• No results found

Stappenmotor-sturing voor SLO-SYN stappenmotoren: technische beschrijving

N/A
N/A
Protected

Academic year: 2021

Share "Stappenmotor-sturing voor SLO-SYN stappenmotoren: technische beschrijving"

Copied!
54
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Stappenmotor-sturing voor SLO-SYN stappenmotoren

Citation for published version (APA):

Snijders, R. A. J. (1991). Stappenmotor-sturing voor SLO-SYN stappenmotoren: technische beschrijving. (DCT

rapporten; Vol. 1991.009). Technische Universiteit Eindhoven.

Document status and date:

Gepubliceerd: 01/01/1991

Document Version:

Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

(2)

Stappenmotor-sturing

voor

SLO-SYN

stappenmotoren

technische beschrijving

(WEW 91.009)

R.A.J. Snijders

(3)

stappenmotor-sturing

Inhoudsopgave

1

Inleiding

1.

Overzicht

van

de totale stappenmotor-sturing

2.1

De

SLO-SYN

stuurmodules

2.2

De stuurschakeling

2.3

Verbinding met de PC

3.

Het motor- en voedingsgedeelte

3.2

De verbinding met de motoren

3.3

Voedingsaspecten

4. Kastindeling en -bekabeling

Bijlagen:

A.

Beschrijving

van

de

SLO-SYN

stuurmodules.

B. Produkt specificatie

van

de

SLO-SYN

stappenmotor

M062.

C. Beschrijving

van

de DELTA S-series voedingen.

2

3

4

4

6

7

8

8

9

11

(4)

stappenmotor-sturing

2

Inleiding

Voor het traverseren van het meetvolume

van

een LDA-systeem wordt gebruik gemaakt

van een traverseerinrichting die aangedreven wordt door stappenmotoren

van het type

SLO-SYN

(

zie bijlage

B

voor de produkt specificatie).

Er zijn drie mogelijkheden om dit meetvolume te verplaatsen:

1.

De laser met optiek en opnemers zijn niet verplaatsbaar, en het model wordt

getraverseerd.

2.

Het model is niet verplaatsbaar, en de laser plus optiek en opnemers worden

getraverseerd.

3.

Indien gebruik gemaakt wordt van een glasfiber verbinding tussen laser en optiek

hoeven alleen optiek en opnemers getraverseerd te worden, het model is in dit

geval ook niet verplaatsbaar.

De traverseerinrichting die gebruikt wordt is in principe geschikt voor

alle

drie genoemde

opstellingen.

De stappenmotoren worden aangestuurd door

de

stappenmotor-sturing

.

Bij

de oude

uitvoering van deze sturing werd een motor pas bekrachtigd wanneer deze moest gaan

bewegen,

dus

wanneer er van de

PC

pulsen binnen kwamen. Door de traagheid van de

sturings-electronica werden de eerste paar pulsen door de motoren niet ontvangen

waardoor de nauwkeurigheid niet optimaal kon zijn. Ook bij het in- en uitschakelen van

de bekrachtiging traden fouten op doordat de motor hierbij iets kon verspringen.

Om deze problemen te verhelpen

is een stappenmotor-sturing ontwikkeld waarbij de

motoren continue bekrachtigd zijn. Dit hield in dat er een zwaardere voeding moest

worden gebruikt, dat de gebruikte stuurmodules

(

SLO-SYN 230-T)

nu gekoeld moesten

worden vanwege de continuë belasting, en dat de stuurelectronica aangepast moest

worden.

Van deze nieuwe stappenmotor-sturing wordt

in dit rapport een gedetailleerde beschrijving

gegeven.

(5)

stappenmotor-sturing

1.

Overzicht

van

de totale stappenmotor-sturing

In

figuur

1

zien we

de

onderdelen waaruit de stappenmotor-sturing is opgebouwd, en de

koppelingen naar buiten.

De

PC

genereert een pulstrein voor een bepaalde stappenmotor, en geeft op

een

daarvoor

bestemde

lijn

de draairichting van deze motor

aan.

Deze signalen worden door de stuurschakeling gebufferd, en geschikt gemaakt voor de

SLQ-SYN

steiurmodules. Verder verzorgt

de

stuurschakeling de koppeling

van

de

schakelaars, waarmee de bekrachtiging per motor

aan-

en uitgeschakeld

kan

worden, met

de stuurmodules.

De stuurmodules dragen zorg voor de juiste aansturing van de windingen van de stappen-

motoren, ze worden daarbij' van vermogen voorzien door

een 28V-1OA geschakelde

voeding.

i I

stappenmotor

-

sturing

aanhi t

I

PC

via

pcm2-

kast

stappen-

motoren

(6)

stappenmotor-sturing

2. Het stuurgedeelte

Een

schema van het stuurgedeelte van de stappenmotor-sturing staat afgebeeld in

figuur

2.

We zien in dit schema dat het stuurgedeelte opgebouwd is uit drie gedeelten, de SLO-

SYN stuurmodules, de stuurschakeling

(

insteekprint) en de verbinding naar de PC via de

Amphenol-connector

.

2.1 De

SLO-SYN stuurmodules

Een SLO-SYN 230-T stuurmodule

heeft

vijf stuuringangen die allen intern optisch

geïsoleerd zijn, tevens worden ze door de optische isolator

naar hoog getrokken wanneer

de ingang open wordt gelaten. De vijf stuuringangen zijn:

1.

2.

3.

4.

5.

Voor

PU

(

puls ingang)

Een opgaande

flank

op deze

ingang

zorgt ervoor dat de motor een stap neemt.

CW

/

CCW

(

richtings ingang)

Hiermee

kan

de

draairichting van de motor worden ingesteld

(

Clockwise of

Counter Clockwise)

.

H

I'

F

(

halve

of

volle stap)

Wanneer

een logische

nul

op deze

ingang

staat is één stap gelijk

aan

de volle hoek

volgens de specificaties van de motor,

bij

een logische één wordt deze hoek

gehalveerd. In de halve stap mode loopt de motor geleidelijker en heeft een hogere

resolutie, maar het koppel wordt met 30% verminderd.

AWO

(

bekrachtiging uit)

Bij

een logische

nul

wordt de bekrachteging van de motor uitgeschakeld.

(

gereduceerde stroom)

Met deze ingang

kan

men de stroom naar de motor reduceren.

Een logische één geeft een stroom van

2

Ampère,

een

logische nul reduceert de

stroom tot

1

Ampère, door een weerstand naar aarde

aan

te sluiten

kan

men

tussenliggende waarden voor de stroom instellen.

optische isolatie van de stuurschakeling dient men zelf een spanning van een externe

voeding

aan

te sluiten op de "OPTO SUPPLY IN" aansluiting. Men

kan

echter ook

gebruik maken van de interne voeding op de "OPTO SUPPLY OUT", en deze door-

verbinden met de "OPTO SUPPLY IN". In dit laatste geval wordt echter geen optische

isolatie verkregen.

Verder is er nog de aansluiting voor aarde

(

LOGIC COMMON), deze is doorverbonden

met de VOM aansluiting

aan de motor-zijde

(

zie par.3.2), en met het huis van de

stuurmodule.

(7)

stappenmotor-sturing

5

230-T R:

:

I

I SLO-SYN 230-T

I

E

I

I

(8)

stappenmotor-sturing

6

2.2

De stuurschakeling

De stuurschakeling maakt de signalen die afkomstig zijn

van

de

PC

geschikt voor de

aansturing van de

SLO-SYN

stuurmodules, bovendien verzorgt de stuurschakeling een

buffering van deze signden.

De in de stuurschakeling gebruikte digitale poorten hebben allen een 'open collector '-uit-

gang,

dit is mogelijk omdat de stuurmodules intern

naar

hoog getrokken worden

bij

een

open ingang.

Verder zien

we

in het schema drie jumpers

(

Jl t/rn

33)

waarmee

de draairichting van

elke motor afzonderlijk

kan

worden gedef~eerd, in figuur

3

kan

men zien waar de

jumpers zich bevinden op de stuurprint.

De schakelaars

op

het frontpaneel worden door de stuurschakeling doorverbonden met de

ingangen 'All Windings

Off

van de stuurmodules, met deze schakelaars kan de bekrachti-

ging van elke motor afzonderlijk worden afgeschakeld.

(9)

stappenmotor-sturing

2.3 Verbinding met de

PC

De koppeling

van de stappenmotorsturing met de PC geschiedt via de AMPHENOL-14p

connector. We zien dat

5

pennen hiervan aangesloten zijn, de X

Y

en

Z

waarover de

pulsen worden gestuurd, de DIR waarmee de draairichting van de motor wordt aangege-

ven, en de aarde.

De AMPHENOL-14p connector dient aangesloten te worden op de

SuB-D-9p

connector

van de PCM2-kast

(

digitale uitgang), de kabel die hievoor nodig

is staat afgebeeld in

figuur

4.

AMPHENOL

1 4

P

SUB

D

9 P

1 8 5

O

9 \

O

0

I

s

O

O

-

O

0

I

O

0 -

7 14

(10)

stappenmotor-sturing

8

3. Het motor- en voedingsgedeelte

Een schema van het motor- en voedingsgedeelte van de stappenmotor-sturing staat

afgebeeld in figuur

6.

In

dit schema zien we weer de SLO-SYN stuurmodules, de

aansluitingen

aan

deze zijde splitsen zich op in twee gedeelten, de verbinding naar de

motoren via de Toechel-C70 connectors, en de voedingschakeling.

3.1 De verbinding met de motoren

De SLO-SYN stuurmodule heeft vier aansluitingen voor een stappenmotor, nl. twee

aansluitingen voor OA

en

twee voor

0B.

Een motor met

8

aansluitingen kan op twee manieren aangesloten worden, seriëel of

parallel, een motor met 6 aansluitingen

kan

aileen seriëel aangesloten worden.

Een schema van deze verschillenden aansluitingen staat afgebeeld

in

de handleiding van

de stuurmodule, bijlage A10

(

fig.2.3).

De koppel/snelheid curve is voor een

type

motor in de twee gevallen van aansluiten

verschillend. Deze curven, voor verschillende typen motoren aangesloten

op

de stuurmo-

dule SLO-SYN 230-T

staan

afgebeeld in bijlage

A14

t/m A15. We zien dat bij een seriële

aansluiting van een motor het maximaal haalbare koppel hoger is dan wanneer deze motor

parallel aangesloten zou zijn. Echter bij een parallelle aansluiting neemt het koppel

minder snel af wanneer de snelheid van de motor hoger wordt, dan bij een seriële

aansluiting.

In bijlage A10 staat in tabel

3.1

een

lijst van motoren welke bij de SLO-SYN 230-T

stuurmodules, en dus bij deze stappenmotor-sturing, gebruikt kunnen worden, deze

kunnen zowel

seriëel

als parallel aangesloten worden.

Bij de traverseerinrichting, die door deze stappenmotor-sturing wordt aangestuurd, wordt

gebruik gemaakt van de M062-LE09 voor de horizontale bewegingen

(

X

en Z), en de

M091-FD8109 voor de verticale beweging

(

Y). De motoren zijn allen seriëel aangeslo-

ten. De gebruikte kabel

naar

de motorconnector,

en

de aansluitingen hiervan aan de motor

(11)

stappenmotor-sturing TOECHEL-C70 AMPHENOL 14 P

O

0

1 8

O

0

o

b

AMPHENOL 1 4 P

n

7 14

SLO-SYN

stappenmotor

8

aansluitingen

Jig. 5 Aansluitingen aan de stappenmotoren.

3.2

Voedingsaspecten

De

SLO-SYN

230-T stuurmodules moeten gevoed worden met een

28

VDC spanning, de

stroom die per stuurmodule geleverd moet kunnen worden is 2.5 Ampère.

De gebruikte voeding, een DELTA S28-10

(

zie bijlage C), is in staat

10

Ampère

continue te leveren bij 28 VDC, en is dus ruim geschikt om de drie stuurmodules van

vermogen te voorzien.

De behuizing van de voeding is geschikt om in een 19"-rack te worden opgenomen.

De filtercapaciteit over de voedingsaansluitingen van een stuurmodule ( Vm-Vom) moet

minimaal

4700

pF

zijn ( C4 t/m

C6 in

figuur

5),

wanneer deze echter meer dan

15

cm

van de aansluitingen verwijderd is moet een extra condensator van 250 pF direct over de

pennen Vm-Vom aangesloten worden

(

C1 t/m C3 in figuur 4).

Ter voorkoming van interferentie tussen de stuurmodules via de voedingslijnen is in de

plusleiding van elke stuurmodule een diode opgenomen

(

D1 t/m D3 in figuur

4),

tevens

zijn de voedingslijnen van elke stuurmodule apart aangesloten op de voeding.

(12)

stappenmotor-sturing

10

X-MOTOR Y-MOTOR

+

-

ref Vp

Ip

S-

-

+ s+

-

+

195-265 V 50-60 HZ

DELTA

S28-10

*

CHASSIS

GND

OUTPUT

C

1

=C2=C3=22ckF 40V

C4=C5=C6=47W

40V

D1=D2=D3=BYX98-12OOR

(13)

stappenmotor-sturing

11

4.

Kastindeling en -bekabeling

Bij

de indeling van de kast is rekening gehouden met het feit dat kabels naar de motoren

en voedingskabels niet parallel mogen lopen met digitale stuurlijnen, i.v.m. storingen die

hierdoor zouden kunnen optreden.

De indeling van de kast staat weergegeven in figuur

7.

Hierin is te zien dat de stuurmodu-

les

(

2

t/m

4)

zijn gemonteerd op koelvinnen, deze

staan

vertikad opgesteld zodat de

lucht er in verticale richting langs kan stromen. Voor de

aan-

en afvoer van de lucht-

stroom is de kast onder en boven met geperforeerde plaat afgesloten.

r'

I

I l l 3 2 4

1

9

1

2

I

I

1 = DELTA S28-10 6 = bekr. schakelaars en PC-aansluiting

2 = SLO-SYN 230-T X-dir 7 = netschakelaar en 22OV-aansluiting

3 = SLO-SYN 230-T Y-dir 8 = 5 Volt voeding voor stuurschakeling

4

=

SLO-SYN 230-T Z-dir 9

=

dioden condensatoren en motor-aansluiting

5 = stuurschakeling

j i g .

7 Indeling

van

de kast.

In

figuur

8

staat de bekabeling van de stuurlijnen

aan

de printconnector

(

2

x

32p

EURO)

(14)

stappenmotor-sturing

12

moedercontac t

bekrach tigings-

schakel aars

bekrachtigings-

schakelaar

X-mCtCX

bekrach tigings-

schakelaar

Y - m t w

bekracht igings-

schakelaar

Z-motor

t-

t-

t-

C

A

3

X

SLO-SYN

230-T

8

7

6

4

5 X

3

2

I

7

6

4

5 Y

3

2

1

7 14

031

01

40

01

O32*+5V

printcomec tor

stuwschakeling

2

x

32p ELRO

1 8

A i N O ì 14p

(15)

Bijlage

A l

Stappenmotor-sturing

INSTRUCTION

MANUAL

for

SLO-SYN”

MICRO SERIES

MOTION

CONTROLS

TRANSLATOR

MODULES

TYPES

230-T,

430-T9

230-TH

í ~ d

430dTH

\$

Superior

Electric

(16)

Stappenmotor-sturing

Bijlage

A2

EXPRESS

START-UP PROCEDURE

for

SLO-SYN@

MICRO SERIES

IvIuviops ~UNTRULS

MODULAR ?WAMSLA?OR

DROVES

TYPES 230-T, 230-TH, 430-1,430-TH

STEPS NECESSARY

TO

BECOME OPERATIONAL

This Supplementary Instruction outlines the minimum steps necessafy for the Translator Drive to become operational. FAILURE TO PERFORM THESE STEPS MAY RESULT IN DAMAGE TO THE DRIVE.

CAUTION: Never connect or disconnect anythlng from the module with power

on.

1.

2. 3. 4. 5. 6. 7. 8. 9.

Connect the plus of a 28 Vdc power supply to Vm and the minus to Vom. The supply must be capable of supplying 2.5 am- peres for a 230-T or 230-TH and 4.0 amperes for a 430-T or 430-TH.

Figure 1 shows a recommended power supply for applications using one Translator Drive. Recommended power supply configurations for applications where multiple drives are to be operated from a single supply are shown in Figure 2. The power supply output filter capacitor must be 4700 pf minimum. If this capacitor is more than 6 inches (152mm)from the drive module, an additional 250 pf, 50 volt capacitor must

be

installed between Vm and Vom at the drive module. The power supply voltage peak ripple values must not go higher than 32 volts or lower than 26 volts.

Make sure the motor to be used is compatible with the drive. Refer to the manual for a list of compatible motors. Use the motor connection diagrams shown in the manual for 4-, 6- or 8-lead motors. When using a Mead motor, be sure to insulate and isolate the unused wires. Be sure to insulate all motor leads to prevent inadvertent shorts to ground or to each other.

If it is desired to operate in the reduced-current mode, install a resistor of the appropriate value between the REDUCE CURRENT pin and the LOGIC COMMON pin. Refer to the speed/torque data and the resistor versus current table ln- cluded in the drive manual. If you desire to run the REDUCE CURRENT remotely, refer to the circuit example shown in Figure 2.

To connect to the logic controls, refer to Section 4 of the manual, Functional Description, for connections. Caution: the module case is tied to the Vom and LOGIC COMMON pins internally. Do not tie your power supply to ground at another location.

Caution: operation at speeds less than 350 full steps per second may be erratic due to motor resonance. Avoid this speed range if a problem exists.

(17)

Stappenmotor-sturing

Bijlage

A3

I

I

RECOMMENDED 28Volt dc MOTOR POWER SUPPLY

2 3 0 / 4 3 0 T DRIVES

I

RECOMMENDED POWER SUPPLY CONFIGURATIONS

FOR 2301430T MULTIPLE DRIVES ON ONE SUPPLY

I

VAR0 VU298

I I

---

RECOMMENDED POWER SUPPLY CONFIGURATIONS

SINGLE DRIVE APPLICATIONS FIGURE 1

---

*

All IilbrcOP~Citsparswe 4700pF. 50Vdcimin.l

RECOMMENDED POWER SUPPLY CONFIGURATIONS MULTIPLE DRIVES WITH ONE SUPPLY

FIGURE 2

LûBIC COM o ,

TTC LûGIC

NOTES:--

i

.-

A gHIQH* Irvsl TTL 11gnal a, the Inpul acllvatss REDUCE CUWENT.

2.-Ke.p tho FETond currmllrvelrrsislor wllhln four Inches at lhe Modulr.

3.-Rofar lothomnual forcurrrnilevel rsslttorvoluss.

TYPICAL REDUCED CURRENT INTERFACE FIGURE 3

(18)

Stappenmotor-sturing

Bijlage

A4

SLO-SYN@ Micro Series

Motion Controls

INSTALLATION

GUIDELINES

FOR

REDUCED NOISE DMPEWFEREMCE

1

General Comments

SLO-SYN Micro Series drives use modern solid-state electronics such as microprocessors to provide the features needed for advanced motion control applications. In some cases, these applications produce electromagnetic interference (EMI, or

electrical “noise”) that may cause inappropriate operation of the microprocessor logic used in the Micro Series product, or in any other computer-type equipment in the user’s system.

This guide is aimed toward helping users avoid such problems at the start by applying “good engineering practices” when designing their systems. Following these guidelines will usually prevent EM1 noise from interfering with drive operation.

II

Noise

Sources

What causes electrical noise? In general. any equipment that causes arcs or sparks or that switches voltage or current at high frequencies can cause interference. In addition, ac utility lines are often “polluted with electrical noise from sources outside a user’s control (such as equipment in the factory next door).

The following are some of the more common causes of electrical interference: power from the utility ac line

relays, contactors and solenoids light dimmers

arc welders

motors and motor starters induction heaters

radio controls or transmitters switch-mode power supplies computer-based equipment high frequency lighting equipment dc servo and stepper motors and drives

111

Mounting Location

When selecting a mounting location, it is preferable to keep the drive away from obvious noise sources, such as those listed above. If possible, locate the drive in its own metal enclosure to shield it and its wiring from noise sources. If this cannot be done, keep the drive at least three feet from any noise sources.

(19)

Stappenmotor-sturing

Bijlage

A5

iV

Do the following when installing or wiring your drive or indexer: Wiring Practices

-

“Dos and Don’ts”

e Do keep the drive and its wiring as far away from noise sources as possible.

Do provide a good, solid ground connection to the ac system earth ground conductor. Bond the drive case Bo use a single-point grounding scheme for ail related components of a system (this looks iike a “Rub and Do keep the ground connection short and direct.

Do use a line filter on the ac input (Corcom type 1061,

IOSI

or I O K I or equivalent) for noisy ac lines. Particuarly

to the system enclcsure.

spokes” arrangement).

bad ac lines may need to be conditioned with a ferroresonant type isolation transformer to provide “clean” power to the drive or indexer.

Do keep signal and drive wiring well separated. If the wires must cross, they should do so at right angles to mini- mize coupling. Power wiring includes ac wiring, motor wiring, etc. and signal wiring includes inputs and outputs (i/ O), serial communications (6232 lines), etc.

Do use separate conduits or ducts for signal and li0 wiring. Keep all power wiring out of these signal line conduits,

Do

use shielded, twisted-pair cables for indexer 110 lines

Do ground shields only at one end, the indexer/drive end.

Do use twisted-pair, shielded cable for the motor wiring.

*

Do use solid-state relays instead of electromechanical contact types wherever possible to minimize noise

Do suppress all relays to prevent noise generation. Typical suppressors are capacitors or MOVs. See manufaclur- Do use shielded, twisted-pair cable for connections to RS232 serial port.

generation.

ers literature for complete inlormation.

Do nol do the following when installing your drive or indexer:

Do not install sensitive computer-based equipment (such as an indexer/drive) near a source of electromagnetic noise.

Do not bundle power and signal lines together.

Do not bundle motor cables and signal lines together.

Do not fail to use shielded, twisted-pair cables for signals.

Do not fail to properly connect the system grounds.

Do not use “daisy-chained’’ grounds.

Do not fail to ground signal cable shields at only one end.

Do not assume that power from the ac line is adequately “clean”.

(20)

Bijlage A6

Stappenmotor-sturing

NflNG INDEXER, BE SURE TO OLIO, CLEAN

CONNECTION

INDEXEf? CASE AND IENCLOSth?E

2- SHIELbE6

CABLE

(FOR BEST ROUND SHkLD C M Y BY TWISTED-PAIR

I I

25-PIN "O" TO TERMINAL STRIP

#-I-

CONVERTER

*

u

r

SHIELD GROUND RE SURE TO

&EP

SIGNAL CABLES WELL AWAY FROM

r

LIMIT

.

-

SWITCH

DO NOT GROUND SHIELD AT SWITCH END.

MOTOR WIRING AND AC POWER WIRING

f

SUCH AS MAGNUM CONNECTOR TYPE 15(FEMALk) COOPER INDUSTRIES, BUSSMAN CORP. Xt15125-NL

(21)

Stappenmotor-sturing

Bijlage

A7

V Troubleshooting Guide

Electrical interference problems are common with today’s computer

-

based controls, and such problems are often difficult to diagnose and cure. If such a problem occurs with your system, it is recommended that the following checks be made to locate the cause of the problem.

i. Check the quality of the ac line voltage using an oscilloscope and a line monitor, such as Superior Electric’s VMS

2. Be certain all of the previous Dos and Don’ts are foiiowed for location, grounding, wiring and relay suppression 3. Double check the grounding connections to be sure they are good electrical connections and are as short and direct as

possible.

4. Try operating the drive with all suspected noise sources switched off. If the drive functions properly, switch the noise sources on again, one at a time, and try to isolate which ones are causing the interference problems. When a noise source is located, try rerouting wiring, suppressing relays or other measures to eliminate the problem.

(22)

Bijlage

A8

. _

WARNINGS:

0 Voltage is present

on

unprotected plns when unlt is

0 No short circult protection for motor outputs is provided

In

0 Belme making changes to the motor

or

control wirlng,

CAUTIONS:

e Assure motor compatibility before using the unit.

Observe all cooling and temperature limitations. Module case temperature must be maintained between O and 75 de- grees C. (32 and 167 degrees F).

0 Do not operate the unit without the proper filter capacilator as specified in section 3.5.1.3.

0 All Windings Off should be used with caution, as all holding torque is lost.

0 00 not connect or disconnect motor or signal cables while Dower is amlied.

operatlonai. îhls unil.

turn off ail power to the unit.

6 Do not apply power until all connections have been made correctly.

6 Do not exceed specified input voltages.

LIMITS OF USE:

6 Reconfiguration of the circuit in any fashion not shown in

NOTE

O. c t ~ ~ k w i ~ e amd eeunierciockwise direcîions are properly oriented when viewing the motor trom the label end.

2. The motor connector consists of 7 pins, and is Symmetrl- cal around the center pin. It connections are Inadver- tently rotated 180 degrees, motor direction (CW, CCW)

wlii be reversed. Motor direction can

also

be reversed by

swapping the two motor connections of the same phase

(for example, by swapping

Ml

and M3).

this manual will void the warranty.

SECTION

1:

INTRODUCTION

The 230 and 430 drive modules are differentiated as fol-

1.1 FEATURES

OVERVIEW

lows:

CURRENT VA

PERPHASE PERPHASE

230-T or TH . .

. . .

. .

. . . .

. 2 Amps peak 56 VA nominal

430-T or TH .

.

.

.

.

. .

. . . , .3.5 Amps peak 96 VA nominal

“T” designates the translator module.

“TH” designates the translator module equipped with the heat sink.

The 230-T(H) and 430-T(H) are high efficiency bipolar chopper translator modules, designed in small, easily mounted packages. They can be used with a wide range of Superior Electric SLO-SYN 2-phase stepping motors, 4 , 6 or 8 lead types.

The 230-T(H) and 430-T(H) use resistive current sensing and provide for full and half-step operation. Inputs are opti- cally isolated. with choice of using internal ot external opt0 power supplies. All units feature reduced current and all wind- ings off capabilities.

1.2 INSPECTION PARTS LIST

Translalor Module 230-T(H) or 430-T(H)

7-Pin Connector 8215744-007

8-Pin Terminal Strip B215744-008

1.3 USING

THIS MANUAL

This manual is an installation and operating guide to the 230-T(H) and 430-T(H) motor drive modules. All the informa- tion provided is necessary for using these modules success- fully.

We strongly recommend thaf this manual be read thor-

oughly and completely before attempting to install and

operate the equipment. 1.3.1 Organization

This manual is organized for the convenience of the opera- tor. Section 2, “Mounting and Pin Assignments,” provides the diagrams and reminders most necessary for the experienced user and installer.

Complete specifications (Section 3) will provide easily ref- erenced information concerning all aspects of installation, power and interface requirements, as well as periormance specifications.

The “Functional Description” (Section

4)

provides opera- tional information useful in design, diagnostic, and trouble- shooting situations.

Section 5, “Pin Configuration and Operations” provides detailed information for use of the equipment.

1.3.2 Logic

and

Voltage Conventions

Throughout this manual, the following conventions are foi-

The designation “Vo“ signifies the logic signal common terminal. “Vom” signifies the motor supply voltage com- mon terminal. Both Vo and Vom are internally connected to the module’s aluminum case.

All logic functions are low Irueiogic. A logic low

or

logic O will activate a function and a logic high, or a logic i will deactivate a function. Thus,

iN

THIS MANUAL THE TERMS ACTIVE OR ACTIVÀTE WILL

IhlPLY

A

LOGIC

LOW

CONDiTiON &ND THE TERhS IkACTiVE

OR DEACTIVATE

WILL

IMPLY

A

LOOIC hIGH CONOMON.

In cases where the function changes with a change in logic state, the low trtie (active) will be indicated with a bar.

Foor

lowed:

(23)

Stappenmotor-sturing

Bijlage

A9

example, in the case of CW/*, CW is active with no connection.

All logic control pins are optically isolated internally. When a pin is left open, it is clamped in a logic high (inac- tivated) state by the optical isolator.

The motor drive changes state and advances the motor one step (or one-half step in the half-step mode) on a pos- itive going (low to high) pulse edge.

Clockwise (CW) and counterclockwise (GCW) are ori- ented correctly when viewing the motor from the name- plate (Label) end.

SECTION 2: MOUNTING AND PIN ASSIGNMENTS

The figures included here will be referenced in later sec- tions.

2.1

MOUNTING

The 230T and 430-T modules are epoxy encapsulated within an aluminum frame. The back surface of this frame has flanges and mounting holes. See Figure 2.1 below for the mounting hole diameters and locations.

It is recommended that 6-32 or 8-32 screws be used for mounting.

The major mounting consideration is that the case tem- perature be maintained below 167degreesF (75 degrees C).

For

operation a l or near full load, or at a higher temperature than 75 degrees

F

(25 degrees C) mounting io a heat sink is required.

A correctly configured heat sink is supplied by Superior Electric: Part #C215737-001-DB.

Also, the motor drive module can be ordered with the heat sink attached by specifying model #230-TH or 430-TH.

If no heat sinkor an alternate heat sink is used, silicone heat sink compound (such as Dow-Corning number 340) must be used on the mounting surface.

NOTE A very lhln coaling Is sulclen!; too much is worse than none at all.

When a heat sink is used, the heat sink fins should be mounted in a veriicai position, unless forced-air cooling is used.

Figure 2.1 shows the mounting hole locations and diame- ters for the Superior Electric supplied heat sink.

2.2

MOTOR CONNECTIONS

All motor connections are made via the 7 pins or a 7 pin connector (Superior Electric part number 6215744-007) on the motor drives. Figure 2.2 shows the location and function of the motor drive pins. Sections 3 (3.5.2.2) and 5 (5.9-5.12) give details of how to make the motor connections.

ELECTRICAL CONNECTIONS Figure 2.2 Oulpul Pin Asslgnmenls

,

MOOULE

Flgure 2.1: Mounling Diagram

(24)

Stappenmotor-sturing

Bijlage

A10

DRIVE END

UNTERMINATED LEADS

MOTOR 10 FEET 25 FEET 50 FEET

END LONG LONG LONG

PLUG' 8216067-001 8216067-002 8216067-003

8216022-001 CABLE ONLY

'VVITHOUT CûNNECTûRS

PLEASE NOTE The motor drive plns are arranged syme- trically about the center Vm pin. If the motor connector is inadvertently rotated 180 degrees when connecting the

motor, then the CW and CCW directions will be reversed. The 230 and 430 Series Translator Modules can be used with 6-lead and 8-lead SLO-SYN" motors. Figure 2.3 shows the correct connections for each possible motor confiouration.

I

8216022-002 RZl6022-aO3

6-LEAO MOTORS. SERIES CONNECTION NûlE: N.C. = No Connecllon

8-LEAO MOTORS, SERIES CONNECTION

i{=;;;c?g&i;q)

OREEN WITEIRED

)-LEAD MOTORS. PARALLEL CONNECTION

MOTOR CONNECTIONS FIGURE 2.3 2.3 CONTROL INTERFACE

rior Electric part number 8215744-008.

All connections are made via 8 pins or lerminal strip, Supe-

SECTION

3:

SPECIFICATIONS

3.1 PRODUCT DESCRIPTION

Bipolar, 2-phase stepping motor drive with translator.

Power semiconductor type: H-bridge power IC Translator: internal IC

Control signals optically isolated from the motor drive mod-

ule (except for Reduce Current)

3.2 PERFORMANCE

Resolution Half-step or full-step Step Rale

Chopping Freq. 20 kHz nominal Speedltorque:

MQTOfl

FAMILIES

O to 10.000 full-stepskec.

O to 10,000 half-stepskec. All speciiicatlons use typical data. MOTORS FOR USE

WITH

23Q-?(M)

WITH CONI(ECT0RS M061-CS08 M063-CS06 M061-CE08 M063-CSO9 M062-CS09 M063-CE09 M062-CE09 WITH LEADS

hn061-LSOS b063-LE09 h.nO92-FDO9

M061-LE08 MO91-FCO9 MO92-FD3iO

M062-LSO9 M091-FD09 M092-FD8009

MOW-LE09 M091-FD8009 MO92-FOE109

M063-LSO6 M091-FD8109 M092-FD8814

M063-LSO9 M092-FC09

MOTORS

FOR USE WIT)) 430-T(H) WITH CûNNEC?ORS

M06i-CSOB M063-CS06

MO61 -CE08 M063-CE06

M062-CS09 Mfl63-CS09

M062-CE09 M063-CE09

WITH LEADS

M061-LSO8 MO91 $DO6 MO93-FD801 I

M061-LE08 MO91 -FORI 06 M093-FD8014 M062-LSO9 MO92-FCO9 Mi

1

1

-FDi 2 M062-LE09 M092-FD09 M i

1 I

-FD16 M063-LSO6 M092-FD310 M I

1

I-FD8012 M063-LE06 M092-FD8009 M063-LSO9 M092-FD8109 M I 12-FD8012 M063-LE09 MO93-FCl4 M112-FJ8012 M091-FC06 M093-FD i

4

M112-FJ8030 Mi 12-FD327

Table 3.1: Motor Families

(25)

Stappenmotor-sturing

Bijlage A l

1

Power Supply Necessary (See Section 3.5.1.1) Drive power dissipation (worst case)

230-T(H): 25 watts 430-T(H): 40 watts

5.3

MOTOR COl!’AT!R!L!TY

Frame Sizes MO61 to MO92 MO61 to M112

No. of Leads 4,6,8

Min. inductance: 0.55mH

Max. resistance: 3.5 ohms including drive-to-motor cable Caution: DO NOT USE LARGER FRAME SIZE MOTOR THAN

THOSE LISTED, OR THE DRIVE MAY BE DAMAGED. 23Q-T:W) 430-T(W)

3.4 MECHANICAL SPECIFICATIONS

Type: Potted module; Potted module; Aluminum case Aluminum case

230-T 430-T

“H” Unit supplied with AI. heat sink (see Figure 2.1) Size (inches): 3.15(80mm)L 4.05( 103mm)L

2.70(68.6mm)W 2.70(68.6mm)W 1.31”(33.3mm)H 1.31”(33.3mm)H (add approx. 0.500” (12.7mm) to height for pins) Weight (Ibs.) l(0.45 kg) 1.5 (0.7 kg)

add 0.5 Ib (0.23kg) for “H” unit

3.5 ELECTRICAL SPECIFICATIONS

3.5.1 Input Power Supply

3.5.1.1

Power

and Voltages

230-T(H) 430-T(H)

Supply Voltage:

28 VDC, nominal; 24 min to 36 max

including ripple including ripple 2.5 Amperes 4.0 Amperes

28 VDC, nominal; 24 min to 36 max Supply Current:

NOTE: Operation from a 28-30 VDC supply gives the best overall performance, considering tradeoffs

of

motor and drive heating, power supply current and torque vs. speed.

3.5.1.2 Connections

Method: Pins or terminal block (Part #6215744-007). Assignment: Vm =

+

Vom = Common

Vom and Vo are internally connected to the module’s aluminum case.

Cable Size: 14 gauge max., when using terminal block. Superior Electric cables are recommended; see Section 2.2 for part numbers.

WARNING: DO NOT OPERATE THIS UNIT WITHOUT EXTER- NAL FILTER CAPACITORIIIII

3.5.1.3 Filter Capacitor Requirement:

Minimum of 250 mld. 50 VOC needed across Vm

-

Vom at drive terminals, or within 6 inches (150mm) of them.

Total filter capacitance on the motor power supply must be greater than or equal to 4700 microfarads; a 5O-volt (or higher) working voltage. and 3.3 amps ripple current rating are re- quired. If the power supply does not contain sufficient filtering, then additional filtering must be added between the Vm and Vom terminals. For example, Sprague 53D4726063JP6 capaci- tor is a suitable 4700 microfarad, 63 volt capacitor.

3.5.2 OUTPUT TO MOTOR

3.5.2.1 Voltages and Current Output Voltage:

2 3 0 4 H) 430-T( H)

24-36 Volts nominal, depending on 36 Volts max.

to motor power supply voltage.

,

36 Volts max. Motor Current 2 Amperes peak 3.5 Amperes peak

per phase:

1

Ampere peak in 1.5 Amperes peak in

reduced reduced

current mode current mode Motor VA 56 VA nominal 98 VA nominal

per phase: (at 28 VDC, ZA) (at 28 VDC, 3.5A)

3.5.2.2 Connections

Terminals: At drive: Phase A and Phase 6 pairs MaxlMin cable length: Total maximum resistance of motor

and cable: 3.5 ohms

Cable size, type: 14 gauge maximum when using ter- minal block pari #B215744-007. Special Requirements: Twist motor phase pairs: 6 twists/ft.

to minimize radiated EMI/RFI and help provide maximum motor perfor- mance.

3.6 CONTROL INTERFACE REQUIREMENTS 008.

Min pulse width low: Min pulse width high: Rise and fall time:

All connectionsvia 8 pins or terminal block part #B215744- 15 microseconds

50 microseconds less than 2 microseconds

(26)

Stappenmotor-sturing

Bijlage A12

3.7 Opto-Isolation

Power required for opto-isolators: 4.5-7 VOC. 14 mA minimum. 20 mA maximum per input.

To use internal opto-isolator power supply: connect OPTO OUT and OPTO IN pins together,

Logic “sinking” i5 required to actbate ~pii~aliy-i~~iaied sig- nals (see sections 5.7 and 5.8)

3.8 ENVIRONMENTAL REQUIREMENTS

Storage Temp: - 40°F to

+

185°F ( - 40°C to

+

85°C)

Operating Temp:

+

32°F to

+

167°F (0°C to

+

75°C) case

Humidity: 95% max., noncondensing Altitude: 10,000 feet (3048 meters) max.

Heat sinking: Maintain case temperature below 167 degrees F (75 degrees C)

No heat sink needed for Reduced Current operation ai 77 degrees F (25 degrees C) ambient temperatures

(1

A for

230-T; 1.5 A for 430-T).

Use heat sink part #C21573?-001-08 for operation at higher currents or higher ambient temperatures

SECTION 4:

FUNCTIONAL DESCRIPTION

4.1 OVERVIEW

In general, the 230-T(H) and 430-T(H) electronically con- veri input pulses into drive signals of the proper sequence and power required to operate a stepping motor: one input pulse being “translated” into one motor step.

To drive the motor, d technique called “chopping” is used.

Compared to older drive techniques, chopping gives Improved motor periormance while allowing the drive circuitry to dissi- pate less power. The voltage applied to the motor windings is turned on and off very rapidly. or chopped. The voltage level and chopping frequency are precisely controlled so that the desired current is produced.

The instantaneous current in the drive circuit is sensed and is used to control the current to the motor.

The translator circuitry accepts a single pulse at a time as an input and determines which windings (phases) of the motor must be turned on and off in order to advance the motor shaft one step. The translator circuit is fully self-contained and is

not accessible through any of the function pins.

4.2. SIGNAL DESCRIPTION

The 230-T(H) and 430-T(H) are configured for operation by the means of the pin assignments. How these tunctions are treated by the motor drive module is explained in Section 6.

Input pulses, one for each desired motoriep. are received by the translator circuit on the PULSE

lh

(PU) pin.

Two input control signals alter the sequenceof motor wind- ings which will be energized. The CW/CCW pin controls

which direction the motor will move and the HALFIWL (H/F)

pin determines whether a hall or full step is taken.

Even when the motor is stationary. current is flowing through one or two of the windings. The magnetic field pro- duced by this current holds the shalt firmly with a force s p 3 lied as the “hold&torque.” The input control signal, ALL WINDINGS OFF (AWO!. turns off all current to?he motor, !bus allowing the shaft to be turned manually.

SECTION 5:

PIN

COkFIGURhTTION

AkD

DPERA-

NOTE The lollowing discussion assumes the Internal opto power supply is being used when describing signal tunc- tlons.

TIOkS

(Ret. Figure 2.2, Seclion 2.2)

5.1

(m)

A low to high (positive going edge) transition on this pin causes the motor to take one step. Maximum frequency is

15kHZ.

5.2 C W I r W (DIRECTION)

A logical high or an open connection causes the motor shaft to step in the clockwise direction as viewed from the label end of the motor. A logical low, or connection to LOGIC COMMON results in counterclockwise rotation.

5.3

HIP

(HALF/FUn)

A logical low or connection to LOGIC COMMON. causes the motor to step the full step angle indicated in its specifications.

A logical high (open) causes the motor to take a “hall step” equal to half of its specified step angle. When operated in half- step mode the motor provides smoother motion with finer res- olutlon but a approximately 30% less torque.

NOTE II the H# input is switched low wlth the Vm po#er on,

It Is posslble to get a lull step, one wfndlng on (“wave mode”) candltion that results In reduced motor torque. To

avold this, power lo the unll must be turned ofl (remove Vm) urhenever lhis Input Is switched low.

5.4

m

)-(

A logical low or connection to LOGIC COMMON turns off all power to the motor windings.

WARNING

Holding torque Is eliminated when this signal is active. Insure that the motor load, *hen released by this command,

wilt not Injure property or personnel.

5.5

REDUCED CURRENT There are two ways to use this pin:

1.

Connect i! directly to LOGIC COMMON (Pin#3). This reduces motor current to 1.OA for the 230 T(H) and to

1.5A for the 430 T(H).

2. Connect if through a resistor (see Table below) to LOGIC COLtdON (Pin #3) for other values of reduced current.

(27)

Sîappenmotor-sturing

Bijlage

A13

NOTE: Connections to this pin must be kept short (2 inches or less) to avoid malfunction. Also, this signal is not optically isolated.

For the 230-T(H), typical values for resistors and the asso- ciated current are:

CURRENT (Amps) RESISTOR (ohms)

1 .o0 O (jumper) 1.25

1.50 1.75

2.00 open

2.49 k ohm, li4 watt,

1%

7.50 k ohm, li4 watt, 1 %

23.7 kohm, $14 watt, 1 %

For the 430-T(H). typical resistor values and the associated currents are:

CURRENT (Amps) RESISTORS (ohms)

1 5 O (jumper) 2 0 2.5 3.0 3 5 open 1.78 k ohm, 1/4 watt,

1%

5.62 k ohm, li4 watt, 1%

16.2 kohm, li4 watt, 1%

5.6 LOGIC COMMON

nally to Vom and to the module's aluminum case.

5.7 OPTO SUPPLY

OUT

Supplies proper voltage for opt0 inpuls from an internal source. By connecting OPTO SUPPLY OUT to OPTO SUPPLY

IN, the user can use 230-T(H), 430-T(H) internal power sup- ply. This aiiows logic functions to be activated by "sinking" (pulling them low; i.e.. connecting Ihem to LOGIC COMMON via an external switch or logic gate.)

In this case, the user's circuilry is not isolated from the translator.

5.8 OPTO SUPPLY IN

Reference point for inputs and outputs; connected inter-

Connection for opto-isolator power supply.

May be connected as described in 5.7, or user may provide a separate source for opto-isolators and "sink" to activate, as shown in Figure 5.1. This method may prowide the best noise

immunity since the user's circuitry is optically isolated from the translator. CONTROL SIGNAL CO(JTR0L LOGIC COMMON lLVDC, 80mA MWO rn I)EOUOI LOCICCOt1 CUñRENl V U

3"""

.OU1 rn o ~ i o a u p p ~ v \IN O vou V O H HI? CONTROL SIGNAL CONTROL LOGIC COMMON 4.0 TO TVDC, BOmA

3"""

Ern c W m V U LOCICCOM b /out oP1o~uPPLv

3"ZR

\IN e Y O U

TWO SUGGESTED METHODS USING EXTERNAL POWER SUPPLY

CONTROL SIGNAL CONTROL LûGIC COMMON

3"""

3"""

rmmi cunmm V U LOOIC CO94 OPlOx&%V

3

JUMPER tN UOY HI? I)EOUOI

3"ZOR

A i l CURRUn LOGIC COtl. /OU1 OP10 SUPPLY ' I N V U

3"""

YO" C - S V rn 20mA SINK% SIGNAL b CONTROL CONTROL LOGIC COMMON TWO SUGGESTED METHODS USING INTERNAL POWER SUPPLY

FIGURE 5.1 OPTO CONNECTIONS

(28)

Sîappenmotor-sturing

Bijlage

A14

5.9 Vm 5.11 MOTOR Phase

A (OA)

Motor power supply input. Connect the pair of wires for one motor phase here. For example, MI, M3 on Superior Electric Motors.

5.10 Vom

to the module's aluminum case. Common for motor supply: connected internally to Vo and

5.12 MOTOR Phase B ($6)

Connect the pair of wires for the other motor phase here. For example, M4, M5 on Superior Electric Motors.

TYPICAL SPEED

VS.

TO1

230

SERIES MO

CPEED (1.8. STEPS PER S E W 1

SERIES CONNECTION M061-CS08 AN0 M061-LSO8 MOTORS

TYPICAL PERFORMANCE CHARACTERISTICS m

SPEED (1.8'STEPS PER SECONDI

SERIES CONNECTION M062-CS09 AND MO62-LSO9 MOTORS

TYPICAL PERFORMANCE CHARACTERISTICS

30

2.

m

n

d spEm (i.e. STEPS PER SECONDI

SERIES CONNECTION M063-CS09 AND M063-LSO9 MOTORS

!UE

CHARACTERISTICS

3N

CONTROLS

=Ern (I.E. STEPS PER SECONDI

PARALLEL CONkECTlON M061-CE08 ANû YOGI-LEOS )iiOTORS

TYPICAL PERFORMA)JCE CHARACTERISTICS

*

SPEED (1.8. JTm Pm SECOWDI

PARALLEL CONE~ECTION

hlO62-CE09 AkO M062-LE09 hnOTORS

TYPICAL PERFORMANCE CMARACTERIST~S

SPEED (1.8. SI33 Pm SEmDI

PhRALLEL CONNECTION M063-CE09 AND MO63-LE09 MOTORS

(29)

Bijlage A15

Stappenmotor-sturing

3

-

[ N

1

6-01 f u o

Fl

tm11 1 w6 51 0 8 3 1 2 2 1

SPEED (i e- STEPS PER SECOSDI

SERIES CONNECTION M091-FC09 AN0 M091-FO09 MOTORS

-

f

N

I

SERIES CONNECTION M092-FC09 AN0 M092-FD09 MOTORS I 2 5 1

-

14%

1

( ; : o 4 0

SPEED I I W STEPS PER SECOW)

SERIES CONNECTION M092-FD310 MOTOR

-

8.

j

I% f s o g 6 0 1633)

$

''

-

j

SPEED (1.8. STEPS PER S E W )

PARALLEL CONNECTION M092-FD8109 AN0 M092-FO8009 MOTORS

i& 14%

(30)

Stappenmotor-sturing

-

+

i

Bijlage

A16

E

13458,

-

I 1474 g m 121 21 1P61

TYPICAL SPEED

VS

430

SERIES

^m

f

-

1

TORQUE

CHARACTERISTICS

tsS,r ,&I d m

';

i

MOTION

CONTROLS

I

g

f

N 4

g

t F 7 1 16751 O M 142 41 12%

-

-

p

f

i

SPEED (1.8. STEPS PER SECONO)

SERIES CONNECTION M062-CS09 AND M062-LSO9 MOTORS

E

1%

-

d I E 0 1

8

d m

1 2 2 , 1% I 1

TYPICAL PERFORMANCE CHARACTERISTICS

SPEED 0.8' STEPS PER trcocO8

SERIES CONNECTION M063-CS06 AND M063-LSO6 MOTORS

PARALLEL CONNECTION MO63-CEO6 AN0 M063-LE06 MOTORS

spEEI> (1.0. srrp9 PER trWN0)

PARALLEL CONNECTION h063-CE09 Ako hl063-LE09 hlOTORS

(31)

Stappenmotor-sturing

Bijlage A17

TYPICAL PERFORMANCE CHARACTERISTICS

250 l v 6 51 200 041 21 150 I K n 81 m imsi M 1% 3) O

SPEED (1.8- STEPS PER SECOND)

SERIES CONNECTION M091-FC06 AND M091-FD06 MOTORS

WEED (1.8- STEPS PER SECOND)

SERIES CONNECTION M092-FC09 AND MO92-FD09 MOTORS

TYPICAL PERFORMANCE CHARACTERISTICS

50 au I282 4) 320 40 Mo 30 160 m 12288t I16941 I113 O1 80 I 5 6 SI M I l l f

SPEED (1.8. STEPS PER SECOND) SERIES CONNECTIOM M092-FO310 MOTOR

TYPICAL PERFORMANCE CHARACTERISTICS

SPEED (1.8- STEPS PER SECOND)

PARALLEL CONNECTION M091-FO8106 MOTOR

TYPICAL PERFORMNCE CHARACTERISTICS

___

SPEED (l.ûs STEPS PER SECOND)

PARALLEL CONNECTION M092-FOE109 AND M092-FOE009 MOTORS

TYPICAL PERFORMANCE CHARACTERISTICS

SPEED (1.8. STEPS PER SECOND)

SERIES CONNECTION M093-FOE011 MOTOR TYPICAL P E R F O R W E CHARACTERISTICS

---

SPEED (1.8. srrp9 PER S E m 1 SERIES CONNECTION M093-FC14 AND M093-FD14 MOTORS

SPEED (1.8' STEPS PER SECOND)

PARALLEL CONNECTION M093-FD8014 MOTOR

(32)

Bijlage

A18

stappenmotor-sturing

-

I i a +i 6 0

e

SPEED 11.8' STEPS PER sECo(0)

SERIES CONNECTION Ml11-F012 MOTOR

f

(4%

L

450 i31781

-

o w f2ll8) ISD fW59)

SPEED 11.8- STEPS PER SECWO)

SERIES CONNECTION M111-FD16 MOTOR

SPEED 11.8. STEPS PER SEWN01

PARALLEL CONhECTiON M0112-FD8012 AND M112-FJ8012 MOTORS

SERIES CONNECTION Mll2-FJ327 MOTOR

SIZO I1.W STEPS PER SWND)

PARALLEL CONNECTION Mlll-FD8012 MOTOR

-

...

SPEED 11.8. STEPS PER S E W )

PARALLEL CONNECTION

(33)

Stappenmotor-sturing

Bijlage A19

6.1

MOTOR

PERFORMANCE

All stepping motors exhibit instability at their natural fre- quency and harmonics of that frequency. Typically, this in- stability will occur at speeds between 50 and 500 full steps per second and, depending on the dynamic motor load parameters, can cause excessive velocity modulation or improper positioning.

There are also other instabilities which may cause

a

loss of torque at stepping rates outside the range of natural resonance frequencies. One such instability is broadly identified as mid-range instability. This

is

identified by the dotted area (...) on the speed torque curves.

Usually, the dampening of the system and acceleration/ deceleration through the resonance areas aids in reducing

instability to a level that provides smooth shaft velocity and accurate positioning. If instability does cause unac- ceptable performance under actual operating conditions, the following techniques can be used to reduce velocity modulation.

1. Avoid constant speed operation at the motor’s unsta- ble frequencies. Select a base speed that is above the mo- tor’s resonani irequencies and adjust acceleration and deceleration

!o

move the motor through unstable regions quickly.

2. The motor winding current can be reduced as dis- cussed

in

section 5.5. Lowering the current will reduce torque proportionally. The reduced energy delivered to the motor can decrease velocity modulation.

SECTION 7:

TROUBLESHOOTING

WAWWiW8:

Motors connected lo this drive can develop high lorque and large amounts of mechanical energy.

Keep clear of the motor shaft, and all parts mechanically linked to the motor shalt.

Turn OH the power to the drive before performing work on parts mechanically coupled to the motor.

If installation and operation instructions have been followed carefully, this unit should perform correctly. If the motor fails to step properly, the following checklist will be helpful.

In General:

Check all installation wiring carefully for wiring errors or poor connections.

-

Check to see that the proper dc voltage level is being sup- plied to the unit.

Be sure the motor is compatible for use with this unit.

~~ ~

7.1

IF

MOTOR DIRECTION

(CW, CCW)

IS REVERSED,

Check:

Connection to the 52, Motor Connector may be rotated 180

degrees.

7.2

IF

THE MOTOR MOTiON IS ERRATIC,

Check:

Low filter capacitor.

Input pulses not of proper level or width. Supply voltage out of tolerance.

7.3

IF TORQUE IS

LOW, Check:

active.

AT0 (All Windings Off) active or REDUCED CURRENT Improper supply voltage.

If a malfunction occurs that cannot be corrected by making these corrections, contact Superior Electric Company.

(34)

Bijlage

A20

Stappenmotor-sturing

DISTRIBUTION COAST-TO-COAST AND INTERNATIONAL

Superior Electric products are available nationwide through an extensive authorized distributor network. These distributors offer literature, technical assistance and a wide range of models off the shelf for fastest possible delivery.

In addition, Superior Electric sales engineers and rnanu- facturers' representatives are conveniently located to provide prompt attention to customers' needs. Call the nearest office listed lor ordering and application informa- tion or for the address of the closest authorizeddistributor.

BRISTOL IN EUROPE iN CAiu&D&

383 Middle Street The American Superior Electric

Bristol, CT 06010 Koperwerf 33 Company, Ltd.

Tel: (203) 582-9561 38 Torlake Crescent

TWX: 710-454-0682 Tel: 31 70 3679590 Toronto, Ontario M8Z 1 83

FAX: 203-589-2136 TELEX: 31 436 Supe nl Tel: (416) 255-2318

Superior Electric Nederland B.V. 2544 EM The Hague, Netherlands

FAX: O11 31 70 296274 TELEX: 06-967806 FAX: 416-231-6022

WARRANTY AND LIMITATION OF LIABILITY

The Superior Electric Company (the "Company"), Bristol, Connecticut. warrants lo Ihe tirst end user purchaser (the "purchaser") or equipment

manutactured by the Company that such equipment. it new, unused and in original unopened cartons at the time of purchase, wilt be tree hom

detects in material and workmanship under normal use and service for a period 01 one year trom date 01 shipment from the Company's factory

or a warehouse of the Company in the event that the equipment is purchased from the Company or for a period ot one year from the date 01 shipment

from the business establishment of an authorized distributor ot the Company in the event that the equipment is purchased from an authorized

distributor

THE COMPANY'S OBLIGATION UNDER THIS WARRANTY SHALL BE STRICTLY AND EXCLUSIVELY LIMITED TO REPAIRING OR

REPLACING, AT THE FACTORY OF A SERVICE CENTER OF THE COMPANY, ANY SUCH EQUIPMENT OF PARTS THEREOF WHICH AN

AUTHORIZED REPRESENTATIVE OF THE COMPANY FINDS TO BE DEFECTIVE IN MATERIAL OR WORKMANSHIP UNDER NORMAL

USE AND SERVICE WITHIN SUCH PERIOD OF ONE YEAR. THE COMPANY RESERVES THE RIGHT TO SATISFY SUCH OBLIGATION IN FULL BY REFUNDING THE FULL PURCHASE PRICE OF ANY SUCH DEFECTIVE EQUIPiWENT. This warranty does nol apply to any

equipment which has been tampered with or altered in any way, which has been improperly installed or which has been subject to misuse, neglect

or accident

ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, and of any other obligations or liabilities

on the part ot the Company: and no person is authorized to assume lor the Company any other liability with respect lo equipment rnanutactured

by the Company The Company shall have no liability with respect to equipment nol 01 its manufacture. THE COMPANY SHALL HAVE NO

LIABILITY WHATSOEVER IN ANY EVENT FOR PAYMENT OF ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING,

WITHOUT LIMITATION, DAMAGES FOR INJURY TO ANY PERSON OR PROPERTY.

Writtenauthorization lo return any equipment of parts thereot must be obtained trom the Company. The Company shall not be responsible lor

any transportation charges

IF FOR ANY REASON ANY OF THE FOREGOING PROVISIONS SHALL BE INEFFECTIVE, THE COMPANY'S LIABILITY FOR DAMAGES

ARISING OUT OF ITS MANUFACTURE OR SALE OF EQUIPMENT, OR USE THEREOF, WHETHER SUCH LIABILITY IS BASED ON

WARRANTY, CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR OTHERWISE, SHALL NOT IN ANY EVENT EXCEED THE FULL PURCHASE PRICE OF SUCH EQUIPMENT.

Any action against the Company based upon any liability or obligation arising hereunder or under any law applicable io the sale of equipment.

or the use thereof. must be commenced within on war after the cause 01 such action arises

,

THE FOREGOING WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION,

These products are sold subject to the standard Limitation 01 Liability and/or Warranty of The Superior Electric Company, The

American Superior Electric Company, Ltd , or Superior Electric Nederalnd 8 V.

The right to make engineering relinements on all prodiJcis is reserved Dimensions and other details are subject to change

S E - I 2 9 0 2

Superior

Electric

A

Bristol, Connecticut

06010-7488

-"",

TEL: (203) 582-9561 TELEX: 96-2446 WX: 710-654-0682 Cable Address: SUPELEC FAX: (203) 589-2136

Referenties

GERELATEERDE DOCUMENTEN

In het lager gelegen deel van het terrein werd omwille van de zware verstoring geopteerd voor proefputten in plaats van proefsleuven.. De proefputten werden verspreid uitgezet om

Onderzocht zijn de relaties van voeding met achtereenvolgens de sierwaarde van de planten nadat ze drie weken in de uitbloeiruimte stonden, het percentage goede bloemen op dat moment

Ook hier werden plannen voor een eigen park in nauwe sa- menwerking tussen dorpsbelangen, de basisschool, Landschapsbeheer Groningen en gemeente Slochteren

In addition, the findings show that, while previously social media addiction was seen as an individual, psychological problem, concerns about the ad- dictiveness of the platforms

Taken together, the available data suggest that defects in ARE function result in brush border microvillus atrophy and in the intracellular retention of enzymes and transporters

Direct treatment effects showed a significant decrease in fear of childbirth, catastrophizing about labor pain and a significant increase in mindful awareness.. Mid-term

De JGZ professional kan ❖ Vroegtijdig signaleren, normaliseren, ondersteunen en toeleiden naar andere zorg ❖ Onderscheid maken tussen normale angst, problematische angst of

• Voorbereidend gesprek met gespreksleiding over: aanleiding voor de KlantArena, de belangrijkste thema’s voor de discussie. • Opstellen van een checklist met gespreksthema’s voor