• No results found

Boolean and multiple-valued functions in combinational logic synthesis

N/A
N/A
Protected

Academic year: 2021

Share "Boolean and multiple-valued functions in combinational logic synthesis"

Copied!
140
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter &ce, A^diile others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality o f the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information C om p aigr

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA

(2)
(3)

Boolean a n d M ultiple-V alued Functions in C o m b in ation al Logic Synthesis by

E lena V ladim irovna D ubrova Dipl. Eng., H IM E E , Sofia. B ulgaria. 1991

A D issertation S u b m itte d in P a rtial Fulfillm ent o f th e R eq uirem en ts for th e Degree of

D O C T O R O F PH IL O SO PH Y in th e D e p a rtm e n t of C o m p u ter Science We accept th is d issertatio n as conform ing

to th e required sta n d a rd

Dr. J . C. Vluzio, Supervisor (D e p a rtm e n t of C o m p u ter Science)

Dr. J .W Æ llf e ^ e p a r tm e A ta l M em ber (D ep artm en t o f C o m p u ter Science) Dr. D oM . M iller, D ep artm ei^al M em ber (D ep artm en t o f C o m p u te r Science) Dr. C. M organ, O utside M e rfi^ r (D e p artm e n t of Philosophy)

Dr. I. G. Tabakow , E xternal E x am in er (H IM EE. Sofia, B ulgaria) 0 Elena V ladim irovna D ubrova, 1997

U niversity of V ictoria

.All rig h ts reserved. This d isse rta tio n m ay not be reproduced in w hole o r in p a rt, by photocopy or o th e r m eans, w ithout th e perm ission of th e a u th o r.

(4)

11 Supervisor: Dr. J .C . M uzio

.A B STR A C T

T h e su b ject of th is d issertatio n is th e th e o ry o f Boolean and m u ltip le-v alu ed func­ tion s. T h e m ain a re as considered axe: fu n ctio n al com pleteness, canonical form s, m in im izatio n o f fu n ctio n s, discrete differences a n d functional decom posability. T he resu lts o b tain ed axe used as a foundation for th e developm ent o f several new algo­ rith m s for logic sy n th esis o f com binational logic circuits. T hese in clu d e an efficient alg o rith m for th ree-lev el A N D -O R -X O R m in im iza tio n for B oolean functions, an algo­ rith m for gen eratin g th e com position trees for B oolean and m u ltip le-valu ed functions in a c ertain class, a n d an algorithm for c o m p u tin g a new canonical form of m u ltip le­ valued functions. S everal o th e r problem s, re la te d to logic sy n th esis, such as te st g e n eratio n for co m b in atio n al logic circuits a n d synthesis of easily te s ta b le circuits axe also addressed. Possible directions for fu tu re research are discussed.

E xam iners:

D r. . E lliQ É e p artm en ^ al M em ber (D e p a rtm e n t of C o m p u ter Science)

D r. D. M. M ille r,^ e p a x tm e n ta l M em ber (D e p a rtm e n t of C o m p u te r Science) D r. C. M organ, O u tsid e ^ e m b e r (D e p a rtm e n t o f Philosophy)

(5)

C O N T E N T S iii

C o n te n ts

C on ten ts

iii

L ist o f Tables

vi

L ist o f Figures

vii

A cknow ledgm ent

ix

D ed ica tio n

x

1

In trod uction

1

2

Background

7

2.1 N o t a t i o n ... 7 2.2 Basic n o t i o n s ... S 2.2.1 R elations ... 8 2.2.2 F u n c t i o n s ... 8 2.2.3 B inary o p e r a tio n s ... 9 2.3 C hain-based Post a lg e b r a ... 9

3 A Canonical Form o f M V L F unctions

12

3.1 R eed-M uller canonical form an d its generalizations ... 13

3.2 The a l g e b r a ... 15

3.3 Functional com pleteness o f {0 , • } ... 17

3.4 P roperties of th e o p eratio n s o f th e algebra B ... 19

3.5 D ecom position th e o r e m ... 2 1 3.6 C anonical form of m ultiple-valued f u n c t i o n s ... 23

3.7 -^.n algorithm for c o n stru ctin g th e canonical f o r m ... 27

3.8 C o n c lu sio n ... 32

4 A N D -O R -X O R M in im ization o f B o o lea n F unctions

33

4.1 Logic m in im i z a tio n ... 34

4.2 N otation and d e f i n i t i o n s ... 36

4.3 U pper bound on th e n u m b e r of p ro d u ct-term s in th e A N D -O R -X O R e x p a n s i o n ... 38

(6)

C O N T E N T S iv

4.4.1 D ividing th e cubes in to equivalence c l a s s e s ... 42

4.4.2 O b tain in g Ti éind T2 ... 45

4.4.3 C o n stru ctin g g l J n i t a n d g ' I J n i t ... 46

4.4.4 D eterm ining com m on d o n ’t cares in g I J n i t an d g2 J n .it . . . . 46

4.4.5 M u ltip le-o u tp u t p r o b l e m s ... 48

4.5 E xperim ental R e s u l t s ... 48

4.6 C o n c lu sio n ... 52

5 Test G eneration for M u ltip le-V alu ed C ircu its

53

5.1 Test generation for logic c i r c u i t s ... 53

5.2 Boolean difference for te st g e n e r a t i o n ... 55

5.3 Definition of full sen sitiv ity ... 56

5.4 C alculation of full s e n s i t i v i t y . ... 57

5.5 Full sensitivity in te st g e n eratio n ... 62

5.5.1 Test g en eratio n for p rim a ry in p u ts ... 62

5.5.2 Test g en eratio n for in te rn a l lin e s ... 63

5.6 T otal n um ber o f m -valued functions fully sensitive to all th e ir variables 6 6 5.7 C o n c lu sio n ... 71

6 C om p osition Trees in Logic S y n th esis

73

6.1 D isjunctive decom position o f f u n c t i o n s ... 73

6.2 C om position t r e e s ... 77

6.3 .^.n algorithm for c o n stru ctin g com position t r e e s ... 81

6.4 C o n c lu sio n ... 87

7 S yn th esis o f E asily T estable C ircu its

89

7.1 Im p lem en tatio n of m odulo m sum -of-products canonical fo rm ... 90

7.2 T estability of in tern al lines... 92

7.3 T estability of p rim ary in p u ts ... 95

7.3.1 A procedure for te st g e n eratio n ... 96

7.3.2 E valuation of th e effectiveness of th e procedure... 98

7.4 T estability by hardw are re d u n d a n cy ... 1 0 1 7.5 C onclusion... 102

8 C onclusion

104

A p p en d ices

A C urrent-M ode CM OS M u ltip le-V alu ed C ircuits

107

.4.1 Basic operations an d sy m b o ls... 108

A .1.1 C o n sta n t-cu rren t s o u r c e ... 108

A .1.2 C u rren t m i r r o r ... 109

A .1.3 C u rren t c o m p a r a to r ... 110

.A. 2 Im p lem en tatio n of basic logic g ates using current-m o d e C M O S circu its 1 1 1 A .2.1 M IN and M AX c i r c u i t s ... 113

A.2.2 A d d itio n m odulo m c i r c u i t ... 114

(7)

C O N T E N T S ^

(8)

L I S T O F T A B L E S vi

L ist o f T ables

4.1 B enchm ark resu lts... 49

4.2 AOXM IN results for (481... 51

5.1 T ru th ta b le for th e function from e x am p le ... 59

(9)

L I S T O F F I G U R E S vii

L ist o f F ig u res

3.1 D iagram illu stra tin g th e m ultiplication o f /th row o f th e m a trix by

th e m a trix ... 30

4.1 K arnau g h m ap o f th e function from th e e x a m p le ... 37

4.2 M ap o f th e ex am p le fu n ctio n... 43

4.3 Im p lem en tatio n of th e su b ro u tin e D i v i d e E q C I a s s e s ( ) ... 44

4.4 A function w ith all p ro d u ct-term s in th e sam e equivalence class. . . . 46

4.5 F unctions g i J n i t a n d g 'lJ n it for th e fu n ctio n from th e exam ple. . . . 47

4.6 Im p lem en tatio n of th e subroutine S p e c i f y B o t h ( ) ... 47

5.1 Full sensitivities for th e exam ple fu n c tio n ... 58

5.2 E x am p le c irc u it... 63

5.3 A m ultiple-valued logic c irc u it... 64

5.4 Set U w ith subsets .4t. .Ag 4 „ ... 6 6 5.5 P lo ts for e (m .n ) as a function of n for fixed m = 3 .5 and 10... 6 8 5.6 P lo ts for e (3 .n ) a n d e“(3 .n ) as functions of n for m = 3... 70

6.1 Sim ple disjunctive d e c o m p o s itio n ... 74

6.2 D ecom position c h a rt for an exam ple fu n ction in E ... 75

6.3 E x am p le of a com position t r e e ... 78

7.1 R eed-M uller c irc u it... 91

7.2 C irc u it realizing m odulo m SO P form ... 91

7.3 C irc u it im plem enting th e function from th e e x a m p le ... 92

7.4 C irc u it realizing m odulo m SOP form ... 94

7.5 C irc u it w ith an e x tra m ultiplication m od m g a te G "... 101

.A.l C u rre n t source: (a) circuit configuration, (b) sy m b o l... 109

A .2 N -ty p e and P -ty p e cu rren t m irrors: (a),(c) circu it configurations, (b).(d) sy m b o ls... 1 1 0 A 3 C lassical cu rren t c o m p a ra to r... 110

A .4 T h resh o ld cu rre n t co m p arato r of O nnew eer a n d K e rk h o ff... I l l .A..5 M in im u m -m ax im u m circuit of O nnew eer an d K e r k h o f f . ... 113

A. 6 (a) M inim um an d (b) M axim um circu its o f Z hijian an d H ong... 114

A .7 T h e sim ulation resu lts for th e M IN /M A X circu it of O nnew eer and Kerkhoff: (a) lA , (b) IB, (c) M IN (IA ,IB ). (d) M .AX (IA .IB), (e) power d issip a tio n ... 115

(10)

L I S T O F F I G U R E S viii A.S T h e sim u la tio n results for th e M IN and M A X circ u its o f Zhijian and

Hong: (a) lA , (b) IB. (c) M IN (IA .IB ). (d) M A X (IA .IB ), (e) power d issip a tio n ... 116 A .9 (a) A b solu te difference circu it (b) C orrection c irc u it... 118 A. 10 A dd itio n m odulo m circu it (a) circuit configurations, (b) sym bolic

schem e... 119 A .11 T h e sim u la tio n resu lts for th e ad d itio n m o d u lo m circu it: (a) lA. (b)

(11)

A C K N O W L E D G M E N T ix

A c k n o w le d g m e n t

I w ould like to th a n k Dr. Jo n M uzio for his guidance a n d su p p o rt th ro u g h o u t m y g ra d u a te stu d ies. Being a d o cto ral s tu d e n t and a new m o th e r sim ultaneously vvasn t e asy for m e. a n d I w arm ly ap p re cia te his patience a n d kindness.

I would also like to express m y g ra titu d e to Dr. M ichael M iller for th e m any help fu l discussions and for sh arin g w ith m e his tech n ical e x p e rtise , w^hich inspired m e in o b ta in in g a n um ber of resu lts co n tain ed in this d isse rta tio n .

I am th a n k fu l to m y c o m m itte e m em bers and m y e x te rn a l ex am in er. Dr. Ivan T ab ak o w . for careful review ing o f th is dissertatio n an th e ir valuable com m ents and suggestions.

I a m obliged to Dr. M ichaela S erra and my fellow s tu d e n ts in th e VLSI group for a tte n d in g m y talks on m ultiple-valued logic a n d h elp in g m e to becom e a b e tte r le c tu re r, .\s h r a f Hafez. Bill G ard n er. Claudio C osti a n d K evin C attell read an d c o m m e n te d on th e in tro d u ctio n of m y d issertation. S te p h e n G oglin and Ken K ent su g g este d m e th e nam e of th e tool described in C h a p te r 4. E nyu W ang helped m e to p re p a re th e slides for my defense. I g reatly ap p reciate th e ir kind help.

M y special th an k s to m y husband Dr. Dilian G urov for careful proofreading and n u m e ro u s suggestions for im provem ents and corrections in th e d issertatio n .

F inally, I w ould like to acknow ledge th e N atu ral Sciences an d Engineering Re­ sea rc h C ouncil o f C an ad a a n d th e C an ad ian M icroelectronic C o rp o ratio n for p ro v id ­ in g research g ra n ts m aking m y g ra d u a te studies possible.

(12)

D E D I C A T I O N

D e d ic a tio n

(13)

C h a p ter 1

In tr o d u c tio n

T h e m ain objects o f s tu d y o f this d issertatio n are discrete functions. W hile th e th e o ry o f discrete functions is an in terestin g area of research on its own. it also has a d irect p ractical ap p licatio n to logic synthesis. We stu d y th e pro p erties o f d iscrete fu n ctio ns an d use th em to d evelop several new algorithm s for logic synthesis. Som e problem s re la te d to logic sy n th esis, such as test generation for logic circuits an d sy n th esis of easily testab le c ircu its, are also addressed.

D iscrete functions are m appings relating finite sets. In general, th e y m ay be

heterogeneous, w here th e variables of th e function do not take values in th e sam e

set. T his d isse rta tio n , however, considers only the case of homogeneous fu n ctio n s of ty p e —)• M on a fixed set .V/ := { 0 .1 , m — I}. T his is a com m on re stric tio n for logic sy n th esis-related work. Such functions are usually called multiple-valued or

m-valued, and. for th e special case of m = 2. Boolean or switching functions.

Logic synthesis is a step in th e design process for dig ital circu its. G enerally, th e design process d e p en d s heavily on th e ta rg e t technology'. In te g ra te d circuit technology progresses very q u ick ly an d th e design m ethods used to d a y m ight not be efficient in 10 years. However, logic synthesis is technology independent and th erefo re m ost of its techniques can b e m ap p ed into any underlying technology.

Logic synthesis s ta r ts w ith a description of a discrete function (by m ean s o f tr u th ta b le , decision d ia g ra m , hardw are description language) an d produces a logic d ia g ra m

(14)

C H A P T E R L I N T R O D U C T I O N 2 o f th e c irc u it im plem enting it. Such a diagram is u su ally called a logic circuit. logic c irc u it has several in p u ts a n d one o r m ore o u tp u ts , w hich tak e discrete values. It is com posed o f building blocks called logic gates from a selected set. T h e g a tes realize logic o p e ra tio n s such as A N D . O R and N O T. hence th e n a m e logic. U sually, th e goal o f logic sy n th esis is to find a m in im al circuit re a liza tio n o f th e function in te rm s of a given set o f g a tes, u nder som e c rite ria of m inim ality. T h e c rite ria m ight be red u cin g th e n u m b e r a n d size of gates th a t are needed to b u ild th e c irc u it, reducing th e n u m b e r o f in terco n n ectio n s betw een th ese gates.

T h e re a re two types o f logic circuits - c o m b in a tio n al a n d sequential. In a com ­ b in a tio n a l c irc u it, th e o u tp u t value depends only on th e c u rre n t value of th e in p u ts. In a seq u en tial circuit, th e o u tp u t depends on th e c u rre n t value o f th e in p u ts an d on th e p a st in p u t values. A sequential circuit can be rep resen ted as c o m b in a tio n al c irc u it w ith ad d ed m em ory devices or feedback loops. T herefore, a co m b in atio n al c irc u it is a m ore fu n d am en tal building block. T h is d is se rta tio n deals only w ith com ­ b in a tio n a l logic circuits, a n d we use the term "logic c irc u it" to m ean "co m b in atio n al logic c irc u it" .

.A d iscrete function models a com binational logic circ u it by m apping th e possible in p u t assig n m en ts onto th e values assum ed by th e o u tp u t. T h e properties o f d iscrete fu n ctio n s th erefo re provide a foundation for th e m eth o d s o f synthesis of c o m b in a tio n al logic circu its.

If a logic circuit is com posed o f gates realizing B oolean functions, th e n such a c irc u it is called a Boolean o r two-valued logic c irc u it. Likewise, a logic circu it b u ilt of g ates realizing m ultiple-valued functions is called multiple-valued or m-valued. T h is d isse rta tio n , w ith the ex cep tio n o f C h ap ter 4. add resses th e p o ten tial pro b lem s asso­ c ia te d w ith m ultiple-valued logic circuits.

O u r in te re st in m u ltip le-v alu ed logic circuits is tw ofold. F irst, we found th a t s tu d y in g a problem in th e g eneral m -valued case gives us a b e tte r u n d e rs ta n d in g o f th e u n d e rly in g stru c tu re in th e two-valued case b ecau se som e p ro p erties, e v id e n t in

(15)

C H A P T E R 1. I N T R O D U C T I O N 3 th e richer m -v alu ed s tru c tu re , often degen erate w hen re stric ted ju s t to two values. E xam ples s u p p o rtin g th is claim are shown in C h a p te r 5 and C h a p te r 7. Second, m ultip le-v alu ed logic circu its offer several p o te n tia l o p p o rtu n ities for th e im prove­ m ent o f p resen t v ery -larg e scale integrated (V L SI) circu it designs. Serious difficulties w ith lim itatio n s on th e n u m b e r of connections o f an in teg rated c irc u it w ith th e ex­ te rn a l world (p in o u t pro b lem ) as well as on th e n u m b e r of co n n ectio n s inside th e c ircu it (in terc o n n e ctio n problem ) encountered in som e VLSI circu it sy n th esis could be s u b sta n tia lly red u ced if signals in th e circu it a re allowed to a ssu m e four o r m ore sta te s ra th e r th a n o n ly tw o. If. for exam ple, each connection carries tw ice as m uch inform ation, th e n o n ly h a lf as m any connections are required. M any lab o rato ries w orld wide p re sen tly inv estig ate possibilities for electronic fab ric a tio n of m u ltip le­ valued logic c irc u its. A recent achievem ent is th e IN T E L 16 M bit flash m em ory chip w ith each cell o f th e m em o ry capable of sto rin g four discrete values [67]. Em ploying 4-valued logic allow ed IN T E L to drop th e cost o f th e chip to S20 p e r M b y te. IN T E L also declared th a t th e ir longer term target is a 16-valued flash m e m o ry w ith a cost o f 50 cents p er M b y te. W e believe th a t th e dev elo p m en t of synthesis tech n iq ues for m ultiple-valued logic c irc u its is essential to fa c ilita te th e ir electronic fa b ric a tio n . T his m o tiv ated us in o u r research.

fu n d a m e n tal role in logic synthesis is played by complete sets o f function s, A set o f functions is said to be functionally complete if any function c an be defined as a com position of fu n c tio n s from this set. T h eoretically , logic sy n th esis can be based upon any set of g a te s realizing a com plete set o f functions. In p ra c tic e , how ever, th e choice of gates to b e used in logic synthesis is n o rm ally d ic ta ted by th e cost of th e ir im p lem en tatio n , w hich changes rapidly w ith progress in circuit technology. O th e r issues, influencing th e choice o f th e basic set o f g ates, w hen realizing a given function, are:

• th e ex isten ce o f a sim p le expression for th e fu n ctio n as a co m p o sitio n o f functions from th e basic set (im plying the existence o f an efficient c irc u it im p le m e n ta tio n

(16)

C H A P T E R L I N T R O D U C T I O N 4 for th e function), a n d

• th e existence of a fast alg o rith m for c o m p u tin g this expression.

T h e search for a m in im a l expression for a given function (u n d e r c ertain crite ria of m in im ality) w ith o u t a n y restrictio n s on its s tru c tu re , in te rm s of any practically m eaningful com plete set o f functions, is known to be an ex trem ely difficult ta sk in te rm s o f co m p u tatio n al com plexity. To be feasible, th e p ra c tica l algorithm s for logic sy n th esis norm ally put som e restrictio n s on th e p ro b lem a n d seek for th e solution to th is re stric ted problem . T w o com m on approaches are:

1. re strict th e expression to be o b tain ed to a p a rtic u la r ty p e (e.g. two-level .A.ND- O R expression)

2. re strict th e fu n ctio n s for which th e solution is sought to a p a rtic u la r class (e.g.

sym m etric functions, m onotonie functions)

In th is d issertatio n we stu d y b o th approaches to logic synthesis. C h ap ter 3 and C h a p te r 4 follow ap p ro ach ( 1 ) for two different ty p e s of re stric te d expressions. Chap>- te r 6 follows approach (2 ) for a clziss of functions w hich is form ally defined using a

d iscrete difference in tro d u ce d in C h ap ter 5. C h a p te r 5 also shows how th is difference can be advantageously used for g eneratin g tests for m ultiple-valued logic circuits.

In c ertain cases, finding a m inim al circuit realizatio n for a given function is not th e p rim ary goal of logic synthesis. Such a situ a tio n m ay arise in specific applications w here som e o th er p ro p e rtie s o f th e circuit are m o re im p o rta n t, like fault to leran ce or safety. In C h ap ter 7 we develop a technique for logic sy n th esis, suitable for applica­ tio n s in which th e ab ility to te st circuits easily a n d quickly is critical.

T h e m ore d etailed s tru c tu re o f th e d issertatio n is as follows.

C h a p te r 2 describes th e m a th e m a tic a l background for th e d issertatio n .

In C h ap ter 3 we prove fu n ctio n al com pleteness o f th e set consisting o f th e o p era­ tions of a d d itio n m odulo m , m inim um , and th e set o f all lite ra l o p erato rs, where m is

(17)

C H A P T E R 1. I N T R O D U C T I O N o a positive integer. We show th e ex isten ce of a canonical form for th e m u ltip le-v alu ed functions in term s of th e se o p eratio n s, an d give th e alg o rith m for th e c o n stru c tio n such a form . For th e case m = 2, th is canonical form reduces to a fixed p o la rity R eed-M uller canonical form , w hich is known to provide a bcisis for econom ical im ple­ m e n ta tio n s of some p ra c tic a l B oolean functions [52]. We also show in th e .Appendix how th e basic o p erato rs of th e alg eb ra can be im plem ented a t th e tra n s isto r level by CM OS cu rren t-m o d e technology.

In C h a p te r 4 we consider th e realization of functions as th e X O R o f tw o .AND- O R expressions, which is usually called A N D -O R -X O R expansion. We develop an a lg o rith m for m inim izing .AND-OR-XOR expansions. We also show th a t such an expansion has a sm aller u p p e r b o u nd on th e n um ber of p ro d u c ts th a n th a t of th e A ND -O R an d .AND-XOR expansions an d . therefore, for som e functions, re su lts in sim pler circuits.

C h a p te r 5 in tro d u ces a m ultiple-valued discrete difference, w hich we call fu ll sen ­

sitivity. an d show its a p p lic atio n to generating tests for m ultiple-valued logic circuits.

Full sen sitiv ity is also used to define a class of functions X. stu d ie d in C h a p te r 6.

T his clciss of functions was also indep en d en tly considered by B ern h ard von Stengel in [57j. He proved th a t all functions in th is class have g. u n iq u e re p re se n ta tio n , called a composition tree, w hich, if n o n -triv ial. suggests th e circuit realizatio n o f th e func­ tio n a t a cost close to m inim al. In C h a p te r 6. we present an efficient a lg o rith m for

g en eratin g such a re p resen tatio n .

In C h a p te r 7 we in v estig ate th e te sta b ility of circuits realizing m odulo m sum -of- p ro d u cts form s. T his canonical form has been extensively s tu d ie d by m a n y a u th o rs: however, its ap p licatio n s to logic synthesis have only been considered for th e case m = 2. T h e circuits, realizing m odulo 2 sum -of-products form s, are proved by R eddy [6] to be easily te stab le . We e x te n d R eddy's result for m > 2. G en eralizin g from

th e two to th e m -valued case, however, is shown to be a n o n -triv ia l p ro b le m , since for m > 2 several new p h en o m en a occur which allow us to red u ce th e u p p e r b o u n d

(18)

C H A P T E R 1. I N T R O D U C T I O N 6 on th e n u m b er of te sts re q u ire d for fault d etectio n , b u t m ak e th e generation of te sts h ard er.

C h a p te r 8 su m m arizes th e d isse rta tio n and suggests fu rth e r work th a t could be

(19)

C H A P T E R 2. B A C K G R O U N D

C h a p ter 2

B a ck g ro u n d

T his c h a p te r p resen ts th e necessary m a th e m a tic a l background for the d issertatio n . M ost of its m a te ria l is classical and is beised on [2|. [6]. [14] an d [44].

For convenience, th is ch ap ter includes all th e general background. Background m aterial th a t is specific to a single c h a p te r is included w ith th e chapter.

2.1

N otation

T h ro u g h o u t th e d isse rta tio n we use “ • ” for th e m inim um o p e ra tio n (also called MIN or, for th e tw o-valued case. .\N D ): " “ for th e m ax im u m o p eratio n (M.A.X or. for th e tw o-valued case. O R ): ’’ ‘r " for th e ad d itio n m odulo m o p eratio n (X O R for th e tw o-valued case): " I " for th e m u ltip licatio n m odulo m o p eratio n : and " ' " for th e com plem ent o p e ra tio n (N O T ). ’’ an d *’ £ " are o m itte d betw een adjacent variables, when th is does not lead to any am biguity.

We let A/ := { 0 .1 m — 1} be a finite set of values. We use early lower-case letters a ,6, c. o i, Ug, e tc to denote elem en ts over A/, an d low er-case letters f . g . h . g i . g2,

etc to d en o te fu n ctio n s. We use Xi.X2i to d en ote variables of th e functions.

an d use :V = { 1 ,2 , . . . , n } to denote th e set of indices o f th ese variables. We use cap ital le tte rs A , B . C. e tc for vectors o r sets, an d usually d e n o te th e elem ents of th e set by indexed lower-Ccise letters. For e x am p le, th e elem ents of a set .4 are d enoted as 0 1,0 2, __ W e use bold cap ital le tte rs A .

B,

C . e tc to d en o te m atrices.

(20)

C H A P T E R 2. B A C K G R O U N D 8

2.2

B asic notions

This section describes briefly th e fundam ental notions o f relatio n , fu n c tio n an d oper­ ation.

2.2.1

R e la tio n s

Let .4 and B be sets. binary relation R between .4 and B is a subset o f th e C artesian

product .4 X B . We use th e n o ta tio n aRb to denote th a t ( a .6) € R.

B inary relatio ns rep resen t relationships betw een th e elem en ts of tw o sets. .A. m ore general ty p e o f relatio n is th e n -ary relation, which expresses relatio n sh ip s am ong elem ents o f m o re th a n two sets. However, this d issertatio n uses only b in a ry relations, and therefo re we do not in tro d u ce n-ary relations. In th e following, we use th e te rm ” relation" to m ean " b in a ry re la tio n '’.

R elations from a set .4 to itself are of special in terest. .A relation on th e set .4 is a relation from .4 to .4. i.e. a subset of .4 x .4.

Let R be a relatio n on .4 an d let P be a p ro p erty of binary re la tio n s (such as reflexivity, sy m m etry , or tra n s itiv ity ). The closure of R w ith respect to P is th e least relation c o n tain in g R th a t has P.

A relatio n on a set .4 is called an equivalence relation if it is reflexive, sy m m etric, and tra n sitiv e . Let R be an equivalence relation on .4. T h e set o f all elem en ts b of A such th a t bRa for an elem ent a € .4 is called th e equivalence class of a. T he equivalence classes of R form a partition of .4.

2 .2 .2

F u n ctio n s

A fu n c tio n f : A B from .4 to P is a relation, which h as the p ro p e rty th a t every

elem ent a € .4 is th e first elem ent of exactly one ordered p air (a. 6) o f th e relatio n .

So, a fu n ctio n f : A B assigns to each elem ent a E .4 a unique e lem en t 6 = / ( a )

in B , called th e image of a. .4 is called the domain of / a n d B is called th e codomain of / . T h e range o f / is th e set of all images of elem ents o f A .

(21)

C H A P T E R 2. B A C K G R O U N D 9 A Function f : A B can be specified by using a rule a / ( « ) • assigning to each elem en t a G .4. its im ag e f { a ) in B .

A function / : A B is called injective when different e lem en ts o f .4 always have

different im ages or. in o th e r w ord, if an d only if a 7^ 6 im plies th a t f { a ) 7^ f {b). A function f : A B is called surjective when th e range is th e w hole codom ain B or. in o th e r w ords, if an d o n ly if for every elem ent b E B th e re is an elem en t a in A

w ith f { a ) = 6.

.4 function is called bijective w hen it is b oth injective and su rjectiv e.

In th is d isse rta tio n we d e al only w ith discrete functions o f th e ty p e / : V/" —)• M on a fixed set .V/ := { 0 .1 m — 1}. where .V/” denotes th e th e C a rte sia n p roduct

M X A/ X . . . X \ I of n sets M . VVe say th a t / ( j * i... x„) is an n-variable un­

valued function. Such fu n ctio n s are called homogeneous, as o pposed to heterogeneous functions, w here th e variables z , o f th e function / ( x i x„) do not tak e values in th e sam e set. T h e re are homogeneous n-variable m -valued functions. For th e special ca.se of m = 2. m -valued functions are called switching o r Boolean.

2 .2 .3

B in a ry o p e r a tio n s

.4 binary operation # on .4 is a function of ty p e .4 x .4 ^ .4. So. a b in a ry o p eratio n assigns to each ordered p a ir of elem ents (a, 6) from .4 x .4 a u n iq u ely defined th ird

elem ent c = a • 6 in th e sam e set .4.

2.3

Chain-based P ost algebra

In th is section we describe a chain-based Post algebra, com m only u sed for rep resen tin g m u ltip le-v alu ed functions. T h is alg eb ra is a generalization of S h a n n o n 's switching

algebra to th e m u ltip le-v alu ed case.

D efin itio n 2.1

A chain-based Post algebra is an algebra A = :0 .m —

1).

where

(22)

C H A P T E R 2. B A C K G R O U N D 10

{ii) J := {Jo, J i , . . . . J m - i } is a set o f literal operators such that

liX :=

I

' ^ 0 otherwise

where x is a multiple-valued variable and i € .\I is a constant. For convenience, we write J ix as x ;

(Hi) " + ~ a n d " • " are the binary operations m a x im u m ( \ I . \ X ) and m in im um (i\{f.N) , respectively:

(iv) 0 and m — 1 are constants o f the algebra.

An alg eb ra is fu n ctiona lly complete if it is based on a fu n ctio n ally c o m p le te set of o p eratio n s. If c o n sta n ts need to be a d d ed to a set o f o p eratio n s to o b ta in a com plete set, th en such an alg eb ra is called fu n c tio n a lly complete with constants. T h e chain- based Post a lg e b ra is known to be fu n ctio n ally co m p lete w ith c o n sta n ts [44].

T h e com plem ent of a m u lti pie-valued variable x is defined in ch ain -b ased Post algebra as x ' := (m — I) — x . where “ — " is th e usual a rith m e tic s u b tra c tio n .

Functional co m p leten ess of A im plies th a t every m u lti pie-valued fu n c tio n can be expressed in te rm s o f its operations. T h e n ex t th e o re m shows a canonical f o r m of any m ultiple-valued function in A . This form is said to be canonical b e ca u se it gives a unique re p re se n ta tio n for m ultiple-valued functions. T h ro u g h o u t th e d is se rta tio n , we refer to this form as th e M I N - A IA X canonical fo r m . T h e sign used in th e theorem stan d s for M.AX.

T h eorem 2.2

.Any m-variable functio n o f n variables has a unique expansion in A o f type

m" —1

f ( X i . . . X„ ) — / , C,' X1 X2 . . . Xn.

1 = 0

where c, € M are constants, and (<1 / 2 • - • in) is the m - a r y expansion o f i with ii being

the least significant digit.

In th e tw o-valued case, th e MIN-M.AX can o n ical form reduces to th e .AND-OR canonical form . N otice, th a t in the tw o-valued case, x = x ' an d x = x . .An .AND-OR

(23)

C H A P T E R 2. B A C K G R O U N D 11 canonical form is often referred to as a “ sum -of-product" form , b u t we prefer not to use this nam e to avoid confusion w ith th e m odulo m sum -of-products form , cited in several chapters of th e d issertatio n .

. \ function can be p u t into a M IN-M AX canonical form by a successive a p p lic atio n o f generalized S hannon decom position to su b fu n ction s of f { x i j „ ) . Generalized

Shannon decomposition is an expansion of ty p e:

fU) = Yi

(

2

.

1

)

J & M

w here x := ( x i x „) an d ^ is th e v ector x w ith x, = j . i.e. := (J^i x , _ i . j . x , + i , Xn).

w ith j € .Vf. i E .V. So. in te rm s of these n o ta tio n s, /( x ^ ) denotes th e su b fu n ctio n of th e function / ( x ) w ith th e variable x, being fixed to th e value j E M .

(24)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 12

C h a p ter 3

A C an on ical Form o f

M u ltip le-V a lu ed F u n ctio n s

W hile com plete sets of functions are widely stu d ied for B oolean functions, less is know n ab o u t th e fun ctio n ally com plete sets for m ultiple-valued functions. In this c h a p te r we show th e functional com pleteness of th e set co n sistin g o f th e o p eratio n s o f a d d itio n modulo m . m inim um , and the set o f all literal o p e ra to rs, w here m is a positive integer. We prove th e existence of a canonical form over th is se t. a n d give an a lg o rith m for co n stru ctin g th is form. For th e case m = 2. th is can o n ical form reduces

to a fixed polarity R eed-M uller canonical form, which is know n to provide a su ita b le basis for th e im p lem en tatio n of som e practical Boolean functions [52].

T h e ch ap ter is organized as follows. In Section 3.1. we define th e R eed-M uller canonical form and give a su m m ary of previous work on its g e n eraliz a tio n to th e m ultiple-valued case. In Section 3.2. an algebra béised on th e o p e ra tio n s of a d d itio n m odulo m , m inim um , and th e set of all literal o p erato rs is in tro d u ce d . Section 3.3 presen ts a proof of th e functional com pleteness (w ith co n stan ts) o f th e set consisting of a d d itio n m odulo m and m in im u m operations. Section 3.4 describ es th e p rop erties o f th e operations of th e alg eb ra needed in the proofs o f th e m ain re su lts o f th e ch ap te r. In Section 3.5, a decom position, allowing a function of n variables to be expressed th ro u g h n functions of n — 1 variables, is developed. U sing th is deco m po sitio n , in

(25)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 13 a tio n s of th e alg eb ra is derived. An a lg o rith m for co n stru ctin g th e c an o n ic a l form is p resented in Section 3.7. Section 3.8 co n tain s conclusion an d su g g estio n s for fu rth e r research. In .Appendix A. we show a C M O S transistor-level re a liz a tio n o f th e g ates, im p lem en tin g th e basic operatio n s of th e a lg e b ra and sim ulation o f th e s e g a tes using th e H SP IC E pro gram .

Som e of th e resu lts in th is ch ap te r are c o n tain ed in [22].

3.1

R eed-M uller canonical form

cind

its general­

izations

In 1954 Reed [49] a n d M uller [43] proved th a t an y n-variable B oolean fu n c tio n has a canonical form in te rm s of .AND and X O R o p era tio n s of type:

2 " - l

/(•T i JT„) = ^ c, j 'i ‘ x ÿ . . . x],". (3.1)

1 = 0

w here th e sign sta n d s for XO R. c, € {0. 1} a re constants, (i i i i ■ u ) is th e b in ary

expansion of i w ith ii being th e least significant digit, an d x° = 1 a n d x j = Xj

for j € N . T h e form (3.1) is usually called Reed-Muller canonical fo r m , a fte r its inventors. .\11 p ro d u c t-te rm s in (3.1) consist of uncom plem ented v ariab les only.

If th e restric tio n th a t all th e variables a p p e a r u ncom plem ented is rem oved, a n d variables are allowed to a p p e a r co m p lem en ted as well, then th e R eed-X Iuller canonical form exten d s to fixed polarity Reed-Muller canonical form , w hich is u n iq u e for a fixed p o la rity ^ € (0 , 1 ...2" — 1} and is given by:

/ ( x i . . . x j = ' ^ \ , ^‘x [‘ ""xir (3.2)

1 = 0

w here c, E {0,1} are c o n sta n ts, (ziz? . . . /„) a n d (&i&2 • • • ^n) are th e b in a ry ex p an sion s

of i a n d k, respectively, w ith ii and A:i b ein g th e least significant d ig its. T h e te rm € N is defined as follows: °x} = Xj, ^xj = x'- and, for any k j. *Tx° = 1. W hen

(26)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 14 T h e concept o f a R eed-M uller canonical form can b e ex ten d e d to m -valued logic in several ways, d ep en d in g on how the AND a n d X O R o p eratio n s a re generalized. T h e first g en eralizatio n , based on th e operations o f a d d itio n a n d m u ltip licatio n m odulo m , w here m is a p rim e n u m b er, was proposed by C ohn in 1960 [9]. He proved th a t any function o f n variables has a unique m o d u lo m sum -o f-p rod u cts form of th e ty p e:

m " — 1

/ ( j i , ---j:„) = ^ c, x'i‘ x ^ . . . (3.3)

1 = 0

w here th e sign 22 s ta n d s for m ultiplication m o d u lo m . c, € :VI a re co n stan ts. («1 / 2 - • - in)

is th e m -ary ex p an sio n of i w ith being th e least significant d ig it, and th e te rm x j ’ denotes th e ijth pow er of th e variable Xj. j 6 N . M odulo m ad d itio n and m u ltip li­

catio n form a G alois field of o rder m.

L ater th is g en eralizatio n was fu rther e x te n d e d by P ra d h a n [47] for the case when m is a power o f a p rim e, i.e. m = p* (p - a p rim e n u m b er. A - a positive integer).

K od an dap an i a n d S etlu r [34] proposed a g en eralizatio n of (3.2). based on th e o p eratio n s of a d d itio n a n d m ultiplication m o d u lo m (m - a p rim e num ber) a n d th e set o f all literal o p e ra to rs, which is unique for a fixed p o la rity k € {0 . 1 m " — 1}.

T h e form is of ty p e:

m " —1

/ ( x i . . . x „ ) = Y . A " x ^ . . . '" x t" (3.4)

1 = 0

w here c,- € M are c o n sta n ts, (iiig - . . in) an d { k i k2 . . . kn) are th e m -ary expansions of

i a n d k, respectively, w ith ii and ki being th e least significant dig its, and th e te rm 'JXj-' equals m — 1 w henever ij = 0, and eq u als otherw ise.

H arking and M oraga [27] introduced axi ex ten sio n of C o h n 's form (3.3). w here an a d d itiv e tra n sfo rm x j kj is perform ed on each variable Xj. according to a fixed

p o la rity k £ { 0 , 1 . . . — I}. T he form is of ty pe:

m " —1

f ( x i + k i , X2 + k2, --- x „ -|-A :„ )= Y c,-x'l* Xj^ . . . xJ," (3.5)

(27)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 15 w here c, € M are c o n sta n ts. ( i i i2 - - - i n) an d (AriAra. . . A;„) a re th e m -ary expansions

o f I an d k. respectively, w ith an d ki being th e least significant digits. W hen k is fixed, this form is u n iq u e for a given function.

- \ 1 1 of th e ab o v e described generalizations are only applicable for th e algebras

w ith m being a p rim e or a pow er of a p rim e num ber. In this c h a p te r we in tro d u ce a generalization o f th e fixed p o larity R eed-M uller canonical form , based on th e op­ e ra tio n s of a d d itio n m odulo m . m in im u m an d th e set of all literal o p e ra to rs, w ith m being any positive integer. An n-variable m -valued function has m " such form s, each ch aracterized by a fixed p o la rity k G {0 . 1 m" — 1} and a corresp on d in g v ector

o f coefficients [ c q c i . . . C m n - i ] . Cj G M . T he form is unique for a fixed k. W e present

a p rocedure for c o m p u tin g th e coefficients of such forms, based on m a trix m u ltip lica ­ tio n . T he vectors o f coefficients for different polarities are o b tain ed sim u ltan eo u sly , w hich makes it possible to choose th e canonical form w ith th e m inim al n u m b e r of non-zero coefficients.

3.2

The algebra

T h e work in th is c h a p te r is based on a m ultiple-valued algebra B defined as follows: D e f in itio n 3 .1 .4 multiple-valued algebra B is an algebra B = { M ; ~ . - . J : Q . m — 1). where

[i] M := (0, 1 ,m — 1} is the totally ordered carrier o f B: (ii) “-5;" is the binary operation addition modulo m :

(Hi) is the binary operation m in im u m ( MI N) : (iv) J := (J o , J i . . . . , J m - i } is a set o f literal operators: (v) 0 and (m — 1) are constants o f the algebra.

T h e o p eratio n s “0 " a n d are co m m u tativ e an d associative. T h ey do not dis­

(28)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 16 th e c o n sta n t (m — 1) in th e u n it elem ent of T h e co n stan t 0 is th e u n it elem ent

o f “0 ". Recall th a t, for convenience, we w rite as x .

E very elem ent a o f .M has an inverse —a (w ith respect to th e o p e ra tio n ), defined as

~ a := a 0 a 0 . . . 0 n .

^ V m -i tim e s

In o rd er to simplify th e derivations below, we define th e o p eratio n s o f com plem ent a n d s u b tra c tio n m odulo m . All o p eratio n s a re e x te n d e d to functions aa usual.

D e f i n i t i o n 3 .2 The com plem ent o f a multiple-valued variable x is defined by x ' := (m — 1) 0 ( —x)

O bviously x 0 x ' = m — I since for any x ra n g in g in M . x 0 ( —x ) = 0.

D e f i n i t i o n 3 .3 Subtraction modulo m " 0 " is defined by

X 0 y : = X 0 ( - y )

where x and y denote multiple-valued variables.

U sing su b tra ctio n , th e com plem ent of an x can be rep resented as x ' = (m — 1) 0 x.

T h e chain-based Post alg eb ra (D efinition 2,1). b ased on th e o p e ra tio n s M IN . .M.A.X an d th e set of all literal o p e ra to rs, is w ell-know n to be functionally c o m p le te w ith c o n sta n ts [44]. Since M AX can be expressed th ro u g h M IN and co m p le m en t using de M organ's law x -t- y = (x ' • y ') ', and since c o m p le m en t is defined th ro u g h ad d itio n m o d ulo m an d the co n stan t (m — 1) (D efinition 3.2), we can conclude th a t th e algebra

B is also functionally com p lete w ith co n stan ts.

W hile th e functional com pleteness of th e set o f o p eratio n s {0 , -. J } is q u ite obvi­

ous, a m ore interesting fact is th a t B rem ains fu n c tio n a lly com plete a t th e suppression o f lite ra l op erato rs J from th e basic set, i.e. B is co m p lete (w ith c o n sta n ts) over th e set {0 , •}. T h is is proved in th e next section.

(29)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 17

3.3

Functional com pleteness of

{ 0 .

•}

T h e following p ro p e rty shows th a t th e lite ra l o p erato rs can be expressed in te rm s of th e o p e ra tio n s “0 " a n d and th e c o n sta n t (m — I), w hich proves th e functional com pleteness (w ith co n stan ts) of {-S.-}.

P r o p e r t y 3 .4 The literal x can be erpressed in terms o f and ' as follows:

x = { g ' [ x . i ) ^ g { i . i ) ■ g'{x.i))'.

where g ( x . i ) := {x ~ i') ■ { x ' — i).

P r o o f : I) Let x = i. T h en x = m — I. O n th e o th e r hand:

g i i . i ) = {i ri-F) ■ { i ' ~ i)) (d e fin itio n of p (x ./) } = (m — I ) - ( m — I) (Va € .V/ : a - 3 a ' = m — 1}

= ( m — I) (id e m p o te n c y of •} T herefore

{g'{i.i)-i: g { i . i ) g ' i i . i ) ) ' = ((m - I ) ' 0 (m - I ) • (m - I { g (L /) = m - I } = ( 0 -f-(m — I) • 0 )' (D efinition 3.2} = (0 - 9 0)' ( 0 is th e null elem ent of •}

= O' (0 is th e u n it elem ent of -9} = m — 1 (D efinition 3.2}

H ence, for X = 9 x = {g'(x. i ) - r g{x. i) ■ g'{x. i))'.

2) Let X ^ i. T h e n x = 0. O n th e o th e r h a n d , we show below th a t (a) for each x an d (, X ^ i im p lies g { x . i ) < [ y j , a n d fu rth e r, (b) for any a < [ y j . it is tru e th a t

(a ' t9 aa'Y = 0.

a) We prove p a r t (a) by showing th a t

(30)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 18 I) x 0 / ' > LyJ {hypothesis} 2) LyJ < X 0 /•' < m - 1 {(x ^ i) (x 0 i' ^ m — I)} 3) [x 0 0 X = m - 1] {(:V/. 0 ) is a group} 4) 1 < -- < L f J {(2).(3 )} Ô) (x 0 x ') 0 (i 0 i') = (m - I) 0 (m - I) {Va € A/ : a 0 a ' = m — I } 6) (x 0 i') 0 (x ' 0 i) 0 X = (m - I) 0 (m - I) 0 X {reordering} 7) x ' 0 i = ( m — 1) 0 X {(3).(6 )} 8 ) x ' 0 < = X 0 I {Definition 3.3. — I = m — 1} 9) x '0 : < LyJ { (4 ).(8 )}

H ence, for j # j -9 i' > [ y j im plies i ' i < [ y j and so (.r -9 9 i) < [ y j -C onsequently. g { x . i ) < [ y j .

b) For an y a < [ y J it is tru e th a t:

( a ' 9 - a a ' ) ' = { a ' a ) ' { ( a < [ y J ) ^ ( a a ' = a ) }

= ( m — 1 )' (Va € M : a a' = m — 1}

= 0 {D efinition 3.2} H ence, for J - ^ i. x = {g'{x. i) — g ( x , i ) • g'iJ^A))'.

a

F u n ctio n al com pleteness of an algebra m eans th a t every m ultiple-valued function can be ex p ressed in term s of its o p eratio n s. In Section 3.6. we derive a canonical form , which gives a u n iq u e represen tatio n o f any m ultiple-valued function in th e algebra B.

It hough o u r canonical form can be expressed in term s of {0 . •} only, we use literal

o p erato rs as well because this sim plifies th e form . It is easy to see th a t expanding th e lite ra l o p e ra to rs by applying P ro p e rty 3.4 can n o t result in fu rth e r sim plification o f th e form , since “0 " is not d is trib u tiv e over

T h e p ro o f o f existence of th e canonical form is based on a n u m b e r of properties e stab lish in g relatio n sh ip s betw een th e o p eration s of B. These p ro p erties are presented an d proved in th e n ex t section.

(31)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 19

3.4 Properties of the operations o f th e algebra B

Let / . g d en o te m ultiple-valued functions a n d i . j . i ^ j . den ote co n stan ts over M . T h e sign used in th e properties and elsew here th ro u g h o u t th e c h ap te r denotes a d d itio n m odulo m .

P ro p erty 3.5

The following properties hold:

(-^) — ^ b) / - x = / - ± - [ ( - / ) - ( x ) q c) / - f + g - x = / ■ X ~ g - X d) f ■ {jr ^ x ) = f - X - ^ f - X e) -r = -r •/■S' f g f ) r (/Sâr) = X / e i

-P ro o f (a):

I) Let x = i. T hen clearly

^

x = 0. O n th e o ther hand (x ) ' = (m — 1)^ = 0.

f.

2) Let X 7^ i. T h e n th e re exists exactly one k in M such th a t x = k an d so x = m — I.

C onsequently ^ x = m — I. On the o th e r hand (x )' = 0' = m — I.

j6 A / - { , }

Hence for b o th caaes ( x f = ^ x.

j € A / - { . } ( b ) : I) Let X = i. T h en / • x = / . On th e o th e r hand: / 'x '[(—/ ) • (•z’)'] = / -S-[(—/ ) • (m — I)'] = / e [ ( - / ) - 0 ) ] = / A’ O = f

(32)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 20

= / e [ ( - / ) • O']

= f ^ [ { - / ) ■ i m - l ) ] = f e f

= 0

H ence for b o th cases / • x = / - 9 [(—/ ) • (-r)']

( c ) : Since i ^ j . x cannot be equal to b o th i and j at once, it is alw ays th e case th a t e ith e r x ^ i or x ^ j or b o th . Let x ^ i. T hen th e left h a n d side is / - I + g ■ x = f - 0 + g ■ 0 + y • x = g- x . an d th e right hand side is f - x - i r g - x =

y . 0 9 gr • i*= 0 9 gr - x = g ■ x.

H ence for x ^ f - x + g- x = f - x — g- x. For th e o th e r cases th e p ro o f is sim ilar.

( d ) : Since i / j . x cannot be equal to b o th i an d j a t once, it is alw ays th e case th a t e ith e r x ^ i or x ^ j ot b o th . Let x ^ i. T hen th e left h an d side is

f ( x 9

i )

=

/-(O

9 i ) = / • X. and th e right h an d side is / • x 9 / • x = /■ Ü 9 / • / • x.

H ence for x ^ L f ■ {x x ) =■ f - x ~ f - x. For th e o th e r cases, th e p ro o f is sim ilar.

( e ) : 1) Let X = /. T h en th e left hand side is x - { f ir g) = {m — I) ■ ( f ^ g) = f g,

a n d th e right hand side is x - / 9 x - ^ = ( m — l ) - /9 ( m — l ) - ^ = / 9 5r.

2) Let X ^ i. T hen th e left hand side is x • ( / 9 fir) = 0 ■ ( / "5 5^) = 0. a n d th e right

h a n d side is x • / 9 x - ^ = Q- / 9 0 - f ir = 0.

H ence for b o th cases x -{ f g) = x x -g.

( f ) : 1) Let X = i. T h e n th e left hand side is x - { f S g) = {m — I) ■ ( f — g) = f ^

g-a n d th e rig h t hg-and side is x - / 9 x - g = ( m — l ) / 9 ( m — l ) g r = / 9

fir-2) Let X 7^ i. T hen th e left hand side is -r -(^ 9 fir) = 0 • ( / 9 S') = 0. a n d th e right

(33)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 21 H ence for b o th cases i • ( / 0 g) = x - / 0 x -g.

3.5

D ecom position theorem

In this section we present a decom position allow ing a function of n variables to be expressed th ro u g h m functions of n — I v'ariables. T h is decom position can be con­ sidered cis a g e n eraliz a tio n of th e positive a n d n eg ativ e decom positions of Boolean functions to th e m ultiple-valued case. R ecall from C h a p te r 2 that f { x ^ ) denotes a subfunction o f th e function / ( x ) w ith th e \^ariable x, being fixed to th e value j . i.e.

fiîi)

= / ( x i X , x ,+ i x „). T h e n , th e p o sitiv e and negative decom posi­ tions of B oolean functions are of form [36]:

f [ i ) = / ( £ ° ) -T x „ ( / ( x ° ) 0 /( x ^ ) ) p o sitiv e decom position

(3.6)

= ^ / ( ^ a ) ) n eg ativ e decom position

T heorem 3.6 is th e general decom position th e o re m for a function / ( x ) a b o u t som e variable x,. H owever, for n o tâ tional convenience, th e th e o re m is stated a n d proved for decom positions a b o u t th e least significant v a ria b le x„.

T h eorem 3.6 (D eco m p o sitio n T h eo rem )

Every m-valued function f { x ) can be decomposed with respect to the variable x„ a nd a given i G M in the following way:

m—1

j=i

Proof:

Using generalized S hannon decom position (2.1) we can express the fu n ctio n / ( x ) as follows:

(34)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S f i x ) = / ( x “ ) + / ( x ‘ ) + . . . + x^V U lî^ {(2.1)} - Z,. /(X ^ ) e i n / ( ^ ) © . . . © ) { P ro p e rty 3.5(c)} = i f U l ) © i - f i ^ ) ■ © E f U i ) J=l { P ro p e rty 3.5(b)} m —1 m—1 = ( f U l ) e ( - / ( i S ) • E ^»l) ® E /( £ < ) *=1 j=l { P ro p e rty 3.5(a)} m —1 m — I -= / ( £ S ) * j= l J=l { P ro p e rty 3.5(d)} m —I = H î ° ) i E / ( ^ i ) J= 1 { c o m m u ta tiv ity o f 0 } m —I = / ( £ : ) - » E < / ( ^ ) a ( - / ( £ : ) ) ) £ . J= 1 { P ro p e rty 3.5(e)} m— I = E i / i z ^ ) - e / ( £ : ) ) L j=i (D efin itio n 3.3} 99

In th e above deriv atio n we ex p an d ed using P ro p erty 3.0(b ). If a ltern ativ ely

we expanded -/(x jj) for som e i ^ 0. th en th e derivation gives th e proof for th e

corresponding value o f i.

For exam ple, a 3-valued 2-variable function / ( x i . x y ) can be decom posed w ith respect to th e \'ariab le x-2 an d a given i € {0. 1.2} in th e following way:

f U u i

2

)

= / ( £ i ) * [ ( /( £ ? ■ ) e / ( x i ) l % 'i * [ ( / ( £ ? " ) e / ( 4 )) % | .

T h e decom positions for all th re e possible values of i are:

For i = 0: / ( x i , X2) = fiî .1 ) 0 [ i f U \ ) ^ f { x ^ ) ) ^2] "5 [{/{ xj) 6 / ( x " ) ) ^2

]-For i = 1: / ( x i ,X2) = / ( x ‘ ) 0 [ ( / U2) © / U 2)) h ] © [(/(i® ) © f i î .2)) ^2

]-For i = 2: / ( x i , X2) = /( x ^ ) 0 [(/(x ^ ) © /( x ^ ) ) Xg] 0 [{ f{ x\ ) 0 /( x ^ ) ) X2].

(35)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 23 T h en we have X 2 0 I 2 0 0 I 2 X l I I 1 2 2 2 0 0 X l /( z ^ ) f U Ï ) / ( d ) 0 0 I 2 1 1 I 2 2 2 0 0

an d . for th e decom position w ith respect to xz w ith i = 0

= /( £ ° ) efiri(j*i) X2-?g2(-ri) ^2 w here 5^1 ( J i) and ^ i( x i) are functions, defined as follows:

X l m ( - T i ) 5 ' 2 (x i)

0 1 2

1 0 1

2 I 1

Obviously, if each o f th e subfunctions /(x ;^ ). j 6 -V/. in th e deco m p o sitio n of / ( x )

is successively decom posed ab o u t th e rem ain ing variables, we finally get an expression in which / ( x ) is ex p an d ed in all its variables. Since for each su b fu n c tio n the decom ­ position can be m ade w ith respect to som e c o n stan t i Ç M . th e re are m" different ways to expand th e function / ( x ) in all n variables. In th e next sectio n we prove th a t, for a fixed i. each of these m " expansions is a canonical form u n iq u ely representing a m ultiple-valued function, an d show how to find th ese expansions d irectly , i.e. w ithout applying step-by-step decom position.

3.6

Canonical form of m ultiple-valued functions

In a two-valued system , any Boolean fu n ctio n of n variables has 2" fixed p olarity R eed-M uller canonical form s of ty p e (3.2). In such an expansion, each variable x,- is

(36)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 24 e ith e r in a c o m p le m en te d , o r in an u n co m p lem en ted form , a cc o rd in g to som e p o la rity vector At = (A:„ ...AraAri). If A:, = 1 th e v ariab le x, a p p ea rs in co m p lem en ted form .

otherw ise x. a p p e a rs in uncom plem ented form . For e x a m p le , th e p o larity v ecto r Ar = (O il) im plies th a t x i a n d x? a p p ea r co m p lem ented in th e R eed -M uller canonical form, an d X3 a p p e a rs uncom plem ented (x i is th e lowest o rd e r v ariab le). A p o larity can be given n o t only as a binary vector (A:„ . . . A^aAri ). b u t also as a decim al n u m b e r A: 6 { 0 .1 ...2” — 1}. w hose binary exp ansio n is th is b in ary v e cto r. For ex am ple, for

A: = (O il) th e p o la rity can be given as A: = 3.

We gen eralize th e n o tio n o f fixed p o la rity for m ultiple-x'alued logic, assu m in g th a t in a fixed p o la rity form each variable x ,. i € {1, ---- n}. is re p re se n te d by all literals

fe

except X,. w here (Ar„ . . . ArgAzi ) is the m -ary ex pan sio n of a p o la rity A: 6 ( 0 . 1 m " — 1}. given as a d e cim al num ber. For e x am p le, if m = 3. p o la rity v ecto r k = (0 2 1)

im plies th a t x i is re p re se n te d by literals x^ an d Xi in th e c an o n ical form , x-2 by literals

x-2 and X2. an d X3 by literals X3 and X3. S im ilar g e n eraliz a tio n o f p o la rity was used

in [34].

T he following th e o re m shows th a t th e re exist m " can o n ical form s o f a m -valued n-variable fu n c tio n , each characterized by a p o larity k € (0 . 1 m " — 1} an d a

corresponding v e c to r of coefficients [cq Ci . . . Cm»-i]. Cj € M . T h e n o ta tio n ‘x-' used in th e th eo rem below is defined as follows:

m — 1 if i = 0

X o therw ise

w here x is a m u ltip le-v alu e d variable a n d i . j € M are c o n sta n ts . W e d en o te by

j € { 0 ,rrC — 1}. th e coefficients from th e tr u th ta b le for / ( x i x „). w ith Xi

(37)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 25 T h e o r e m 3 .7 A n y m-valued n-variable function can be expressed in a canonical f o r m

with a fixed polarity k G {0 . 1 m " — 1} as: m " —1

f ( X i , . . . . X n ) = ‘"•^1

j=0

. Jl J2 - r h Jn ~ k n J.2 . .

-where cj € M are constants, and {jn ■ ■ ■ j2j i ) ^re the m-ary expan­

sions o f f and k. respectively, with j i and ki being the least significant digits.

P r o o f : B y in d u ctio n on n.

1) Let n = 1. A ccording to T h e o re m 3.6. any function o f o n e variable x can be decom posed w ith respect to th is variable and a given i € M as:

m — 1 . _ . / ( x ) = f i ~ Y . (/"TJ ^ / . ) {T h eo rem 3.6} j=i m — 1 = Co 9 C; T (w here cq = / . a n d Cj = / .^ j -r /.} J = l m — I = Co ° x ‘ -5 ^ Cj ^i (° x ' = m — 1. and -'x' = x . for j ^ 0} j = i m — I = Y . J = 0

which is th e canonical form for n = I an d p o larity i G ( 0 ,1 m — I}.

2) H ypothesis: .Assume the resu lt for all functions o f n variables. .According to T h eo rem 3.6. any function of n + 1 variables can be d ecom posed w ith respect th e variable x„+ i and a given i G M as:

TTl— 1 . .

/ ( T , ... X „ „ ) = / ( £ : + , ) ^

p = i

By th e in d u c tio n hypothesis, w hich assum es th e result for th e fu n ctio n s of n variables, we can express each of th e subfunctions / ( x |, ^ i ) , f{x^-^+i), p € -V/ in the canonical form for som e p o larity k = . . . ^2^1). We use th e n o ta tio n cfj to denote th e j t h

(38)

C H A P T E R 3. A C A N O N I C A L F O R M O F M V L F U N C T I O N S 26 m' * —I ...- T n + l ) = 5 1 C* J ' X i * . . . j = 0 m —I / m " —I m " —1 \ e Z Z <=?'' • • ■ '" -5 " e E c; ■. ■ " 4 " p = l \ J = 0 j = 0 /

To sim plify th e ex p o sitio n , we use th e n o tatio n to s ta n d for th e term ■'‘Xi* . . x*” . T h e n th e ab o v e expression becomes: m " —1 m —1 / m " —1 m " —1 \ / k i = E 4 a E Z f ' ^ - Z 4 ' . ^ 4 j = 0 p = l \ j = 0 J = 0 ) m ” —1 m —l / m " —I / m ” —I \ \ . . = E 4 t E Z f * - Z J = 0 p = l \ J = 0 \ j = 0 / / {D efinition 3.3} m " —1 m —l / m " —I m " —1

'

'- n+ 1 = Z ^ X " ^ ' e z a E j = 0 p = l \ J = 0 j = 0 )

{ d istrib u tiv ity o f " — “ over**—^'}

m " —I m —l / m " —1 \ . . = z 4 ^ z z ^ ( - 4 " : + i j= 0 p = l \ j= 0 / (c o m m u ta tiv ity o f"—"} m'* —I m —l / m ” —I \ = Z 4 ^ Z Z ( f ^ 4 J —0 P=1 \ J=0 / (D efinition 3.3} m " —1 m —l / m " —1 \ = z 4 ^ z z ( f ' ^ 4 ) J = 0 p = l \ j = 0 / (P ro p e rty 3 .5 (f)} m " —1 m —l m " —1 = z 4 Z Z ( f ^ 4 ) J=0 p = l J=0 (P ro p e rty 3 .5 (f)} m " —1 m —l m " —1 = Z < ° < + . ® Z Z ( f 6 c ') j = 0 p = l j = 0 ( ° x ‘ = m — 1, a n d ^x' = x^.for p 0}

Referenties

GERELATEERDE DOCUMENTEN

Yet, its architecture has become a standard for subsequent mausoleums of Islamic rulers such as Sultan Sanjar (12th century, Marv), Öljeytü (early 14th century, Sultaniyya) and

Predictive models were based on systematic marine bird line transect survey information gathered in the Queen Charlotte Basin (QCB) region on Canada’s Pacific coast (2005−2008)

The work encompasses: 1 the derivation of a short-term demand response model suitable for transactive control systems and its validation with field demonstration data; 2 an

The needs assessment identified seven gaps (or needs) that should be addressed in order to support participants’ desired future state for internationalization. The gaps reveal

If The Economist had reported that racial intermarriage was white women's greatest taboo, that some white women find non-white men unattractive, that others fear their children

“They just pause.” If it is true that history is not the past – merely what we have now instead of the past – then we must tip our caps to Mr Schama for reminding us of

For example, the uniqueness problem may be modified by asking for a given binary matrix if there are other binary matrices having the same row and column sums.. For a

This systematic review aimed to investigate effective interventions for parents of young children living with type 1 diabetes, specifically in search of