• No results found

Protein-nucleic acid interactions of Wilms' Tumor and TFIIIA zinc finger proteins

N/A
N/A
Protected

Academic year: 2021

Share "Protein-nucleic acid interactions of Wilms' Tumor and TFIIIA zinc finger proteins"

Copied!
294
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

This manuscript has been reproduced from the microfilm master. UM I films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, vriiile others may be from any type o f computer printer.

The q uality o f this reproduction is dependent upon the quality of th e copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e g., maps, drawings, charts) are reproduced by sectioning the original, b%inning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available fo r any photographs or illustrations appearing in this copy for an additional charge. Contact UM I directly to order.

UMI

A B ell &Hbwell Infonnation Compaiy

300 North Zeeb Road, A nn Arbor MI 48106-1346 USA 313/761^700 800/521-0600

(2)
(3)

by

TATYANA H A M ILTO N

B. Sc., N ovosibirsk State U niversity, Russia, 1990

A D issertatio n S u b m itted in Partial F ulfillm ent o f th e R equirem ents for the D egree of

DOCTOR OF PHILOSOPHY

in th e D e p artm en t of Biochemistry a n d M icrobiology

We accept this thesis as co n form ing to ih e i^ b u ired sta n d a rd

rvisor (D ept, o f B iochem istry & Ibiology)

O lafson, D ep artm en tal M em ber 'o f B io c h e n jis ^ & N/p:Sob^ology) D r. F ra n d s E. N ano, Deps (Dept, of Bi M em ber logy) chael J. A s h m (Dept, o f Biology) TJenry P earson, D ep artm en tal M em ber (Dept, of BigdaggUjtry & M icrobiology)

Dr. D av id Setzer, E ^ m a l E xam iner Case W estern Reserve U n iv ersity )

© TATYANA B. H A M ILTO N , 1997 U n iv ersity of Victoria

A ll rig h ts reserv e d . This thesis m ay not be re p ro d u c e d in w h o le or in p a rt, by m im e o g ra p h o r o th e r m eans, w ith o u t th e p e rm issio n o f the a u th o r.

(4)

G C G -TG G -G C G -(T /G )(G /A /T)(T /G ). These sequences have a fo u r-fo ld h ig h e r affin ity for th e p ro tein th a n the n o n se lec te d se q u e n c e G C G - T G G -G C G -C C C , as m ea su re d b y a q u a n tita tiv e n itro cellu lo se filter b in d in g assay.

The effects of D enys-D rash syndrom e (DOS) point m u ta tio n s o n th e D N A b in d in g activ ity of W T l w ere d e te rm in e d . SAAB a ssa y re v e a le d th a t n o n e of the DOS m u ta n t p ro te in s give rise to a new seq u en ce sp e c ifid ty . O ne m u tatio n , R394W abolishes specific b in d in g o f th e p ro te in . T he re m a in in g m u ta tio n s re s u lt in re d u c e d D N A - b in d in g activity, ran g in g from 1.4 to 14-fold, w h ich suggests th a t ev en sm a ll ch an g es in D N A -binding activity m a y p re d p ita te th e clinical p h e n o ty p e o f D enys-D rash syndrom e.

C o m p a ra tiv e an aly sis of th e D N A b in d in g c h a ra c te ristic s of W ilm s' tu m o u r a n d Early g ro w th response p ro te in s w as c o n d u c te d . T h e sto ich io m etry o f th e D N A -p ro tein co m p lex es, th eir s ta b ility to d isso d a tio n , a n d the effects of p H , tem p eratu re a n d salt c o n ce n tra tio n o n th e e q u ilib riu m b in d in g o f th ese p ro tein s to th eir c o g n a te D N A

(5)

seq u en ces h av e been d e te rm in e d . U n d e r th e co n d itio n s o f 0.1 M sa lt, p H 7.5, a n d 22 * C W T l-Z F h as an a p p a re n t disso ciatio n c o n stan t (K d) of 1.14± 0.2 X 1 0 ^ M, a n d EGR-1 protein h as a Kd of 3.55 ± 0.4 x 10"^ M .

In a d d itio n , w e tested re la tiv e co n trib u tio n of each b a se p a ir in th e co n sen su s b in d in g site to th e h ig h affinity b in d in g by p o in t m u ta tio n a l an aly sis, a n d identified im p o rta n t differences th at ex ist in th e b in d in g m odes o f th e tw o proteins.

T ra n s c rip tio n fa c to r UIA c o n tro ls th e e x p re s s io n o f th e 5S rib o so m a l R N A genes d u r in g d e v e lo p m e n t of X enopus laevis., a n d specifically interacts w ith b o th 5S D N A a n d 5S rR N A m olecules. T h e p re s e n t s tu d y assesses c o n trib u tio n s o f th e cen tral z in c fin g ers f o u r th ro u g h s e v e n to specific D N A and R N A b in d in g a c tiv itie s of th e p ro tein . T h e resu lts d e m o n stra te th a t each zinc fin g e r in the zf 4 -7 re g io n c o n tr ib u te s to b o th th e h ig h a ffin ity D N A a n d R N A in te ra c tio n s: the largest effect on T FlllA -D N A b in d in g (10-fold) w a s p ro d u c e d w h e n zinc fin g er 5 o f TFIHA w as rep la ce d w ith the d o n o r sequences o f eith er p43 or W T l. H ow ever, w hile all th e zinc fingers 4-7 c o n trib u te to th e high affin ity 5S rR N A b in d in g , s u b s titu tio n of a n a - helical p o r tio n of zinc fin g er 6 w ith th e e q u iv a le n t se q u en c es fro m W T l a b o lish e d R N A -binding activity o f TFIILA, su g g e stin g th a t z in c finger 6 p la y s a particularly im p o rtan t role in b in d in g to RNA.

(6)

D r. 4rerry|

S nuth

Dr. M ichael J. Ashwi M em W r (D ept, o f Biology)

Dr. D a v id Setzer, E xternal E xam iner (Case W este rn R eserve U n iv e rsity )

(7)

A bstract...ii

Table of C o n te n ts... v

List of Tables...x

List o f Figures...xii

L ist of A b b rev iatio n s... x v ii A cknow ledgm ents... xx

C h a p te r 1.0 E arly g ro w th resp o n se p ro te in (EGR-1): a p ro to ty p ic a l m em ber of a C2H2 zinc finger fam ily of tran scrip tio n factors 1.1 In tro d u ctio n ... 1

1.1.1 O verview of the EGR-1 fam ily of tran scrip tio n fa c to rs... 1

1.1.2 Gene targ ets of EGR-1 re g u la tio n ...6

1.1.3 Identification of EGR-1 cDNA, an d characterization o f its p ro tein p r o d u c t... 7

1.1.4 D N A -binding function o f EGR-1...14

1.1.5 Structures of other zinc finger-D N A com plexes... 32

1.1.6 Studies to w a rd a zinc finger recognition code...43

C h a p te r 2.0 T he W ilm s' tu m o u r gene p ro d u c t: a tu m o u r su p p re sso r in v o lv ed in re g u la tio n of k id n e y d e v elo p m e n t 2.1 In tro d u ctio n ... 47

2.1.1 The concept of tum or su p p resso r g e n e s ... 47

2.1.2 Biology o f W ilm s' tu m o r a n d associated sy n d ro m e s... 47

2.1.3 Identification and characterization o f the W Tl gene a n d its p ro tein p ro d u ct... 50

(8)

3.2.2 O ther M aterials...75

3.2.3 C o n stru c tio n a n d P u rifica tio n of R e co m b in a n t W T l-Z F P a n d W TIA FI-ZFP P r o te in s ... 76

3.2.4 Selection A m plification a n d B inding (SAAB) A ssa y ...80

3.2.5 C o n stru ctio n of plasm ids containing sequence elem ents o f th e insulin-like g ro w th factor II fetal pro m o ter, a n d the non-selected sequence w ith th e CCC subsite for finger 1 b in d in g ... 86

3.2.6 Purification o f olig o n u cleo tid es... 87

3.2.7 End-labeling of DNA...88

3.2.8 N itrocellulose Filter B inding A ssa y ... 88

3.2.9 T ransient Transfection A ssay s...89

3.3 R esults... 90

3.3.1 Isolation o f DNA b in d in g su b site fo r fin g e r 1 o f W T l-Z F by S A A B ...90

3.3.2 Q u an titativ e Binding of W Tl-ZFP to V arious D N A S eq u en ces...93

3.3.3 A n In vitro Selected W T l B inding Site A cts as a Strong T ranscriptional R egulator...97

3.4 Discussion...101

(9)

4.1 In tro d u c tio n ...108

4.2 M aterials a n d M eth o d s...113

4.2.1 C o n stru ctio n a n d expression of D enys-D rash m u ta n t p ro te in s ...113

4.2.2 Selection am plification a n d b in d in g (SAAB) assay... 114

4.2.3 N itrocellulose Filter B inding A ssa y ... 117

4.3 R e s u lts ... 118

4.3.1 Selection o f D N A binding sites for D eny s-D rash m u ta n t p r o te in s 118 4.3.2 M e asu rin g th e b in d in g affinities of th e m u ta n t p e p tid e s for the selected DN A seq u en ces... 121

4.4 D isc u ssio n ... 125

C h a p te r 5.0. C o m p arativ e an aly sis of the D N A b in d in g ch aracteristics o f W ilm s' tu m o u r a n d Early G ro w th R esponse Proteins 5.1 In tro d u c tio n ...129

5.2 M aterials a n d M ethods... 130

5.2.1 C o n stru ctio n a n d p u rificatio n of reco m b in an t W T l-Z F a n d E G R l-ZF p ro tein s...130

5.2.2 C o n stru ctio n of m u ta n t W T l-Z F an d E G R l-Z F DN A b in d in g s e q u e n c e s ... 130

5.2.3 End-labeling o f DNA... 132

5.2.4 N itrocellulose Filter B inding A ssa y ... 132

5.3 R esu lts... 132

5.3.1 E quilibrium b in d in g c o n sta n ts ... 132

5.3.2 M onovalent sa lt dependence of the Ka for D N A b in d in g ...139

5.3.3 p H d ep en d en ce o f K a ...1 4 1 5.3.4 Effect of d iv a le n t m etal io n concentration o n D N A b in d in g ...144

(10)

6.1 T he C2H2 zinc fin g er d o m a in ... 163

6.2 S tru ctu re / fu n ctio n analysis o f TFIHA... 173

6.2.1 P urification a n d ch aracterizatio n of TFIHA g en e p ro d u c t...173

6.2.2 TFIIIA gene e x p re ssio n ...179

6.2.3 R oles of TFIHA in tran scrip tio n an d storage o f 55 rR N A ... 180

6.2.4 S tru ctu re a n d fu n ctio n of 5S rR N A and its g e n e ... 182

6.2.5 R ole of TFIIIA zin c fingers in R N A rec o g n itio n ... 183

6.2.6 R ole of TFIIIA zin c fingers in DN A re c o g n itio n ... 194

C h a p te r 7.0 The s tu d y o f th e nucleic acid interactions of zinc fin g er 4-7 region o f TFIHA 7.1 I n tr o d u c tio n ... 206

7.2 M aterials a n d M e th o d s ... 207

7.2.1 C o n stru ctio n of TFIIIA finger sw ap m u ta n ts ... 207

7.2.2 E xpression a n d p u rification of TFIHA p r o te in s ... 213

7.2.3 R adiolabeling o f 5S D N A ... 218

7.2.4 Synthesis a n d R adiolabeling o f 5S rRNA... 218

7.2.5 N itrocellulose filter b in d in g a ssa y s... 221

(11)

7.3.1 E ffects o f zinc fin g e r s u b s titu tio n m u ta g e n e sis o n th e D N A

b inding activ ity of TFIIIA...221

7.3.2 E ffects o f zinc fin g e r s u b s titu tio n m u ta g e n e sis o n th e R N A b inding activ ity of TFIIIA...228

7.4 D iscussion...230

8.0 C o n c lu s io n s... 236

(12)

T ab le 4.3 Frequencies o f each nucleotide selected at the finger 3 su b site positions by W Tl-ZFP a n d the finger 3 p o in t m u tan ts...120 T a b le 4.4 F in g er 3 su b s ite sequences selected from a ra n d o m iz e d tem plate by w ild type W T l-Z FP and the finger 3 point m u ta n ts ...122 T ab le 4.5 B inding affiiüties of w ild ty p e a n d finger 2 m u ta n t W T l-Z F P for selected D N A sequences... 124 T ab le 4.6 B inding affinities o f w ild type a n d finger 3 m u ta n t W T l-Z F P for selected D N A sequences... 124 T ab le 5.1 Sequences o f m u ta n t oligonucleotides h arbouring in d iv id u a l base pair su b stitu tio n s in th e EGRl-ZF a n d W Tl-ZF consensus D NA

b in d in g site... 133 T a b le 5.2 Effect of th e d ifferen t m o n o v alen t salts on th e b in d in g of W T l-Z F a n d EG Rl-ZF to D N A consensus sequences... 148 T ab le 5.3 D issociation con stan ts for W T l-Z F a n d EG R l-ZF b in d in g to w ild -ty p e a n d m u tan t D N A consensus seq u en ces... 150 T ab le 7.1 Sequences of oligonucleotides u se d in construction of TFIIIA su b stitu tio n m u ta n ts...208

(13)

T a b le 7.2 S e q u e n c e s o f se le c tio n p rim e rs u s e d in tr a n s fo r m e r m u tag en esis p ro to co l to construct s u b s titu tio n m u ta n ts o f TFIHA...216 T ab le 7.3 The effects o f TFIHA z in c fin g er su b stitu tio n m u ta tio n s o n the D N A a n d RN A b in d in g of the fac to r... 223 T a b le 7.4 T he effects o f TFIIIA z in c fin g er su b stitu tio n m u ta tio n s o n the D N A a n d RN A b in d in g of the facto r... 227

(14)

F ig u re 1.4 S u m m ary of EGR-1 fu n ctio n al d o m ain s... 13 F ig u re 1.5 Sequence of the EGR-1 zinc finger p ep tid e a n d of th e D N A b in d in g site u se d in cocrystallization... 16 F ig u re 1.6 The o v erall arra n g em e n t of the three zinc fingers of EGR-1 in the m ajor g ro o v e of DNA (Pavletich & Pabo, 1991)...17 F ig u re 1.7 Sketch su m m arizin g th e principal am in o ad d -b ase contacts as seen in the o rig in al EGR-1 X-ray stru ctu re (Pavletich & Pabo, 1991)...19 F igure 1.8 S u m m a ry of direct base an d p h o sp h ate contacts in

EGR-1-D N A com plex...20 F ig u re 1.9 S u m m ary of w ater-m ed iated and v an d er W aals contacts to bases an d p h o sp h a tes in EG R -l-D N A com plex... 21 F ig u re 1.10 D raw ings of am ino ad d -b ase p air contacts of the EG R-l-D N A com plex...22 F ig u re 1.11 S chem atic diagram of EGR-1 zinc fingers in teractin g w ith the p ro p o sed o v erlap p in g , 4-bp D N A subsites (Isalan et al., 1997)... 27 F ig u re 1.12 S chem atic re p re se n ta tio n of h y d ro g en b o n ding b e tw ee n Z n -co o rd in ated h istid in e an d DN A backbone...29 F ig u re 1.13 Sequences of the GLI zinc finger d o m ain a n d the D N A - b in d in g site u se d for cocrystallization...33

(15)

F ig u re 1.14 Sketch su m m arizin g base and p h o sp h a te contacts m a d e by

the GLI p ep tid e... 34

F ig u re 1.15 The su m m ary of T ram track-D N A contacts... 36

F ig u re 1.16 Schem atic sum m ary of the principal protein-D N A contacts o b serv ed in the cocrystal structures of the EGR-1 a n d T ram track...37

F ig u re 1.17 Schem atic representation of the Y Y l-D N A in teractio n s... 40

F ig u re 1.18 C om parison of YYl w ith other zinc finger stru c tu re s...41

F ig u re 2.1 The am in o acid sequence of W Tl p ro te in ... 52

F ig u re 2.2 Schematic diagram of the stru ctu re of the W Tl m R N A a n d p r o te in s ... 54

F ig u re 2.3 DNA sequences w hich b in d W Tl p ro tein s (R ed d y & Licht, 1996)... 58

F ig u re 2.4 Protein-D N A contacts m ade by EGR-1 protein, an d p ro p o se d D N A contacts for W T l zinc fingers... 62

F ig u re 2.5 Proposed W Tl zinc finger-D N A contacts (Reddy & L icht, 1996)... 64

F ig u re 3.1 DNA sequence of the peptide en co d in g insert in p la s m id pET-W TZFP, w ith the am ino a d d sequence of the p ep tid e ...73

F ig u re 3.2 Schem atic representation of the recom binant W T l-Z F p lasm id , pU C 18/W T l-Z F . Restriction sites u sed in subsequent c lo n in g ste p s are show n... 78

F ig u re 3.3 Plasm id m a p of pET-16b expression v ecto r... 79

F ig u re 3.4 C oom assie blue-stained 15% SD S-polyacrylam ide gel sh o w in g purifiied W T l-Z FP an d W TIA FI-ZFP p ro te in s...81

F ig u re 3.5 Protocol for the SAAB (Selection a n d A m plification of B inding site assay)...82

(16)

elem ents... 95 F ig u re 3.10 (A ) S equences of W T l e le m e n ts id en tifie d in th e fetal p ro m o te r o f th e IGF-11 gene. (B) R esu lts o f a n n itro c ellu lo se filter b in d in g a s s a y m e a s u rin g th e e q u ilib riu m b in d in g of W T l-Z F P to different D N A elem en ts...98 F ig u r e 3 .1 1 T r a n s ie n t tr a n s f e c tio n a s s a y s m e a s u r in g W T l re s p o n s iv e n e s s ...100 F ig u re 3.12 T he h y d ro g e n -b o n d d o n o rs a n d accep to rs p re s e n te d by W atson-C rick base p airs to the m ajor gro o v e a n d the m inor g ro o v e ... 103 F igure 4.1 W T l m u ta tio n s associated w ith D enys-D rash sy n d ro m e ...109 F ig u re 4.2 C o m p a ris o n of th e se q u en c es o f W T l a n d EGR-1 zinc fingers...112 F ig u re 4.3 C o o m a ssie b lu e -s ta in e d 15% S D S -p o ly a c ry la m id e gel sh o w in g p u rifiie d W T l-Z F P D enys-D rash m u ta n ts ... 115 F ig u re 4.4 T h e SAAB te m p la te o lig o n u c le o tid e s c o n ta in in g ra n d o m iz e d se q u en c es fo r th e WT1[-KTS] fin g er 2 (A) or fin g e r 3 (B) re c o g n itio n ...116 F ig u re 4.5 T h e e q u ilib riu m b in d in g o f th e W T l elem en t G C G TGG G AG TGT to W T l-Z F P , R366H an d R366C...123

(17)

F ig u re 5.1 C oom assie b lue-stained 15% SD S-polyacrylam ide gel sh o w in g EG R l-ZF p ro te in purified b y affinity ch ro m ato g rap h y ...131 F ig u re 5.2 E q u ilib riu m binding cu rv es of W T l-Z F and E G R l-Z F p ro te in s to their targ et D N A sequence... 135 F ig u re 5.3 Scatchard analysis of W T1-2T (A) an d E G R l-ZF...137 F ig u re 5.4 Tim e d ep en d en ce of the b in d in g of W T l-Z F an d E G R l-Z F to D N A co n sen su s se q u en c es...140 F ig u re 5.5 KCl co n cen tratio n d ep en d en ce of the b in d in g of W T l- Z F a n d E G R l-Z F to D NA consensus seq u en ces... 142 F ig u re 5.6 p H d ep en d en ce of the b in d in g of W T l-Z F an d E G R l-Z F to D N A co n sen su s se q u en c es...143 F ig u re 5.7 Effect of the m ag n esiu m ion concentration on the b in d in g of W T l-Z F (closed circles) a n d EG Rl-ZF (open circles) to DNA c o n s e n s u s se q u e n c e s... 145 F ig u re 5.8 T e m p e ra tu re d ependence of the bin d in g of W T l-Z F a n d E G R l-Z F to DNA con sen su s sequences... 146 F ig u re 6.1 Schem atic rep resen tatio n of a C2H2 zinc fin g er... 165

F ig u re 6.2 R epresentative stru ctu res from various zinc finger fam ilie s...170 F ig u re 6.3 Schem atic re p re se n ta tio n of the interfinger o rie n ta tio n s o f

MBP-1 zin c fingers a n d EGR-1 fingers 1 a n d 2...174 F ig u re 6.4 D iagram s of the fu n ctio n al dom ains of eukaryotic zin c- c o n ta in n g tran scrip tio n factors. 175

F ig u re 6.5 A m ino a d d sequence of the nucleic a d d b in d in g d o m a in o f T FIIIA ...177 F ig u re 6.6 Schem atic d iag ra m illu stra tin g alig n m en t of TFIIIA z in c fin g er reg io n along ICR... 178 F ig u re 6.7 O rg an izatio n of the Xenopus 5S rRNA g en es...184

(18)

Figure 7.1 S chem atic d iagram illustrating construction of (A) pUC19-zf4-7; (B) pU C 19-W Tl-B X ...210

F igure 72. Schem atic chart of the PC R -m ediated site-directed

m u tag en esis p ro to co l used to create TFIIIA su b stitu tio n m u tan ts... 212 Figure 7.3 S chem atic diagram show ing the strategy for in tro d u c in g

m u ta tio n s u sin g the T ransform er site-directed m utagenesis k it

(Clontech Inc., 1994)... 214

Figure 7.4 C oom assie blue-stained 15% SD S-polyacrylam ide gel

sh o w in g TFIIIA w ild type and m u tan t p ro tein s... 219

Figure 7.5 C oom assie blue-stained 15% SD S-polyacrylam ide gel

sh o w in g TFIIIA w ild type and m utant p ro tein s... 220 Figure 7.6 C o m p ariso n of the am ino acid sequences of zinc fingers 4-6 of the d o n o r p ro te in p43 w ith the zinc fingers 4-6 of TFIIIA...222 Figure 7.7 S am p le n itrocellulose filter b in d in g curves of TFIIIA w ild type a n d m u ta n t p ro tein s w ith the 58 rR N A gene...225 F igure 7.8 C o m p ariso n of the am ino a d d sequences of zinc fingers 1-4 of the d o n o r W T l-Z F w ith the zinc fingers 4-7 of TFIIIA... 226 Figure 7.9 C o m p e titio n assay of TFIIIA an d TF(4-7)WT for 5 S rR N A b in d in g u s in g tRNA^*^® as a com petitor...229

(19)

List o f Abbreviations

bp: base p a ir

BSA: b ovine se ru m album in

BW S: B eckw ith-W iedem ann syndrom e CAT: C h lo ram phenicolA cetylT ransferase cD N A : co m p lem en tary deoxyribonucleic acid cpm : co u n ts p e r m inute

D D S: D enys-D rash syndrom e deo x y n u cleo tid e trip h o sp h ates:

d A T P , deoxyadenosine triphosphate dC T P, deoxycytidine triphosphate d G T P , deoxyguanine triphosphate d T T P , deoxythym idine triphosphate DEPC: d ieth y pyrocarbonate

D N A : deoxyribonucleic acid D TT: d ith io treito l

E .coli: Escherichia coli

EDTA: ethylenediam ine-tetraacetic acid E G R l: Early G ro w th Response 1

F.U.P.: F o rw ard U niversal P rim er

HEPES: N -2-h y d ro x y eth y lp ip erazin e-N '-2 -eth an esu lp h o n ic acid IC R : in tern al control region

IE: in term ed iate elem ent

IG FII: Insulin-like G ro w th Factor II

IPTG : isopropyl-P-D -thiogalactopyranoside K TS: lysine, th reonine, serine

(20)

G T P, g u a n in e trip h o sp h ate CTP, cy tid in e trip h o sp h ate A TP, a d e n o sin e trip h o sp h ate U TP, u rid in e trip h o sp h ate nucleotide bases: G , g u a n in e C, cytosine A, ad en in e T, th y m id in e N , either A , A , G, or T

PAGE: p olyacrylam ide gel electrophoresis PD GF-A : P latelet-D eriv ed G ro w th Factor A PEG: polyethylene glycol

PM SF: p h en y lm eth y lsu lfo n y l flu o rid e PPG : 2,5-diphenyloxazole

R .U .P.: R everse U n iv ersal P rim e r RB: retin o b lasto m a

R N A : ribonucleic acid R N ase: ribonuclease

(21)

R N P : rib o n u cleo p ro tein rR N A : rib o so m al nucleic acid S: S v ed b erg u n it

SAAB: selected am plification a n d binding

SAAB: S electio n A n d A m plification B inding a ssa y SD S: so d iu m dodecyl sulphate

TBE: Tris b ase, borate, EDTA T FIIIA : tran scrip tio n factor UIA TFIIIB: tran scrip tio n factor UIB TFIIIC: tran scrip tio n factor HIC

T ris-H C l: tris-(hydroxym ethyl) am inom ethane h y d ro ch lo rid e tR N A : tra n sfe r ribonucleic acid

TTK : T ram T racK protein

W A G R : W ilm s' tum our. A n irid ia , u ro G e n ita l m a lfo rm a tio n s, m e n ta l R e ta rd a tio n

W T l: W ilm s' T u m o u r 1 X bo: Xenopus borealis oocyte X bs: Xenopus borealis som atic X lo: Xenopus laevis oocyte X ls: Xenopus laevis som atic XIt: Xenopus laevis trace-oocyte

(22)

T erry W . Pearson a n d Dr. M ichael J. A shw ood-S m ith, for w h ich I a m g ratefu l. I w o u ld also like to m e n tio n Dr. A1 T. M atheson, Dr. E d E. Ish ig u ro a n d Dr. Ju an A usio for th eir assistance.

M y sincere th an k s to all th e m em bers o f D r. R om aniuk's lab - K athy B arilla, Frank Borel, John F erris, Steve H e n d y , M aya Isk a n d a r, C olleen N elson, N ik V eldhoen, Ju d y W ise, Q im in You, an d W ei-Q ing Z an g - fo r their h e lp a n d frien d sh ip . My th a n k s also to th e o th e r g ra d u a te stu d en ts a t the d e p artm e n t w h o d id n 't h e sitate to help: G erry B earon, S io b h an C o w ley , Ben F o rw a rd , Lee A n n H ow e, A rm a n d o Jardim , K izzy M dluli, D m itrii R odionov, C aroline Stebeck.

I a m grateful to A lbert L abossiere an d Scott Scholz, w h o w ere alw ays th e re to help w ith all m an n e r of technical assistance from fixing a c o m p u te r to setting u p a photo room .

I w o u ld very m u ch like to acknow ledge th e h e lp of th e office: R osanne Poulson, M aree Roome, a n d Claire T ugw ell.

I w o u ld also like to th a n k M ario n a n d A r th u r F o n tain e for co n n ectin g m e to Dr. P au l R om aniuk, for their in fin ite k in d n ess, a n d for b ein g like second p aren ts to m e.

(23)

Finally, I w o u ld like to th an k A rth u r H a m ilto n , m y h u s b a n d a n d best frie n d , for his lo v e, patience a n d su p p o rt. W ith o u t h im m y life w o u ld n e v e r be com plete.

D edication

(24)

tra n s d u c tio n e v e n ts occu rrin g a t th e level o f the p lasm a m e m b ra n e . The im m e d ia te -ea rly genes are the e a rlie st d o w n stre a m n u clear ta rg e ts for these e v e n ts. The a ctiv a tio n of these genes is g en erally very r a p id , tran sie n t, a n d in d e p e n d e n t of de novo p ro tein synthesis. A subclass of th e s e g en es encodes tr a n s c r ip tio n fa c to rs, w h ich fo rm the firs t ste p in in itia tio n o f g en etic p ro g ra m s th at w o u ld lead to a n a p p ro p ria te cellu lar response.

T he best characterized m em b ers of th is g ro u p o f im m e d ia te -ea rly genes in c lu d e c -ju n , c-fos, a n d Egr-1. E ach of th e se genes, in tu r n , re p re se n ts a p ro to ty p e for a fam ily of closely related p ro tein s. N u m e ro u s stu d ie s hav e d e m o n s tra te d th a t EGR-1 in d u ctio n is un iv ersal. V arious s tim u li th a t induce EGR-1 expression, as well as d iv erse cell ty p es in w hich EGR-1 ex p ressio n has b e e n d e scrib e d , a re su m m arize d in F igure 1.1. E x tra c e llu la r stim u li th a t in d u c e EGR-1 c an be g ro u p ed in to the follow ing categories: (1) m itogens; (2) d e v e lo p m e n ta l o r d iffe re n tia tio n cues; (3) tis su e o r r a d ia tio n in ju ry ; (4) sig n als th a t cause n eu ro n al excitation. In p ractically every cell ty p e exam ined, EGR-1 ex p ressio n is rap id ly in d u c e d by su c h m itogens as h o rm o n e s , g ro w th fa c to rs, a n d th e tu m o r p ro m o te r TP A (p h o rb o l) (S u k h a tm e e t al., 1987; S u k h atm e e t al., 1988; L au an d N ath an s, 1987; L em aire et al., 1988). V arious

(25)

POGF EGF rr .i lasulin p tty fo h em a g g lu iin in and jdenoune diphofptuic PDCF. »»sopcesiin tenim bFGF. PDCF BB p in ijl hcpafectomir GM-CSF. LPS endochelin angiotensin (I ntvobiasu hqsalocylcs

penptieral blood lymphocytes B lymphocytes

kidney epithelial cells kidney ittesjngial cells skeletal muscle Sol* cells skeletal muscle Sol* cells liver

pentooeal macrophages astrocytes

vascular smooth muscle cells

H y p ertro p h ic

O ille re n tia tiv e

endothelin. angiotensin II

NGF

retinoic acid. DSISO retinoacacid TP A. DMSO

myocyte

pheochrofflocytoma PCI 2 (neunll embryonal carcinoma PI9

embryonal calvarial cells. RCT-1 (osteoblast) myeloid leukemia HL60 and U 9)7

T issue!

radiation in ju ry ischemia ioniang tadialion

kidney 29). SQ-20B

N euronal ecciCatioo potassium ions metrazole NMDA visual stimuli efccnooonvTilstve shock therapy, dopattiine receptor activation, opiate withdrawal

peripheral nervous system

PCI 2 (depolaricatioo) seizures in vivo hippocampus visual ctxtci CNS

sciativc nerve transecirao

O ther MOCK. IXC-PKi leital epithelial celli

F ig u re 1.1 Biological processes m ed iated b y EGR-1 in response to d iv erse stim u li (C ashier & Sukhatm e, 1995).

(26)

im p o rta n t role o f EGR-1 in n e u ro n a l signaling. For ex am p le, EGR-1 lev els increase d ram atically in the b ra in follow ing seizu re activity (S ukhatm e e t al., 1988). A d ra m a tic in c re a s e in EGR-1 lev els is o b s e rv e d fo llo w in g e le ctro co n v u lsiv e sh o ck th e ra p y , d opam ine rec ep to r activ atio n , a n d o p ia te w ith d ra w a l (Bhat e t al., 1992). Finally, the expression of EGR-1 in d ev elo p in g a n d a d u lt b ra in em p h asizes th e im portance o f EGR-1 in neu ro p h y sio lo g ical processes (W atson a n d M ilb ran d t, 1990). Thus, EGR-1 m ed iates resp o n ses of e n o rm o u s co m p lex ity . I t acts in different cellu lar co n tex ts a n d is a b le to re sp o n d to a m u ltitu d e o f extracellular signals.

All m em bers o f th e EGR fam ily share h ighly sim ilar, C2H2 zinc fin g er

D N A -b in d in g m otifs. A t p re se n t, the closest m em bers o f th e EGR fam ily of tran scrip tio n al reg u la to rs are: EGR-2/Krox20 (C havrier e t al., 1988; Josep h e t al., 1988), EGR-3 (P a tw a rd h a n e t al., 1991), a n d E G R -4 /N G F I-C /p A T 1 3 3 (P a tw a rd h a n e t al., 1991; C ro sb y e t al., 1991; M uller e t al., 1991). A ll o f the above p ro tein s h av e zinc finger dom ains th at are v irtu ally id en tical to th a t of EGR-1 (Figure 1.2). T he EGR-1 zinc-finger d o m ain is o v e r 95% id en tica l to th a t o f EGR-2 (Joseph e t al., 1988) a n d 91% identical to th a t o f EGR-3 a t the am in o a d d level (P a tw ard h a n e t al., 1991). The resid u es im p o rta n t for specific

(27)

d g r i WTI Spl K p r R P R K r p H R P s K T P L H E R P H A r. R f F K 1, S H L 0 K H s R K H T C E K P r 0 T c p Y c K 0 s E c R C s C D P C K K K 0 H ( - - I S L« 2 1 . -Egr-1 CD c p V E S C o R R F S R S D E L T R K I R I H T C Q K P F O E ff-2 CD c p A E C C o R R F S R S 0 E L T R K I R I H T C H K P F O Egr-Î CD c p A E C C 0 R R F S R 5 0 E C, T R H E R I H T C H K P F O WTI C2) c 0 F K 0 C E R R F S R S 0 Q L K R H Q R R H T C V K P F Q Spl CD c K C Q C C c K V r c £] T S K L R A H E R W H T C E R P F H - . I S LS 21 • Egr-1 C2) c R t - - c K R N F S R 5 0 H L T T H I R T H T C E K P F A Egf-2 (2 ) c R c - - c K R N F S R S D K L T T H I R T K T C E K P F A Egr-3 (2 ) c R I - - c K R S F S R S 0 K L T T K I R T K T C E R P F A WTI O ) c K T - - c Q R K F S R S 0 H L K T K T R T H T C Q R P F S Spl C2) c T W S V C C K R F T R S 0 E L Q R K R R T H T C E R R F A M IG l (1 ) c P I - - c K R A F H R L E K 0 T R K K R I H T C E R P H A . . L S 1 1 2 1 * . • . . . . £ g r-l C3) c - - o r e C R K F A K S O e R R R H T R I H E R Q K O K R A O R s V V Egf-2 ( 3) c - - o r e C R K F A R S 0 E R R R K T R I H E R Q R E R R S S A p S A Egr-3 ( 3) c - - E F c C R K F A R S D E R R R K A R I H E R Q R E R R A E R c c A WTI W c R w e s c Q K K F A R S 0 E t V R H H H K H Q R N K T K L Q L A L • Spl (3) c - - P E C p K R F K R S 0 K L S R H X R T H Q H R R C C P C V A L s V M IGl (2) c 0 F p c c V K R F S R S 0 E L T R K R R I H T M S K P R C R R C R RK a - h d i x

F ig u re 1.2 C om parison of D N A -b in d in g d o m ain s of the EGR-1 fam ily of proteins. 25nc fingers a n d adjacent sequences o f the EGR-1 fam ily of proteins a re alig n ed . C onserved cysteine a n d histid in e residues are m ark e d (•); the a~ helical reg io n is u n d erlin ed ; c o n serv ed resid u es im p o rtan t fo r d eterm in in g b in d in g speciH dty are enclosed; b asic resid u es are d en o ted (+) (C ashier & S ukhatm e, 1995).

(28)

T he W ilm s' tu m o r g en e p ro d u c t h as fo u r zinc fin g ers, th re e o f w h ich p o ssess r e la te d b u t less h o m o lo g o u s z in c finger D N A -b in d in g d o m a in s (ap p ro x im ately 65% id en tity to the EGR-1 zinc finger d o m ain ) (G essler e t al., 1990; C all e t al., 1990). T he m am m alian ubiq u ito u s tran scrip tio n a l a ctiv a to r S p l has th re e related zinc fingers (K adonaga e t al., 1987). S p l fin g er 2 is m ost sim ilar to EGR-1 fingers 1 a n d 3 (K adonaga e t al., 1987). A nother d is ta n t

m em b er o f th e EGR fam ily o f p ro tein s is a yeast p ro te in M IG l in v o lv e d in resp o n ses to glucose re p re ssio n (N eh lin a n d Ronne, 1990). It c o n ta in s tw o zinc fin g ers th a t are m o st sim ilar to th e second a n d th ird fingers o f EGR-1 p ro tein , w ith 60% id en tical resid u es (N e h lin an d R onne, 1990). O u ts id e the zinc fin g ers, MIG-1 has n o obvious sim ila rity to other p ro tein s. T his absence o f seq u en ce co n serv atio n o u tsid e the z in c finger m otifs is a c o m m o n fin d in g a m o n g C2H2 zinc fin g er p ro tein s. T h erefo re, a c o m p a riso n o f th e fam ily

m em b ers m u s t rely o n a n a lig n m e n t o f fin g er seq u en ces. S tu d ie s o f th e im m e d ia te -e a rly p ro tein s a n d d o w n s tre a m p ro m o te r elem en ts th e y ta rg e t w ill c o n tin u e to en h an ce o u r k n o w le d g e o f p ro tein -D N A in te ra c tio n s a n d general m ech an ism s of tran scrip tio n a l a ctiv a tio n an d rep ressio n .

(29)

C o n s is te n t w ith its role in c ellu la r p ro life ra tio n a n d d ifferen tiatio n , EGR-1 b in d s a n d re g u la te s genes in v o lv e d in th e s e fu n ctio n s. Som e d isc u ssio n follow s o n th e best d o cu m en ted instances th a t involve re g u la tio n by EGR-1.

P latelet-d eriv ed g ro w th factor A (PDGF-A) is a p o te n t m itogen w h ich is p resen t a t elev ated lev els in response to g ro w th factors o r cytokines (W ang a n d D eu el, 1992). A n EGR-1 b in d in g site h as been d e fin e d in the p ro m o te r reg io n o f th e PD G F-A g en e (W ang a n d D euel, 1992). T h e DNA fra g m e n t b o u n d b y EGR-1 h a s th e follow ing seq u en ce: G A G -G A G -G A G -G A G G A . A lth o u g h th is site d e v ia te s from th e co n sen su s EGR-1 b in d in g seq u en ce, w h ic h is G C G -G /T G G -G G G , it c o m p e te s e q u a lly w e ll in th e g e l-sh ift c o m p e titio n e x p erim en ts. Sim ilar m o tifs h av e been id e n tifie d in p ro m o te rs o f o th er g ro w th -re la te d genes, such as th e insu lin recep to r, th e tu m o r g ro w th factor P, th e ep id erm al g ro w th factor recep to r, c-myc a n d c-Ki-ras (W ang an d Deuel, 1992).

A n o th e r gene w h o se exp ressio n is reg u la te d b y EGR-1 is th y m id in e kinase (tk), a n im p o rta n t p lay er in D N A biosynthesis. U sin g m onoclonal anti - EGR-1 a n tib o d ies, it w as show n th a t EGR-1 w as one o f th e com ponents of th e tk p ro m o te r co m p lex o b tain ed fro m se ru m -s tim u la te d n u clear e x tra ct (M o ln a r e t a l., 1994). F u rth e r tr a n s ie n t tr a n s f e c tio n e x p e rim e n ts d e m o n s tra te d th at EGR-1 activates a rep o rte r d riv en by a tk p ro m o ter elem ent (M olnar e t al., 1994).

EGR-1 has b een sh o w n to be re q u ire d for d ifferen tiatio n of m yeloblasts a lo n g th e m a c ro p h a g e lin eag e (N g u e n e t al., 1993). T h e use o f EGR-1 a n tis e n s e o lig o m e rs in th e cell c u ltu r e m e d iu m r e s u lte d in b lo c k e d m a c ro p h a g e d iffe re n tia tio n in n o rm a l m y elo b lasts a s w e ll as m y e lo id

(30)

M H C in d u c tio n a p p e a rs to be tissue-specific since it w as o b se rv e d in the m yogenic Sol8 cell line, b u t n o t in N IH 3T3 fibroblasts (G upta et al., 1991).

EGR-1 is ex p ressed a t high level in the rat a d re n a l g lan d a n d in PC12 cells as d em o n strated b y E lbert et al., (1994). A pro p o sed function for EGR-1 in a d ren erg ic d ifferen tiatio n m ay be via reg u latio n o f p h e n y le th a n o la m in e N - m e th y ltra n sfe ra s e (PN M T) (PN M T is a n a d re n a l e n zy m e t h a t co n v erts n o re p in e p h rin e to e p in e p h rin e ) (E lb ert e t al., 1994). T he a n a ly sis o f the PN M T p ro m o te r rev ealed th a t it co n tain s tw o p o ten tial EGR-1 b in d in g sites, o n e of them differing o n ly b y one n u cleo tid e from the EGR-1 co n sen su s DNA b in d in g sequence. T ran sien t transfections show ed th a t EGR-1 c an stim u la te a PN M T rep o rter by fourfold (Elbert e t al., 1994).

D esp ite th e a b u n d a n c e of d a ta o n EGR-1 in d u c tio n b y m ito g en ic sig n als, a d d itio n a l EGR-1 gene ta rg e ts a w a it elu cid atio n . F in ally , in vitro stu d ies of th e EGR-1 in v o lv em en t in cellu lar p ro liferatio n an d d ifferen tiatio n n e e d to be correlated w ith th e in vivo role o f EGR-1.

(31)

U sin g d iffe re n tia l sc re e n in g tec h n iq u e s, se v era l g ro u p s se t o u t to id e n tify novel g e n es w hich h a v e a low level o f e x p ressio n in n o n d iv id in g cells b u t w hich a re rap id ly u p -re g u la te d in cells stim u lated b y m itogen. T he fo llo w in g criteria w ere used to isolate su ch novel genes: (1) tran scrip ts sh o u ld

be ra p id ly and tran sien tly in d u ced b y serum stim u latio n of q u iescen t cells; (2)

these genes sh o u ld be in d u ced w ith o u t in terv en in g p ro tein sy n th esis, i.e. th e in d u c tio n sh o u ld n o t be affected by inhibitors o f p ro tein sy n th esis, su c h as cy clo h ex im id e; (3) e x p ressio n s h o u ld be in d u c e d by a w id e sp e c tru m o f m ito g en s, such as g ro w th factors, horm ones, a n d o th e r ligands; (4) ex p ressio n sh o u ld b e in d u ced in a broad a rra y o f cell types; a n d (5) the genes sh o u ld be h ig h ly co n serv ed in evolution.

T h e novel im m e d ia te -e a rly g en e has b e e n clo n ed by a n u m b e r of research groups. Sukhatm e e t al. (1987, 1988) id en tified a gene d esig n ated Egr- 1 . T he au th o rs u se d a d ifferential screening tech n iq u e to screen a lib ra ry fro m B A L B /c 3T3 cells s tim u la te d w ith s e r u m in th e p re s e n c e o f cyclohexim ide. C lones w hich preferen tially h y b rid iz ed to cD N A from se ru m a n d cyclohexim ide-treated fibroblasts w ere id en tifie d by co m p arin g th e m to cD N A from q u iesce n t cells. A 3.4-kb tra n sc rip t a p p e a re d u p o n m ito g e n ic stim u la tio n of a v a rie ty of cell ty p e s, a n d w as d e sig n a te d Egr-1. U sin g a s im ila r d iffe re n tia l sc ree n in g s tra te g y , M ilb ra n d t (1987) in d e p e n d e n tly i s o la te d a t r a n s c r ip t n a m e d N G F I - A , w h ic h w as a c tiv a te d in r a t p h eo ch ro m o cy to m a PC12 cells b y n erv e g ro w th factor, an d is a ra t an alo g of the m o u se Egr-1. The sam e g en e h as been in d e p e n d e n tly clo n ed b y o th e r g ro u p s, u sing a sim ila r approach: zif268 w as c lo n ed from se ru m -stim u la te d 3T3 fib ro b la sts fro m B A LB/c m ice (L au a n d N a th a n s, 1987); tis8 w a s id e n tifie d as a p h o rb o l-in d u c ib le g en e in 3T3 cells (Lim e t al., 1987); th e

(32)

seq u en ce o f th e p ro te in is highly c o n se rv e d across sp ecies, in d ic a tin g the im p o rtan ce o f th e Egr-1 gene p ro d u ct. C o m p le m en tary D N A s firom h u m a n (Suggs e t al., 1990), r a t (M ilbrandt, 1987), m o u se (S u k h a tm e e t a l., 1988; Lem aire e t al., 1988; C h risty et al., 1988), chicken (S im m o n s et al., 1989), and zebrafish (D ru m m o n d e t al., 1994) are h ig h ly sim ilar. T he p ro d u c t o f th e Egr- 1 gene is a p ro te in o f 80-82 kOa (Cao e t al., 1990). C ell firactionation stu d ies an d im m u n o c y to c h e m is try d e m o n s tra te d th a t EGR-1 is lo ca liz ed to the nucleus, w h ic h is co n sisten t w ith its p u ta tiv e D N A -b in d in g fu n ctio n (C ao et al., 1990; D ay e t al., 1990). Further ex am in atio n of th e a m in o acid se q u en c e of the EGR-1 p ro te in sh o w e d it to c o n ta in basic resid u es c lu ste red in th e zinc fingers a n d th e a d ja c e n t sequence (F ig u re 1.3B). T he a m in o -te rm in a l am ino a d d s are rich in p ro lin e a n d serin e-th reo n in e resid u es, o rg a n iz e d in stretch es o f tree to five c o n se c u tiv e am in o a cid s. T here is o n e series o f se v en consecutive se rin e -th re o n in e resid u es, w h ic h is fo llo w e d b y se v en g ly d n e s (Figure 1.3B). T he carb o x y l term in u s o f th e EGR-1 p r o te in is also ric h in pro lin e a n d s e rin e /th re o n in e residues. T he regions o f th e p ro te in c o n tain in g proline am in o a d d s a re predicted to lack a-h elical se c o n d a ry stru c tu re ,

(33)

100 Egr-1 residues ZOO 300 400 SOO $33 1 1 p isn 1--- r Sci/Thr-nch T

K«C Al« Al« 4ia Ly* K l^ Clu H«C Clci L«u K«C Sfi£ ^ro Leu Cli* t i « s^ f Kmp Pro Mm C ty S er ptM fr o « i * Sey Pro LLc M*c Amq AMt DgC Pro L^s Leu Clu Clu Mec Not. Lou Lou S#r 4sn c t y Ato Pro Cln ft»« Leu Cty Ale A la C ly Qlc Pro Clu C ly S e r C l y C ly Asa S er t e r t # f tmf TTtf t e r Cly C ly C ly c l y C ly C^j^ C ly S e e Asa ^ o r C l y t o f S ^ r A lo Ptte Asm Pro Clm C ty Clu Pro Scjc Clu Glm Pro_;Da2 Clu Hi* Leu Ttir Ttir c l u S er Pbo t e r Asp l i e A l» Leu Asm Asm Clu ty * A le Net VmI

Clu TSr Kmr- ism- pyQ SoT C la Thr THr Afg Lou Pro Pro l i e Ttir Tvr t n r c l y Axg Ptie

S ec Leu Clu Pro A le Pro Asa S e r c l y Asm Ttir Lou Trp Pro Clu Pro Leu Pbe SeC L w v » l S ec c t y Lou V o l t o r Met Zhg Asa Pro Pro Thr t e r t e r t e r S er A le Pro SfiC Pro

Al« At» t e r g e r t o r t e r t o r A la t e r Clm t e r Pro Pro Leu SfiC Cys AI» V»I Pro S ec 19 Asa Asp t e r t e r p r o t l o Tyr t e r A l» A l» Pro f i i c Pro ZbC ^ro Asa %hC Asp t i e

Pho Pro Clu Pro O la ScC C la A la Pbe Pro C ly SfiC A la C ly The. A la Leu C la XXL. g o Pro Pro A la i v y P ro A la f h r Lys C ly C ly Pbo C la P a l Pro Met ( t o Pro Asp Z3S tc u

Pbe Pro C la C la C l a C l y Asp Lou S c c Lou C ly Thr Pro Asp Cla Lus Pro A a C la C ^ Lou Clu Asa Arg %bC C la C la Pro t f ^ Lau t b r pro Lou t e r Thr t i e Ly* A la Pbe Ala

Z2lC C la S e c C ly t o r C la Asp Lou Lys A la Low Asa Tbr Tbr Tvr C la t e r C la Lau Lyt Pro t e r Arc Kac A rc Lys Tyg Pro Asa Arg Pro t e r L n XSiL Pro Prof C is Clu Argi

Pro Tyr A la^ ÿ ^ Pro V a l C lu t o r A s p Arg Arg Pbo t e r Arg t o r Asp C lu Lou A rgi l s ) H e Arg t l a ^ S ^ t b r C ly C la Lys Pro Pbo C l a A r g t l o 0 y o ) wec Arg Asaj Pbe t e r Acg t e r A sp > £ s Lau Tbr t h r ^ Z ^ t l o Arg Tbc( g £ i ) Tbr C ly Clu Lys Pro g o

A la ^ y s ) Asp I l a 6 ^ ) c l y Arg Lys Pbo A la Acg t o r Asp c l u Arg Lys Arg ^ i ^ Tbr Lys Lou A rc C l a L ys Asp Lys Lys A la As p Lys t e r V I v » l Ala t e r Pro A la ^ a t e r t e r Lew t o r t a r Tyr Pro t o r Pro P al A la Tbr t e r Tyr Pro t e r Pro A la t b r t b r

t e r Pbe Pro t o r P ro v a l Pro Tbr t e r Tyr t o r t e r Pro CLy t e r t e c Tbr Tyr Pro Pro A la His t a r C l y Pba Pro t o r Pro t o r V al A la Tbr Tbr fbe Ala t e r v » l pro Pro

A la Pbe Pro Tbr C la V a l t a r t o r Pbo Pro t o r A la C ly Val t e r t o r to r Pbo t e r Tbr

SN

t e c Tbr C ly Lau t a r Asp Mac Tbr Ala Tbr Pbo t o r Pro Arg Tbr l i e Clu t l o Cys $31

(34)
(35)

EGR-1 m ay b e subject to phosphorylation. In d eed , alkaline p h o sp h a ta s e w as sh o w n to c o n v ert slow m igrating fo rm of EGR-1 to the faster m ig ra tin g fo rm as se e n o n SDS-PAGE (Cao e t al., 1990; Day et al., 1990).

F u rth e r s tru c tu re -fu n c tio n a n aly sis o f EGR-1 p r o te in d e fin e d its a c tiv a tio n , r e p re s s io n , D N A b in d in g a n d n u c le a r lo c a liz a tio n d o m a in s (G ash ler e t al., 1993), su m m a riz e d in a d ia g ra m in F ig u re 1.4. T hus, th e o rg an izatio n o f EGR-1 is m odular in nature, w h ich is ch aracteristic of m any classical tran scrip tio n factors. A p o te n t activational d o m ain w a s m a p p e d to th e se rin e - a n d th re o n in e -ric h a m in o te rm in a l d o m a in , u s in g d e le tio n a n aly sis of EGR-1 (G ashler e t al., 1993). T hese EGR-1 a c tiv a tio n seq u en ces w e re sh o w n to b e in d e p e n d e n t d o m ain s by p la c in g th em in th e context o f o th e r proteins. W h en residues 3-281, or 3-138, o r 138-281 w e re fu se d to th e D N A -b in d in g d o m a in o f the y east factor GAL4, th ey a c tiv a te d tra n sc rip tio n 100-fold as GAL4 fusions (Gashler e t al., 1993). T hese findings w e re confirm ed b y stu d y in g N G FI-A protein, the r a t hom olog o f EGR-1 (R usso e t al., 1993). A w e a k tra n sa c tiv a tio n d o m ain w as m a p p e d by sev eral la b o ra to rie s to the C - te rm in u s of EGR-1: am in o acids 420-533 (R usso e t al., 1993; G a sh le r e t al., 1993).

A re p re ssio n d o m ain of EGR-1 was id e n tifie d w h e n a sm a ll in te rn al d e le tio n 5' to th e zinc-finger d o m ain (am ino acids 284-330) re s u lte d in alm o st 5-fold increased tran sactiv atio n in H eLa cells (G ashler e t al., 1993). This w as a n u n ex p ected fin d in g . Further experim ents h av e sh o w n th a t th is rep ressio n d o m a in is also m o d u la r in nature, since it could b e fused to th e D N A -binding d o m a in of GAL4, a n d represses tran scrip tio n 7- to 10-fold (G ash ler e t al., 1993). T h is s e r in e / th r e o n in e - r ic h d o m a in is h ig h ly c o n s e rv e d i n e v o lu tio n (D ru m m o n d e t al., 1994), an d is d istin c t from rep ressio n d o m a in s o f other tran scrip tio n al re g u la to rs, such as th e alanine- a n d g ly d n e -ric h rep re ssio n

(36)

4 1 7 *1» L K Q K D K K K O K f f V V X f f

too

Egr*I am ino acids

200 300 S M S3) 1 1 ^ PWT "T r S c r/T h r-rich rZTE A c t i r a d o a Repression DNA blading N u d e s r localization s tr o n g m U l 314 331 413 313 33# 331 413

F ig u re 1.4 S u m m ary of EGR-1 functional d o m ain s.

(A ) A m ino a d d sequence o f EGR-1 re p re ssio n dom ain a n d zin c fingers. (B) Schem atic m a p o f EGR-1 d o m a in s (Gashler & Sukhatm e, 1995).

(37)

d o m a in in K ru p p e l (Licht e t al., 1990), hydrophobic- a n d proline-rich Even- s k ip p e d re p re s s o r (H a n a n d M anley, 1993), or p ro lin e - an d g ly c in e -ric h re p re s s o r o f W T I (M ad d en e t al., 1993). The fact th a t 7 o u t of 24 a m in o a d d re s id u e s o f th e EGR-1 re p re ssio n do m ain are serine o r th reo n in e su g g e sts th at the re p re s s io n function m a y be regulated by phosphorylation.

C o n s is te n t w ith its tra n sc rip tio n a l re g u la to ry fu n ctio n , EGR-1 w as sh o w n to localize to the n u d e u s (Cao e t al., 1990; D ay e t al., 1990). G enerally, n u d e a r lo calizatio n signals are short stretches of 8 - 1 0 a m in o a d d s rich in basic

a n d p ro lin e re sid u e s (Silver e t al., 1984). In EGR-1, th e only reg io n s rich in basic resid u es are the th ree zinc finger reg io n and the ad jacen t stretch o f basic a m in o a d d s , su g g e stin g th a t the n u d e a r localization sig n a l resid es in those seq u en ces. U sin g a series o f deletion m u ta n ts of EGR-1 alo n g w ith su b cellu lar frac tio n a tio n a n d W estern b lo t analysis, am ino a d d s 315 to 429 w ere sh o w n to be im p o rta n t for p ro p er targ e tin g to the n u d e u s (Day e t al., 1990). H o w ev er, the z in c fin g er reg io n a lo n e (amino a d d s 331 to 419) w as not su fficie n t for n u d e a r lo ca liz atio n of th e protein. The basic seq u en ce 5' to the z in c finger d o m a in (am in o a d d s 315 to 330) was also required fo r nuclear targ e tin g (Day e t a l., 1990). T h u s, EGR-1 has a b ip a rta te nuclear lo calizatio n sig n a l, the la rg e st p o rtio n o f w hich c o in d d e s w ith the D N A -binding dom ain.

1.1.4 D N A -b in d in g fu n ctio n o f EGR-1

T he D N A sequence to w hich EGR-1 binds w as in itially id en tified based o n th e a s s u m p tio n th a t EGR-1 re g u la te s its o w n e x p re ssio n a n d m ig h t, th erefo re, b in d to the 5' u p stre a m flanking sequence o f th e Egr-1 gene (C hristy a n d N a th a n s , 1989). U s in g bacterially ex p ressed EGR-1 p ro tein , s p e d fic b in d in g to o n e p ro m o te r frag m en t w as observed in g el m obility sh ift assays (C h risty a n d N a th an s, 1989). This b in d in g site w as lo ca te d w ith in 650 base

(38)

EGR-1 is the first C2H2 zinc fin g er p ro tein fo r w h ich a high reso lu tio n

stru c tu re w as obtained. The stru ctu re o f the com plex consisting of th e cloned th re e zin c finger p e p tid e and the 12-bp DNA c o n ta in in g the specific 9-bp se q u e n c e h as b een so lv e d at 2.1-Â reso lu tio n (P a v le tic h a n d P ab o , 1991) (F ig u re 1.5). The stru c tu ra l in fo rm atio n o b tain ed in this stu d y se rv e d as a topological blueprint for other m em bers of the zinc fin g er fam ily. T his EGR-1 - D N A com plex w as recently refined a t 1.6 Â (Elrod-E rickson et al., 1996). The n ew stru c tu re confirm s all the basic features of th e 2 .1 Â m odel, a n d reveals

a d d itio n a l critical details o f the com plex.

T he crystal stru c tu re s show th a t the th ree fin g ers w ra p a ro u n d the d o u b le helix, describing a C shape (Figure 1.6). T h e overall alig n m en t o f the fingers o n the DNA is antiparallel (finger 1 binds n e a r the 3' end, a n d finger 3 b in d s n e a r the 5’ en d o f the 5 -GCGTGGGCG-3' c o n sen su s b in d in g site). [The m o d e o f TFIUA - D N A in teractio n is also a n tip a ra lle l, w ith m o st o f the c o n tacts involving the guan in e-rich stra n d of th e D N A (Sm ith e t al., 1984; V ran a e t al., 1988)]. T he a-h elices o f the zinc fin g e rs a re tip p e d a t ca.45° rela tiv e to th e plane o f the base p airs; therefore, th e y are only ap p ro x im ately a lig n e d w ith the m ajor groove. T he N -term inal e n d o f each a -h e lix m ak es specific contacts w ith th e base pairs, each helix in te ra c tin g p rim arily w ith the 3-bp su b se t o f the 9-bp consensus b in d in g site.

(39)

- 1 1 2 3 6 M E R P Y A C P V E S C D R R F S R I S D E L T R H I RI H TIg Q K 1 5 10 15 20 25 30 P F Q C R I - - C M R N F S R IsD H L T T H I R T HtI G E K 35 40 45 50 55 60 P F A C D I - - C G R K F A R IS D E R K R H T K I H L k o K D 65 70 75 80 85 P-sheets a-helix

B

1 2 3 4 5 6 7 8 9 10 11 A G C G T G G G C G T C G C A C C C G C A T

F ig u re 1.5 Sequence of the EGR-1 zinc finger p ep tid e and o f th e DNA binding site u se d in cocrystallization. (A) Sequences of the three zinc fingers are alig n ed by conserved residues a n d secondary stru ctu re elem ents, a-helices a re enclosed in boxes, and P-sheets are indicated by arrow s. T he conserved cysteine an d h istid in e residues a re h ighlighted in bold. (B) Sequence of the d u p lex oligonucleotide used in cocrystallization (Pavletich & Pabo, 1991).

(40)

Hnger 1

F ig u re L6 T he o v e ra ll arran g em en t of the th ree zinc fingers o f EGR-1 in the

(41)

T he N -term in al s tra n d o f each P-sheet m akes n o contact w ith D N A , w h ile th e m o re C -term in al s tra n d contacts the s u g a r-p h o sp h a te b ackbone a lo n g o n e D N A stra n d . T he am in o acid side ch ain s d irec tly in v o lv e d in contacts w ith the D N A bases lie at a-helical positions -1, 2 ,3 , a n d 6 (num bered

relativ e to th e first resid u e in each a-helix). Base specific contacts id en tified in th e o rig in al crystal stru c tu re are prim arily h ydrogen b o n d s w ith the G -rich stra n d o f th e D N A (Figure 1.7). The higher resolution stru ctu re p ro v id es a m o re d e ta ile d view o f th e EG R -l-D N A interface w ith m ore d irec t a n d w ater- m e d ia te d contacts. T he su m m a ry of d irect base a n d p h o sp h a te contacts is sh o w n in F igure 1.8. W ater-m ed iated an d v an d e r W aals co n tacts to bases a n d p h o sp h a te s are su m m arize d in Figure 1.9.

M an y fea tu res o f th is com plex w ere correctly p re d ic te d by sequence a n a ly s e s a n d m u ta tio n a l s tu d ie s (N a rd elli et al., 1991). S ite -d ire c te d m u ta g e n e sis ex p erim e n ts w ith D N A -binding d o m ain s of Krox-20 a n d S p l p ro te in s su b s titu te d the n o n h o m o lo g o u s am ino acids in the rec o g n itio n a - helices a n d resu lte d in in terco n v ersio n of the specificity of the m u ta n t finger (N a rd elli e t al., 1991). T hus, ev en p rio r to the so lu tio n o f the EGR-1 crystal stru c tu re , som e of the base-contacting positions had alread y been identified.

Fingers 1 an d 3 have identical residues at positions -1, 2, 3 a n d 6 of the

a-h elix : R, D, E, R, w h ereas finger 2 has R, D, H, a n d T a t the c o rresp o n d in g p o sitio n s. Fingers 1 a n d 3 m ake tw o p rim ary contacts to the g u a n in e s of the G C G su b site u sin g the g u a n id in iu m g ro u p o f the arginines to h y d ro g e n bon d w ith th e N 7 a n d 0 6 of th e g u a n in e s in each su b site (Figure l.lO A ). The in te ra c tio n o f arg in in e w ith g u an in e w as predicted to p lay a n im p o rta n t role in s e q u e n c e -s p e c ific re c o g n itio n b a se d o n its u n iq u e s te re o c h e m ic a l c o m p le m e n ta rity (Seem an e t al., 1976). Indeed, these contacts a re the m ost p ro m in e n t ones in the EGR-1 - D N A complex. These arg in in es also in teract

(42)

Finger 2

His 49

Arg 46

Finger 1

Arg 24

Figure 1.7 Sketch su m m arizin g the principal amino ad d -b ase contacts as seen in the original EGR-1 X -ray structure (Pavletich & Pabo, 1991).

(43)

F in g e r 3 ( ,6 1 Arg 8 0 His 5 3 |(,2 ) Asp 76 N ^ r g T i A n g e r 2 Arg 4 2 -— ■ His 2 5 . S a r 4 5 (+3) His 49 |( * 2 ) A s p ^ - ( - l ) A f g R n g e r l (♦6) Arg 24

) (

|( » 2 ) A s p 2 0 - ( - l) A /g 1g (Finger 3)

Figure 1.8 S um m ary o f d irect base a n d phosphate co n tacts in E G R -l-D N A com plex. T h e n u m b e rs in p a re n th e sis in fro n t o f a m in o acids a r e th eir positio n s w ith in a -h e lic es. Boxes in d ic a te coupled re s id u e pairs. A rro w s in d icate h y d ro g e n b o n d s; d o tte d a rr o w s rep resen t b o n d s w ith m a rg in a l geom etry (derived fro m Elrod-Erickson e t al., 1996).

(44)

( -2 )S e r 17 (♦€) T h r5 2 ( ♦ » « i s 4 9 -— (♦^2) A sp 48 (-1) Arg 46 M l S e r 47 (r-2) Asp 48 R o g e r 1 R o g e r t 48) Arg 24 (*3) Glu 21 (♦2) A sp 20 (-1) Arg 18

c

(♦S) Thr 23 ( 4 l ) S e r 19

Figure 1.9 S u m m ary o f w ater-m ed iated a n d vsm d er W aals contacts to bases an d p h o sp h a tes in EGR-1 - D N A com plex. The n u m b ers in p a re n th esis in front of am in o a d d s a re th eir p o sitio n s w ith in a -h e lic e s . Boxes in d ic ate coupled re s id u e p a irs. A rro w s in d ic ate w a ter-m ed iated contacts. Sm all n um bers sh o w n o v e r th e a rro w s in d ic a te th e n u m b er o f w a te r-m e d ia te d bonds. D otted arro w s re p re se n t van d e r W aals contacts.

(45)

B ase pair 4 b r Finger 3 )

020 in Finger I (0 4 8 InFingefZ: RI8 In Fingar 1 076 in Finger 3 ) (R46 InFIngerZ:

R74 In F in g e rs )

B B esepeir'S br Finger I

( Base pair2 b r Bnger 3 )

n H 8eeepelr6 N.—

•H----/

---(R80 lnR na«r3)

Figure 1.10 D raw ings o f am ino a d d -b a se p a ir contacts o f the EGR-1-DNA complex: (A ) D raw ing o f th e A sp-A rg-guanine in teractio n that occurs in all three zinc fingers; (B) D raw ing of the A rg-guanine interaction that is p resen t in fingers 1 a n d 3; (C) D raw in g of the H is-guanine interaction seen in finger 2 (Pavletich & Pabo, 1991).

(46)

The n e w 1.6 Â stru c tu re helps e x p lain th e ro les of the a s p a rtic a d d residues a t p o sitio n 2 of th e recognition helices. The crystal stru c tu re show s th a t the A rg -1 /A sp 2 re sid u e pairs m ake w a te r-m e d ia te d c o n tacts w ith the cytosine w h ic h is base p a ire d to the g uanine co n tacted by A rg -1 (as w ell as w ith the p h o sp h a te on th e 5' side of this guanine). T hese contacts a re seen in all three zinc fingers. In fingers one an d th ree, th ese a sp a rta te s also m ake w ater-m ed iated contacts w ith the neighboring base 5' o f the critical guanine. For instance. A sp +2 in fin g er 1 m akes a w ater-m ed iated contact w ith cytosine

9, and an analogous contact is m ade by Asp +2 of finger 3 to the N 4 o f cytosine 3 (Figure 1.9). The cry stal stru ctu re show s th a t A sp +2 of fin g er 2 clearly contacts cytosine 8', an d tentatively suggests th a t A sp +2 residues firom fingers

1 and 3 form s w eak in teractio n s w ith a base p o sitio n e d o u tsid e th e canonical triplet on the secondary, C -rich strand of the D N A (Figure 1.8). In th e original X-ray stru c tu re one of the oxygens of the aspartic a d d w as sh o w n to be w ithin hydrogen b o n d in g distance to a neighboring base o n th e parallel, C -rich strand o f the DN A. H ow ever, since the H -b o n d in g g eo m etry w as n o t id e a l, these contacts w e re p resu m ed u n im p o rta n t for rec o g n itio n (P avletich a n d Pabo, 1991). M ore favorable g eo m etries w ere o b se rv ed in th e re fin e d stru c tu re (Elrod-Erickson e t al., 1996). For exam ple, w h en A rg -1 o f finger 3 co n tacts G4,

(47)

c o n ta c ts As* (th e c o m p lem en tary base to T5 o n the o p p o s ite stra n d ) (F igure

1.8). Such c o n ta ct w as clearly d e m o n stra te d for finger 2 (A sp48 in te rac tin g w i t h Cg ). T he c o rre sp o n d in g in teractio n s fo r fin g ers 1 a n d 3 h a d less fav o ra b le stereochem istry.

T h ere a re sev eral p ie c e s o f e v id en ce su g g e s tin g t h a t th is c o n ta c t c o n trib u te s to reco g n itio n in o th e r zinc fin g er p ro te in s . I n th e co cry stal s tru c tu re o f th e Drosophila re g u la to ry p ro te in T ram track c o m p le x e d w ith its D N A the h o m o lo g o u s a sp artic acid in th e seco n d zinc fin g e r w a s sh o w n to m a k e d irec t h y d ro g e n b onds w ith the seco n d ary D N A s tr a n d (F airall e t al., 1993). R eplacem ent o f the asp artic acid by alanine in the se c o n d zin c finger o f th e S. cerevisiae A D R l p ro te in resu lte d in sig n ific an t r e d u c tio n o f p ro te in b in d in g to its cognate site (T hukral e t al., 1991; T hukral e t al., 1992).

Several biochem ical stu d ie s also p ro p o se the in te ra c tio n o f A sp +2 w ith th e p a ra lle l s tra n d o f the D N A . Zinc fin g er p h ag e d isp la y se lec tio n stu d ie s p ro v id e d o rig in al su p p o rt for th is interaction. The tech n iq u e o f p h a g e d isp lay m a k e s u se o f th e e x p re ssio n of zinc fin g e r reg io n s t h a t c a rry p a rtia lly ra n d o m iz e d rec o g n itio n h elices as p a rt o f a p h a g e c o a t p ro te in . By th e n a llo w in g the p h a g e carrying z in c finger p e p tid e s on its s u rfa c e to eq u ilib ra te w ith a targ et D N A sequence, it is possible to isolate a n d a m p lify th e specific zin c finger p ro tein s th at recognize desired D N A targ et sites. In th e stu d y by C h o o a n d K lu g (1994a) the seq u en ce of th e m id d le f in g e r o f EGR-1 w a s ra n d o m iz e d to test new b in d in g specificities. Strikingly, in a lm o st all of th e se lec te d fingers in w h ich a rg in in e interacts w ith the 3' g u a n in e , a sp artic acid w a s selected a t p o sitio n +2. W h e n position -1 w as n o t a rg in in e , asp artic a d d a t p o sitio n +2 w as practically n e v e r selected. This su g g e sts th a t th e asp artic a d d resid u e + 2 p lay s an im p o rta n t role in co n trib u tin g to th e s p e d f id ty of th e

(48)

co n tact. Sw irnoff a n d M ilb ran d t (1995) carried o u t b in d in g s ite selections to d e riv e th e high-affinity consensus b in d in g site fo r EGR-1 fam ily o f proteins.

T h e ir fin d in g s s u p p o r t the im p o rta n c e o f a s p a rtic a c id fo r se q u en c e re c o g n itio n by EGR-1 p ro tein fam ily m em bers. T he a u th o rs n o te d a v ery s tr o n g selectio n for thym ine a t p o sitio n 5 a n d less fre q u e n tly for g u an in e, w h ile a d e n in e o r cy to sin e w e re n ev er se le c te d . B oth A a n d C, th e c o m p le m e n ta ry bases to T o r G a t p o sitio n 5 h a v e h y d ro g e n b o n d d o n o r g ro u p s (N6 and N4) th a t can in te rac t w ith the carboxylate o x y g e n o f A sp +2.

T h e se re s u lts s u p p o r t the id ea th a t the h y d ro g e n b o n d p o te n tia l o n th e s e c o n d a ry D N A s tra n d co n trib u tes to reco g n itio n . A n o th e r im p lica tio n of th ese fin d in g s is th a t a single z in c finger can actu ally sp e cify n o t 3 bp , as o rig in a lly p ro p o sed , b u t 4 bp D N A sites, a n d th e s e b in d in g site s o v erlap by o n e b a s e pair. R ecently p u b lish ed w o rk by Isalan , e t al. (1997) d em o n strates th a t EGR-1-hke zinc fingers can, in fact, specify o v erlap p in g , 4 -b p subsites. In this s tu d y , the th ird zinc finger o f EGR-1 p ro tein w a s m o d ified to rem ove the f in g e r's p o te n tia l fo r DN A in te rac tio n s. N o rm a lly , the t h ir d z in c fin g er in te ra c ts w ith the first triplet o f the EGR-1 con sen su s sequence. H ow ever, as a re s u lt o f finger th ree alterations, changes w ere o b serv ed in th e 5 ’ p o sitio n of the m id d le trip le t o f th e DNA b in d in g site. T h u s, d eletin g th e c o n tact from fin g e r 3 affects the specificity for th e 5' base o f th e b in d in g site o f finger 2.

(49)

F u rth e r selectio n a n d gel m o b ility sh ift e x p e rim e n ts p o in te d to th e sam e co n clu sio n (Isalan e t al., 1997). T h u s, the p o te n tia l o f zinc fin g ers to specify o v e rla p p in g , 4-bp subsites w as d em o n strated , a n d the role o f a sp artic acid a t helical p o sitio n 2 w as em phasized. The specificity of each reco g n itio n subsite is, th ere fo re , m e d ia te d b y tw o ad jacen t fingers th a t are sy n e rg istic in th eir m ode o f binding. This has led th e authors to red efin e the b in d in g subsites for each zin c finger, a n d the new schem atic d ia g ra m o f reco g n itio n is sh o w n in Figure 1.11.

T h e roles of th e th ird a -h e lic a l resid u es are also refin ed in the 1 .6 Â

stru c tu re (Elrod-Erickson e t al., 1996). The role of His49 (the th ird residue in finger 2 a-helix) w as prev io u sly discussed in the o rig in al EGR-1 crystal

stru c tu re (Pavletich a n d Pabo, 1991). This re sid u e w as p rev io u sly sh o w n to m ake a d irec t h y d ro g e n bond to N 7 of g u an in e 6. In the n ew stru ctu re, this

h istid in e m ay be contacting 0 6 of th e guanine in stea d . In a d d itio n , His49 also m akes a series of v a n der W aals in te rac tio n s w ith the m e th y l g ro u p of th y m in e 5. The sig n ifican ce o f th e h is tid in e -th y m in e in te ra c tio n w a s d e m o n stra te d by Sw irnoff an d M ilb ran d t (1995) in th eir b in d in g site selection ex p erim en ts. T hus, h istid in e co n trib u tes to th e reco g n itio n o f tw o bases o n the G -rich DN A stran d .

G lu ta m ic acid resid u es w h ic h occur a t a -h e lic a l p o s itio n th ree of fingers 1 a n d 3 w ere suggested to contribute to specificity because biochem ical site se lectio n an d b in d in g stu d ie s all show a p referen ce for cy to sin e a t the center o f trip lets reco g n ized b y fingers one a n d th re e (C hristy a n d N ath an s, 1989; Jam ieso n e t al., 1994; S w irnoff & M ilb ran d t, 1995). As rev e ale d in the refined crystal stru c tu re , the carboxylate g ro u p s o f Glu21 a n d G lu77 do n o t m ake a n y base-specific contacts. H ow ever, the sid e chains o f th ese glutam ates do h y d ro g e n bond to the backbone am ides of th e arginines im m ed iately

(50)

F ig u re 1 .1 1 Schem atic diagram of EGR-I zinc fingers in te rac tin g w ith the

Referenties

GERELATEERDE DOCUMENTEN

Text mining is an interdisciplinary field involving information retrieval, text understanding, information extraction, clustering, categorization, database technology, machine

ontstaan is door het kruisen van twee ouderrassen minder toe aan de totale diversiteit dan een volledig onverwant ras. En een ras waarvan alle dieren samen van een

Op de Waiboerhoeve zijn vier verder identieke staldelen met verschil- lende loopvloeren vergeleken wat betreft klauw- gezondheid en locomotie: een geprofileerde dichte betonnen

are put inside it, it will either typeset Hints: or Hint: with the numerical labels of the passed in hints following it.. You should put in nothing but the inner

Several potential sources of pheromones in lizards have been described, including epidermal and cloacal glands and the blood–skin barrier.(1) A comprehensive review of the

Department of Social Policy and Intervention, University of Oxford, Oxford OX1 2ER, UK (LC, JML, IW, OG, JD); Department of Psychiatry and Mental Health (LC) and Department

Op dit moment wordt het gedrag van het model nader onderzocht, terwijl bin- nenkort experimenten worden gedaan om een meer kwantit.atieve vergelijking mogelijk te maken..