids from Aspidosperma species from Bolivia. Planta Med. (1996) doi:10.1055/s-2006-957939.

48. Braekman, J. C. et al. Indole Alkaloids. XVII. Five Dihydroindole Alkaloids from Aspidosperma Verbascifolium. Bull. des Sociétés

Chim. Belges (1969) doi:10.1002/bscb.19690780109.

49. Simões, J. C., Gilbert, B., Cretney, W. J., Hearn, M. & Kutney, J. P. The alkaloids of Aspidosperma cuspa: 16-epi-isositsirikine, a

(96)

new indole base. Phytochemistry (1976) doi:10.1016/S0031-9422(00)88968-2.

50. Craven, B. M. The crystal structure and absolute configuration of the N(b)-methiodide of (--)-Kopsanone. Acta Crystallogr. B. (1969) doi:10.1107/S0567740869005243.

51. Bannwart, G. et al. Antiproliferative activity and constituents of Aspidosperma macrocarpon (Apocynaceae) leaves. Rec. Nat.

Prod. (2013).

52. Jones, S. B., Simmons, B., Mastracchio, A. & MacMillan, D. W. C. Collective synthesis of natural products by means of

organocascade catalysis. Nature (2011)

doi:10.1038/nature10232.

53. Leng, L. et al. Asymmetric Total Syntheses of Kopsia Indole

Alkaloids. Angew. Chemie - Int. Ed. (2017)

doi:10.1002/anie.201700831.

54. Sergeiko, A., Poroikov, V. V., Hanus, L. O. & Dembitsky, V. M. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and

Biological Activities. Open Med. Chem. J. (2008)

doi:10.2174/1874104500802010026.

55. Menard, K., Flesner, B. K., Glahn, A., Boudreaux, B. & Bryan, J. N. Concurrent 5-fluorouracil and carboplatin for the treatment of

canine carcinomas. Vet. Comp. Oncol. (2018)

doi:10.1111/vco.12426.

56. Yu, Y., Fu, Y. & Zhong, F. Benign catalysis with iron: Facile assembly of cyclobutanes and cyclohexenes: Via intermolecular

radical cation cycloadditions. Green Chem. (2018)

doi:10.1039/c8gc00299a.

57. Potts, K. T. & Baum, J. S. The Chemistry of Cyclopropenones.

Chem. Rev. (1974) doi:10.1021/cr60288a003.

58. LOWN, J. W. & MALONEY, T. W. ChemInform Abstract: RK. VON DIPHENYLCYCLOPROPENTHION MIT EINEM ENAMIN. Chem.

Informationsdienst. Org. Chemie (1970)

doi:10.1002/chin.197038322.

59. Meyer & Schneider. Synthesis of 5,6-dihydro-1,4-dithiins. S. Afr.

J. Chem. 41, 127–130 (1988).

60. Taber, D. F. & Tirunahari, P. K. Indole synthesis: A review and

proposed classification. Tetrahedron (2011)

doi:10.1016/j.tet.2011.06.040.

61. Nadri, H. et al. Design, synthesis and anticholinesterase activity of a novel series of

(97)

1-benzyl-4-((6-alkoxy-3-oxobenzofuran-2(3H)-ylidene) methyl) pyridinium derivatives. Bioorganic Med.

Chem. (2010) doi:10.1016/j.bmc.2010.07.012.

62. S.P.Upadhyay, A. V. K. and. Facile synthesis of novel fluorescence active 12H-benzo[e]indolo[3,2-b] benzofuran and its derivatives.

Indian J. Chem. 43, 1345–1348 (2004).

63. Fulmer, G. R. et al. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics (2010) doi:10.1021/om100106e.

(98)
(99)
(100)
(101)
(102)
(103)
(104)
(105)

δ

(106)
(107)

Referenties

GERELATEERDE DOCUMENTEN

which may be attributed to the relatively large presence of grain boundaries (discussed in the previous section). The solid line in Fig. Characterization of graphene samples

[r]

[r]

Aan het juiste antwoord op een meerkeuzevraag wordt 1

Each officer studied the file; each officer was present during the conversations with the juvenile delinquent and the parents, while one officer conducted the conversation and

Proposed reaction transition state driven by H-bonding from the allylic alcohol of conduritol-cyclohexene 6a with N-acetoxy-3-amino-2-(tri- fluoromethyl)quinazolin-4(3H)-one (CF

HHS-reël (Hoek – Hoek – Sy) As twee hoeke en ’n nie-ingeslote sy van een driehoek gelyk is aan ooreenstemmende twee hoeke en ’n nie-ingeslote sy van ’n ander driehoek, dan

• It should give better insight in usability of proof assistants in general and Isabelle in particular to formalise mathematical proofs, with a focus on num- ber theory.. For the