• No results found

Factor analysis of coaxial rotors aerodynamics in hover

N/A
N/A
Protected

Academic year: 2021

Share "Factor analysis of coaxial rotors aerodynamics in hover"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The 18th European Rotor-cr-aft. For-um

B-18

Paper No 99

FACTOR ANALYSIS OF COAXIAL ROTORS AERODYNAMICS IN HOVER

VADIM

N.

KVOKOV

Kamov Helicopter- Scientific

&

Technology Company

Avignon,Fr-ance September- 15-18,1992

(2)
(3)

FACTOR ANALYSIS OF COAXIAL ROTORS

AERODYNr"it1 I CS IN

HOVER

Vadim N.Kvokov f<amov Helicopter· Scientific 2, Technology Company

An aerodynamic design method for coaxial r· otor· s oper· at i ng at axial flight regimes was developed in Kamov Helicopter Scier1tific

& Technology Company on the basis of a disc vor .. tex thc;or·y. The method consists in the following.

A rotating , .. otor· is preser1ted as a disk wiLI1 uni fonnl y distributed radial votices with radius-variable circ~latirn~.The ait·flow passes UwoLtgh the disc and the blade vor·tices <we aligned v1ith stnea111lines. The str·eantlines fonn a spir·al surfdce fm· a gener·E<l CC<se of a var·iable pitch. ThE: gener··ating 1 ine of this

Vor· t ices spatial positioll is consider·ed to be fi:<ed <Fig. 1). If necessar·y coor·dina·tes oT vortices can be r·efined

kno~~~r; r·elalionships.

(r··,on-1 inear· theory) using

y

Fig. 1.

Thus the vcw teJ< str·uc LLwes of up pet·· and

patterned. The induced velocities 1.11 ·tt·l·e· r·ntor·· ~ p 1 ane and along

(4)

uptional section of the air-flow are lcikten as the sum of the induced velocity proper and additional v ya of a r1eigt1bouring

It is assumed

vys

that f r·ee b 1 a de vor·t ices move with cl speed which is mean along the disc and vc.~riable along ll1e airflow axis. Blade section airflow is assumed to be t\t~o-di mensi onal (hypothesis of flat sections). In deter·mining induced velocities the ai r··f 1 ow is regar·ded as ideal <Re= oo ) , non-compr·essi Ul e

and the function Cy(O<)-as linear·.

When a blade element lifl/drag are viscosity and

compr·essbili·ty of the air-flow are taken

into

ac c uunt:, as well cis non-1 i necw i l y Cy( ()() takt::?n fr·om thE::.~ pr··of i 1 e ~'IIi nd-tunnel

results Cy, Cx=f'CO<,

t-1,

Re). \<Ji thin U1e scope of t he adopted model, the fonoulae to detenuine ,,,ean induced velocity yener·ated by tile r·otcw V(Jr·te>: str~uctur·e in an c::H"b.i·tr·ary poirit

take the following forms:

f<<p,r-l'-"

I

I

-q/(

L" -q 0 q"'1 y

*

Y:;:

-

Y'q -2

p~

+ ' 1 1 I p+l

uf

F

~-­ P dp 1

I

F

p (p) Up,' ) dp Yq ) 2

Po

"'

G

L~ q q + L2 q q<p+l q~p+1 1 in "IJace Cx y z l ';;::> • "

*'

*

p ( v ) c 'q

fF

p\p)

f:(p,;, )dp

r pu 99. 2

(5)

v

mec.n

- v

00 abW

=-..,--~. () ymear. ly=Ol

- v

00 V -q V<y~ol• G ly l -q constlv ,y . q· q-1 l R c . ly) :'> 1 ;

y is the distance of the wake c,.·oss section f,.·om the ,.._otor r·ote~tional plane r·elated to the r·otot· r·adius.

The

function te~kes into e~ccoLmt the change in a jet

r··e~ctius along the height of a vorlei< culumn and lh<2 function GCy)

- lh<2 chanqe in the vortices velocity. The,;e fum:t.i.ons define the

rcJtur .. vor·te;< str-L(ctur-e and can I.Je t-efinEtd dLtr-ing the calculations. Viith account for· inductivt-1 velocity d. blade' sectiun angle of

attctck ~ is found 1Fig.3l, which is necessar··y to defint? l i f t and dr··a~l cCJeff:icients. Then:.: by way of nunH:::r· :i.c.::::•,l

the total coefficients of C and tor·que

T Coa>: i al

lies within t!1e linear· model ar·e d~ter·mined by wey of sol-vir·ty a systen1 of lir1ear· irllegr·o--differ·erltial equatior1s • .() - <() + 0 yn ysn yetn V ( ) v.~~ ~ 1 -v

'Y

, ) -.v ( y;~v , _f;HIE:'C\rl 11 • ro ysn yan n - - - 1 , . v < v l ~v < v~o l •G < y l ~ -

.Yc

ysn · ysr1 · · n 2 T 1 2rr

V

+v 00 ya

v

ye; • G ( y) n

;:;

(y)~[-....::.1

__

_

yan . 2rr(1-p

f f ;:;

(~=0,~,8Jd8d~ y c.:t,n ' · · D p 0 0

v

00 <op - - - l +

E

n 1

v

meat! rn 99.3

] *G <yl

...

(6)

n

-

1 !' 2 ; m

-

1' 2 fln (

,-

)

-

abW 2 ) n f2m (r) ~flrn(r··) 2rr p+l-·'"' p~ -p - -r·cose f< (y ,p, ; ) nm on· · =

J

E

qrn Ll"' 2 L t 1 I iO p+1 qu1 qff1 G 0 q~t q<p+1 q"--p+ 1

-p

~cose qm Her··e y

0n- :is the Jist,=:tnc~ i:Jf the n-Lh

fr-om the nelghbour·ir\g roto(·: rt=l

---

up pet'· n;:..:.2

-

1 t:.:Jwer· 2-817 r

y

I'" - ·"'

>

-·e

q111 (\!Y! .L q-1 u r·olati onai r·otor·

-

y _on

<

r·otor

-

Yon> ; ·-'

The solution of this syslem of r:L..Juations ~~imoun·ts to SC.tlving 2,

set of 1 ine~r· algel:Jr··e .. \ic. equations. The mathen•atical pr-IJyt·aJnme dev~loped

fa.i. f'l y

U.i~tant:.e. I t ensut-t::!S the specifieJ tL.fft-~t c=:H..:.~ J..fl Lur .. yut2 al::.f;ut:ltC:-:. :..rF

ttv.::~ U}-)J.3~r- a.nd 1 Uv..J~::r- r·utLJ('S MK:n- MKl .:..;;co!-IS t ..

As a result we gel

tt1e

Lot6l tt1r1~s·t CT• CTl murnent CL.H:?ffic:ients mK=mK.l + mKn:o 1tJh2r·e

+

c

i"·1 K. (_II l - ) rn , C 1

=

---:::--..:....-,---K.:. 11~ .E._ ~'u)J=.·', . .::.p:::· 2 ' '' " <.:l.iHJ

ctr·e coc•f-ficienl·::::. of the 1o~·H-=r and uppet r·cd..:or·~~ r t~·::.pec..t.:iv:=ly. Tu a.i".l-t:~,lize the l'·esul ts of L!"·ltt col"nj.Jul.dlioris d.ild tf.J c.:o:-ntJCir·t,t

w:i.l1·1 the e:<pet·i111e!·1t.al c.idi..:a lht2 r·c;lur fiyLwt? of wt:'r i L ;.';".) LiSc.·d~

fr·om

99.4

(7)

computations are the first approximations because there

exists

a

number of factors which are not accounted for in the

mathe'llatical

model.

To take into account this condition, the coefficients

M,

Mn

are introduced into

Crm~

and

n

0 :

Then

C =C T T

*

M (C M)3/2 T 2m k

n

o ~n o

*

M

n

Here

hm~p

-is an

additional

value

of

a

profile

component

of tm·que moment coefficient, arising when the aerodynamic pr··ofile

operates on a r·otating blade. To determine

hm

special

r·ig tests

~p

were

condLtcted

using

rotor

models.

Flat

blades

of

specific

pr·ofiles wer·e installed at an angle such

that

rotor

thrust

was

zero and simultaneously the torque moment

1

Then

m~po=Ta expo

was subtracted

from

it,

was measur-ed.

where

c

xpo

profile drag coefficient received for ti1e given

profile

in

t

unn<= •

1

Th

e

d1

'ff

erence

'-'

*m

·

=

m~-1

m

~p ~ ~po was

added

is

wind

to

the calculated value:

m~=m~+hm~p •

The e:<periment

has

revealed

that

D.m~p

is practically constant within the

oper·ating

tip Mach nUinber·s.

of

Ti;e

,.

value

is usually

r·elated

to the so-called thr·ust tip

losses. We can asswne aftt:t" Pr-,£\fldtl:

2

.j2C;

M=B

=

1- • _ _::.__

!(

Then tht: influence of the rest neglected factors

(due

·to

1

oad

non-uniformity along the blade length and three-dimetlsiortal rtaturt:

of the flow over the blade) is concentrated in ,.

'I)"

By

""'Y

of comparing computa·ti onal resul·ts and ex peri men·tal

data

~~e get

..

n

experiment.

as

a

discrepancy

between

tile

computation

and

For a single rotor the

M

val ctes are taken under· the following

n

conditions. Vortex dr·ift velocities dependant on

the

function

(8)

and the '"ake shape <wake t·adius) - on the continuity equation R

'

tr.

7

y • 1IJJ !Jy thi'=l method. <Fig.

4>.

0

~t

2G- 0

~

-I

I\

-I

G=iiL.

j,J_ !)" i • R -2 -2

y

y

cc ")

T Y] ~ ~.-:----0 ZmK Fig. 4. 0 5 I 0

RD

I

--

-Rc-Rc

R

va1Lies we get fut l\\':2 Sj'-t(:::tLifiec..:i r .. ·uLur·

L:ur~-figu(·alion anJ mude of uper-at.iLJll:

By way of illu·;:::,t.r·a.tion Fi~J.S~6 show lht::o plotted Jep(i•r\det1c.i.e~~

w+

" '"fCC / <>) +or· tliffe,-ent values: ll.'f> -blade <J8Ui\\8lr:ic twist;

vJR-YI T

-tJlade tlp speed.

(9)

1'/o 0. . . 0. 7 0.

o.

x,

1 . 1.

1.

0. X, 1.0 0.0 0 1 11.. A . 0. 0 1.0 . r 0. 9 A

0. 9

0.0 It

.,

/ /

i'

v::

exp.

226

11~~

187

0. 1

0.2

~

~ 4

~ ~ • 0. 1

0.2

Fig. 5. GJR=119

m/s

~

""'

~

...

...

....

0. 1

0.2

Fig •. 6. ·

r!

*

..

A· A -T < A 0 0

"'

~

~

/

cole. c.JR

Mo

• ... 119 00000 187 AAAAA 226 0. 3

Gr/u

... 119 00000 153 00000 187 AAAAA 226 0. 3

Gr/u

Arp 0.347 0.55 0.665 0.347 0.45 0.55 0.665

'*

0. 3

Gr/u

It i s assumed for a coaxial r·otor that tip lo5ses value~ ~ and

~ will be tl1e san1e for coaxial r-otor·s as for a single r·otor·~ and

'I)

the wake shape is taken as an identification factot·. For· this purpose a multiplier A is introduced into the function G of the upper r·otor:

-*

-:!:

G =1- ; y = A

*Y

/l+y*z'

whereas the boundar·y wake 1 ine of the 1 ower· r··otor· is taken equidistant to the wake boundary of the upper r-otor.

For the investigation the experimental data obtained from wind tunnel testing performed in TsAGI for a coaxial rotor model were

(10)

u:;.,d. Fig.7 two e~<peri (!\ental curves "I) • f (

c /()')

0 T for

coaxial rotor and for the equivalent single rotor las to the rotor solidity 0' s: = a c ) . In this case the single r·otor· mathematical model

was i.denlifi-=d for· "r) with the exper·imental dependency uf a single rotor-. Then wlth the kno~.o.~n function 2t •f'CC,; a ) " such

r) T .

A • fCC/ 0 ' ) were selected so as Lhe design values uf T

values uf uf coa>-:ial rotors became close tu the e;-{pc:!ri mente<.l ones <Fiy. 7) ..

7Jo 0.8.---~,---,---, A 1.6

0. 0

1.4 1.2 1.0

0.8

0.0

0. 1

0.1

coaxial

0. 2

*

0.2 ~

.

.

R=1.26 m K=2x3 u=0.15 G<JR=60 m/s 1.40=0.177 Arp=6°

calculation

*"

* * •

A=var(Cr/ u)

_ _ A=1

This func...:l.i.un i s nul dl):=.ulult~ S.i.lH::e i t cor-r·e=.poncJs to o specific

e~<per·i!r,ento.l rutr..::w c.:onfigur-cd:ion .. Wha·L is HK;r·e impor-tiJnt i s that

tiny) l:.hat the figur·e of merit u-f a. C..Dd}~idl t olur

higher· as COf!lpd(·ed wi·LI·I d '..~~if\yle ~"OLor·.

is dr·aslically

Slmileu-ly the r·esults wf oth~r· H10del te':::l-t:.S ~·Jet"e hc.~ndled •

.and A.t.-Jhen used far· calc..ulating .aer·udyna,nic: char.acterislics of the r·otor"·s these mater·ials impr·ove the auther1Lici\:.y uf the r·esLtlts.

Referenties

GERELATEERDE DOCUMENTEN

Our different findings depending on the outcome measure used point towards the existence of potential methodological problems in TSPO imaging, raising questions over the

The multicenter randomized-controlled trial, Remote Ischemic Conditioning in Renal Transplantation-Effect on Immediate and Extended Kidney Graft Function (CONTEXT) trial, examines

At the thermally stable states, both p-propyl and p-fluoro AHLs (AHL4 and 9) proved to be the main agonists of quorum sensing in this library with 15-18% induction (as compared to

Complementary, PPG (6), the photoproduct after photodeprotection, was also tested and proved to be biologically inactive (see Figure 6 for details). This showcases the use of 400

petition that an increase of dispersal has a negative effect on adaptation (presumably due to genetic load). We find that this negative effect is counteracted by competition

life stressors would predict ADHD symptom levels only in S-allele carriers but not in L-allele homozygotes of the 5-HTTLPR genotype; (2) ADHD symptom levels would

Eind 2010 lopen deze proeftuinen af en moet er een advies gegeven worden over de in- vulling van deze functies.” Om dit zo goed mogelijk te kunnen doen, wordt er onderzoek

The new method used in the model will be capable of calculating the environmental impact of the biogas production chain, expressed in Energy Returned on Invested,