• No results found

Current sensor optimization based on simulated transfer function under partial discharge pulses

N/A
N/A
Protected

Academic year: 2021

Share "Current sensor optimization based on simulated transfer function under partial discharge pulses"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Current

sensor

optimization

based

on

simulated

transfer

function

under

partial

discharge

pulses

Douglas

Nascimento

a,b

,

Shady

S.

Refaat

c

,

Hermes

Loschi

a,b,d,∗

,

Yuzo

Iano

e

,

Euclides

Chuma

e

,

Waseem

El-Sayed

a,b

,

Amr

Madi

a,b

aFacultyofComputer,ElectricalandControlEngineering,UniversityofZielonaGora,ZielonaGora,Poland

bFacultyofElectricalEngineering,MathematicsandComputerScience(EEMCS),UniversityofTwente,Enschede,Netherlands cElectricalandComputerEngineeringDepartment,TexasA&MUniversityatQatar,Doha,Qatar

dDepartmentofElectricalandElectronicEngineering,UniversityofNottingham,Nottingham,UnitedKingdom eSchoolofElectricalandComputerEngineering,UniversityofCampinas,SãoPaulo,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19November2020 Receivedinrevisedform23April2021 Accepted7May2021

Availableonline11May2021 Keywords:

High-frequencycurrenttransformer Partialdischarges

Sensormodelling Physicaleffects

a

b

s

t

r

a

c

t

Thetimemeasurementefficiencyofthepartialdischarge(PD)reliesonthesignal-to-noiseratio(SNR)

andgainofthehigh-frequencycurrenttransformer(HFCT)sensor.However,thePD’stimemeasurement

efficiencydecreaseswiththenoisecoupledtotheHFCTinonsitemeasurements.Toovercomethat

set-back,thispaperproposesonepre-processing,throughmodellingandsimulation,consideringthephysical

effects,featuresoftheelectricalcircuitandcoilconstructionparametersoftheHFCT.Themaingoalisto

reachreasonablehighSNRunderthestronginfluenceofbackgroundnoises.Thisinvestigationaimsto

validatethehypothesisofimprovementordeteriorationoftheHFCTsignalresponsethroughatransfer

functionoptimization.Thisresearcheffort’scontributionsarethreefold:1.GenerationofPDpulse

sig-nalandnoiseaddition;2.HFCTmodelling,simulation,andfrequencyresponseanalysis;and3.Models

performanceevaluationandvalidationofhypothesis.Inconclusion,thepre-processingapproachstands

outasameanstorobustifyandprovidefreedomtotheelectricutility,makingupforaneventualneedto

redefinethephysicalandgeometricalparametersoftheHFCTsensorunderspecificbackgroundnoisefor

maintenancetestspurpose.Accordingtoacyber-physicalsystemframework,experimentscorroborate

theproject’sgoalstocontributetothePDpatternmonitoringinonsitemeasurementsandincorporate

robustnesstosignalswithlowSNRs.

ᄅ2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY

license(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thedielectricmaterialdegradationinelectricalsystemsis gen-erally associatedwiththepartialdischarges(PD)[1],unleashed withinvoids,andcracksinconductor–dielectricinterfacesinsolid insulation systems(bubbles), inthecase ofliquid dielectricsor corona,ingaseous[2].Undertheelectricinsulationsystem’s oper-atingstressconditions,thevoltageacrossthedamagedinsulation,

夽 ThispublicationwasmadepossiblebytheUniversityofTwente.Thestatements madehereinaresolelytheresponsibilityoftheauthor.

∗ Correspondingauthor.

E-mailaddresses:eng.douglas.a@ieee.org(D.Nascimento),

shady.khalil@qatar.tamu.edu(S.S.Refaat),eng.hermes.loschi@ieee.org(H.Loschi), yuzo@decom.fee.unicamp.br(Y.Iano),euclides.chuma@ieee.org(E.Chuma), waseem.elsayed@ieee.org(W.El-Sayed),amr.madi@ieee.org(A.Madi).

URLs:http://www.uz.zgora.pl(D.Nascimento),http://www.loschihermes.com (H.Loschi).

withinbubbles,cracks,voids,mayexceeditsdielectric strength leadingtoelectricdischargesinthedielectric,reducingthe stiff-nessandfinallyleadingtototalorpartialfailureoftheinsulation [3].

Thus,itisrecommendedtomakequalityandcompliancetests by PDanalysis. Also, considering cyber-physical system frame-works (e.g. [4]), the analysis of PD can be extrapolated as an redundantcomponent of power systems onalerting the active agents(electricalutilities,stakeholders,powersystemcompanies) inadvancewhenanycomponentitisabouttocollapseduetoPD. ThePDtestsareclassifiedaccordingtothemeasuringtechnique, andelectricmethodsarewidelyused[1].Electricalmethodscan beperformedonhighvoltageelectricalequipmentsuchaspower transformers,instrumenttransformers,medium,highand extra-highvoltagecables,highvoltagebushingsandrotarymachines[5]. Furthermore,theelectricalmethodsaredividedintoconventional andnon-conventional.ConventionalPDmethodsareperformed followingIEC60270-HighVoltagetestingtechniques:Partial Dis-https://doi.org/10.1016/j.sna.2021.112825

(2)

ingthroughtheinductivecouplingofelectriccurrentistheHigh FrequencyCurrentTransformer(HFCT)[7].

The time measurement efficiency of the PD relies on the signal-to-noise (SNR) ratio and gain of theHFCT sensor. How-ever, the PD’s time measurement efficiency decrease with the noisecoupledtotheHFCTinonsitemeasurements.Traditionally, thePDmeasurementapproachconsidersthenoiseremovalusing mathematical algorithmsandefficientsoftwareinthetimeand frequency domain,suchasspectral subtractiondenoising(SSD), discrete wavelet transform(DWT),wavelet shrinkagedenoising (WSD),PrincipalComponentAnalysis(PCA)[10,11],andComplex DaubechiesWavelet(CDW)[12,13].Overall,enablingthecorrect understandingofthePDphenomenonmagnitudeinonsite mea-surements.

However,thispaperaimstovalidatethehypothesisof improve-ment or deterioration of the HFCT signal response, through a transferfunctionoptimization,foraneventualredefinitionof phys-icalandgeometricalparametersoftheHFCTsensor.Thus,through theinvestigationofthephysicaleffects,modelling,andsimulation oftheHFCT,appliedtotimemeasurementsofthePDunderthe stronginfluenceofbackgroundnoises,expectedtoreach reason-ablehigherSNR.Therefore,themethodologyproposedinthispaper goesbeyondatraditionalsensoroptimizationapproach[14].It’s consideredHFCT’soptimizationandon-fieldemulationtaskstothe PDmeasurementsbyimplementingadditivewhiteGaussiannoise (AWGN)miscellaneous.

Theproposedmethodologywasdividedanddevelopedlinearly basedonthreestepsasshown inFig.1: 1.PDpulsegeneration andnoiseaddition;2.ModellingoftheHFCTsensor;and3. Per-formanceevaluation.Step1comprisesthePDsignalgeneration, modeledbytravelingwavesmethod[15]andapplicationof char-acteristicbackgroundnoisethroughAWGNtothesignalgenerated [1].Instep2,HFCTsensormodellingwasperformed,basedonthe ElectromagnetismLaws,accordingto[16],whereasthefrequency responseswerecarriedoutbasedon[14].Instep3,HFCTmodels werecreatedbasedonthevariationofconstructiveandelectrical parametersandsubsequentevaluationofTFs(TransferFunctions) performance[12].InFig.1s(i)representsthePDinputsignal,r(i) denotesnoise(AWGN),Z(i)meanstheTFsoftheHFCTmodels(g(s)) underanalysisand,iisthediscretetimeindex.

Traditionally,thedesignprocessofasensorusesstatistical oper-atorscustomarilyappliedasthelastevaluationstep,i.e.,step3of Fig.1.Themaingoalofstatisticaloperatorsistoevaluatethe sen-sorresponseperformanceregardingthesimilarityandprediction quality.Itisdonebycomparingtheoutput“pre-processed”signal fromthesensorandtheexactinputsignal(inthispaper,PDpulse) [12,13,17,18].Thereforeinthispaper,theHFCTsensorperformance was evaluatedbymean squarederror(MSE) and cross-relation (XCORR).AnoptimalresponsenearzeroisexpectedforMSEand oneforXCORR,consideringthenormalization.Thereby,the predic-tionandsimilarityofHFCTsensorperformancedrivethedecision onwhichisthebestmodel,bothintermsofelectricaland geomet-ricalparameters,i.e.,thebestfittedHFCTsensormodel.

Therestofthispaperisorganizedasfollows.Section2addresses thePDmechanisms,itsgeneration,andnoiseaddition,andin Sec-tion3isexplainedtheHFCTmodellingandsimulation.Section4

tothePDpulsesareestablishedinstandard[6],e.g.apparentload (q),pulserepetitionrate(n),phaseangle()andtime(t)ofpulse occurrence.

Therepresentationof PDsignals isconductedthrough three categoriesofstandards[19]:1.resolvedphasedata,suchasthe −q−ndiagram(Fig.2a.);2.resolvedtimedata,i.e.q−t wave-form–whereqistheloadmagnitudeandttheanalysisinterval,or V−t–whereVrepresentsthevoltageovertimet;3.signaldata thatareneitherresolvedphasenorresolvedtime,e.g.theq−V diagram–magnitudevariationofdischargepulsebytestvoltage amplitudeorthePulseSequenceAnalysis(PSA)diagram–inthat datarelatedtoPDpulsesshouldbesavedasasequence[3]. 2.1. PDpulse

The characteristics of PD current pulse are analyzed using parametersrisetime(Tr),pulsewidth(Tw)andfalltime(Tf).All thePDcurrentpulsesarefromtheorigintimet0 ofthevoltage step,whichreferstothetimewhentheincreasingvoltagehas10% ofinitialvoltage(V0).Thatis,Trregardsthetimeintervalbetween 10%and90%ofthepulseamplitude,Tfisthetimeintervalbetween 90%and10%ofthepulseamplitude,andTwisthetimeinterval between50%oftherisingsignaland50%ofthefallsignal,pulse height,andmaximumpulseamplitude(100%ofthepulse magni-tude)[19].Therefore,thePDcurrentpulseexpressedbyequation (1)isbasedonthemodelingofthetravelingwavesconceptofPD pulsesinhighvoltagecables[15]:

V (t)=V0.(10−˛t−10−ˇt), (1)

where˛andˇaretimeconstantsparametersrelatedtothecable signalwaveform[15].Thus,consideringOHM’sLawI(t)=U(t)/R andresistanceas1,thePDcurrentpulse’sinitialvaluewaswith themagnitudearound200mA,asdescribedinstudiesaddressing PDpulses[16].Therefore,thepulseparametersassumed inthis paperare:peakat246mA,Trof0.34435s,Tf =3.2174s,Twof 1.8503s,˛as7.108,andˇas3.109.

2.2. AdditivewhiteGaussiannoise

InPDanalysisthebackgroundnoiseisthesignalsdetected dur-ingits onsite measurement. However,external totheDUT [6]. Accordingtothecharacteristics of time–frequencydomain,the disturbancescanbeclassifiedaswhitenoise(WN),Discrete Spec-tralInterference(DSI),periodicpulseinterference(PPI),stochastic pulseinterference(SPI)[20].ConsideringPDaspulsesofa stochas-ticandnon-stationarynature[21]andthat,consequently,thenoise acquiredintheonsitemeasurementsignalhasarandom charac-teristic,itisimportanttoinserttheconceptofGaussianProcess.

AssumingthattheGaussianprocess(orrandomprocess)is rep-resentedbyX(t)intheintervalof[0,T ],withtheweightofX(t)over certainfunctiong(t)andintegratingtheproductofg(t)X(t)within thatinterval,itisexpressedas:

Y=



T

0

(3)

Fig.1. Overallchartflowoftheproposedmethodology.

Fig.2. OnlinemeasuringofPDbyusingHFCT:a)ExampleofonsitePDtest;b)SchematicrepresentationofthePDonsitemeasuring.

inwhichthemean-squarevalueofY(linearfunctionalvariableof X(t))asfiniteforcertainweightingfunctiong(t),Y issaidtobe Gaussian-distributedrandomvariableforeveryg(t)inthis class offunctions.Thatis,X(t)isaGaussianprocessifeveryY (t)isa Gaussianrandomvariable.Then,YrandomvariablehasaGaussian distributionifitsPDF(ProbabilityDensityFunction)hastheform givenbyEq.(3): PDFY= √ 1 2..Y exp



−(Y−Y )2 22 Y



, (3)

whereY isthemean,Y isthestandarddeviation,andY2isthe varianceofarandomYvariable.WhentheGaussianrandom vari-ableYisnormalizedtohaveY equals0andvarianceY2as1,the normalizedGaussiandistributioniscommonlywrittenasN(0.1) andthevalueofthesignalwillbefoundin±3for99.7%ofthe consideredtimeinterval.

TheWNisakindofGaussianprocess,withPSD(Power Spec-trumDensity)constantregardlessofthefrequency.Thus,thewhite GaussiannoiseisusedasanAWGNofPDfromthepulse genera-tor,inordertoemulatetheononsitecharacteristics.Therefore, knowingthattheSNRisgivenby20.log10Avs/Avn[12]–whereAvs

Table1

ClassificationofthemodelsbasedontheSNRinputlevels.

Label SNR(dB) AV NoiseAmp PD1 −3 0.708 0.3474576 PD2 3 1.414 0.1739745 PD3 6 1.995 0.1233083 PD4 20 10 0.0246 PD5 40 100 0.00246 PD6 60 1000 0.000246

representstheinputDPsignalandAvndenotesnoise–sixdifferent

conditionsofnoise.Fig.3showthenoisecondition(PD1toPD6),

from−3dB(harshenvironment)to60dB(idealconditions)aswell astherespectivenormalizedfrequencysinglesidespectrumband (SSB)representedas|P1(f)|.

Table1showstheinputsignal246mAmixedon347mAaverage signal(AV)forPD1,wheretheSNR=−3dBintheworsescenario (distortedsignal).Whereas,thePDpulseismixedonidealnoise amplitudeinorderof10−6(PD6,SNR=60dB)(cleansignal). There-fore,thenoiselevelcontrolparameteristheSNRindB.Inthiscase, thevaluesofsignalswithAWGNwereusedasinputsignalstothe HFCTmodel.

(4)
(5)

Fig.4.SchematicoftheHFCTsensormodel.

3. HFCTmodellingandsimulation

ThephysicalgeometryparametersoftheHFCTsensorisrelated toatoroidalcoilwrappedinacoreofhighrelativepermeability. Theelectrical responseoftheHFCTsensor isbasedonthe con-structiveandelectricalaspects,givenby:geometry,thenumberof turns,ferromagneticcorematerialandloadresistance(terminal) [22].Therefore,thedependentcharacteristicsoftheHFCTgeometry aresecondarywindingresistance,parasiticcapacitanceand leak-ageinductance[22].Theelectricalandconstructiveparametersof theHFCTsensorarehighlightedinFig.4.

whereRListheterminalloadresistance,riistheinternalradius, roistheexternalradius,risthesensorradius(concentricraysat pointO),rcistheradiusofthecore,Nisthenumberofturnsof thesensorcoil(secondarycircuit),Ac isthecross-sectionalarea, lmisthepathofthemagneticflux(c),I(t)isthecurrentofthe secondarycircuitandVo(t)istheoutputvoltageofthecircuit,i.e., theHFCTsensoroutputsignal.

3.1. Constructiveaspectsbasedongeometry

Thecalculationofelectricalparameterswerecarriedon con-sideringthereferences[16,22],andFig.4.Therefore,theradiusof theHFCTsensorisestimatedas,r=(ri+ro)/2,thelengthofflow pathisgivenby,lm=2..randtheradiusofthenucleusisgiven by,rc=(ro−ri)/2.Thediameterisexpressedasdrc=2.rc[m],the cross-sectionalareaofthecoreisAc=pi.rc2[m2],thelengthofthe windingpw=rc[m](thelengthofthewindingwasusedasthe samelengthasrc).Thecrosssectionalareaofthecoilwireisthe sameasAcforconvenience(hereisusedforsimulationpurpose only),thelengthofasinglecoilislc=2.pi.rc[m],andthelengthof thecompletecoilislw=lc.N[Nm](turn.meter).

3.2. Electricalparameters

TheelectricalcircuitoftheHFCTwasanalyzedusinggrouped parameters originating in Fig. 4, and reduced to the electrical schemeshowninFig.5[23].

Inaddition,theelectricalparametersareprovidedinTable2. Furthermore,thecorematerialelectricandmagneticspecification defined as: of1.6800×10−8 [.m](Cooper resistance),r of 2000(Relativepermeability),0 of4×10−7 [H/m](freespace permeability), of 0.0025[H/m] (absolute permeability),e0 of 8.8540×10−12[F/m](freespaceelectricpermittivity),anderof1 (relativepermittivity),i.e.eisequalto8.8540×10−12[F/m]

(abso-Fig.5.S-domaincircuitmodeled.

Table2

Modelingconstructiveparametersused.

Parameter Value Specification

do 0.1[m] Outerdiameter

r0 0.05[m] Outerradius

di 0.065[m] Innerdiameter

ri 0.0325[m] Innerradius

Np 1 Primarycircuitturns

Ns 10 Secondarycircuitturns

dw 0.0005[m] Wirediameter rw 0.00025[m] Wireradius Ac 2.4053×10−4[m2] Corearea rc 0.0088[m] Careradius drc 0.0175[m] Corediameter r 0.0575[m] Sensorradius lm 0.3613[m] Fluxpath

Aw 2.4053×10−4[m2] Coilcross-sectionarea

lc 0.0550[m] Oneturnlength

pw 0.0088[m] Coilstepback

lutepermittivity).Oncethecopperresistivityis =1.68×10−8

.m,thewindingresistanceofthesecondarycircuitis[16,22]:

Rs= .lw Aw

. (4)

Thesecondarysensorvoltageisexpressedas:

v

s(t)=−Mc. dip(t)

dt . (5)

Mutualinductanceisgivenby[16]: Mc= N

2 s..Ac

lm

, (6)

whereisgivenby=r·o,inwhichristherelative per-meability(valueaccordingtothematerial)andoisthevacuum permeabilitywiththevalueof410−7H/m.TheNsisthenumberof turnsofthesecondary,i.e.windingofthesensor.Inleakage induc-tance(alsocalledauto-inductance)[24],thecircularcoilmethod wasusedforsingleturninductanceandforrwrc,thus,based on: Lloop=0.rc.log10



8.r c rw



−2



. (7)

Theresultingleakageinductancefortheentirecoilis: Ls=N2

s.Lloop. (8)

SincetheapplicationisinHF,thevalueoftheparasitic capac-itance (Cs) of the secondary winding must be estimated. The parasiticeffectwasestimatedusingtheanalyticalapproachof[24], inwhich:e0=8.854.10−12(dielectricconstant),er=1(relative permittivityofair)ande=e0er(absolutepermittivity),therefore: Cs= lw.pi.e

(6)

AlthoughLsandCsareintrinsictotheHFCTsensor,requiring

thecalculationofthecapacitivenetworkandexperimental

calcu-lation oftheHFCTsensordimensions,asdemonstratedby[24].

ThispaperisrestrictedtotheanalyticalcalculationofCsandLs sincesuchparametersarenotthepresentstudy’sinitialobjective. Despitethis,thevaluesobtainedinthisstudywereconsistentwith [25].

Therefore,thefinalproposalTFconsideringthesecond-order polynomialexpressedbyequation(10)is:

F(s)= −sMc.Np.RL Cs.RL.(Ls+Mc).Ns s2+s



Cs.RL.Rs+Ls+Mc Cs.RL.(Ls+Mc)



+ Rs+RL Cs.RL.(Ls+Mc) . (10)

Thefrequencyresonance(w0)inrad/s: w0=

RL Cs.RL.(Ls+Mc)

. (11)

Also,thedampingcoefficient(),givenb: = (Cs.RL.Rs+Ls+Mc)

Cs.RL.(Ls+Mc) 2.Cs.RL(Ls+Mc)

RL . (12)

Thevaluesofw0andprovidedataforsystembehaviorsince: >1providesaoverdampedresponse(realanddifferentrootsand productoftwo1st-orderpoles);<1determineaunderdamped response(complexroots)ofthesystem;=1resultsincritically dampedresponse(realandequalroots).Thus,Fig.4canbemodeled accordingtoFig.5inthesdomain.NotethatReq1andReq2are equiv-alentresistancesfromresistiveassociationsinseries(betweenRs andsLs)andinparallel(between1/sCsandRL),respectivelyand whosetotalequivalentresistanceisReq(seriesassociationbetween Req1andReq2).

3.3. Simulation

Inordertoassessthehypothesisofimprovementor deteriora-tionoftheHFCTsignalresponse,weconsidertheS-domainthrough a transfer function optimization, which means the frequency response.Fivedifferentmodelshavebeensettledasdescribedin Table3,whichweredividedintoreferenceandvariationgroups. Thereferencemodel(PAD)isthestandardmodel,whereasRL(load resistance),Ns(numberofsecondaryturns)andr(relative per-meability)arevariationmodels.Ontheotherhand,thevariation modelscalledN30,RL250,mur2300andRLNmurwereorganized totestthegeneralperformanceoftheHFCTsensor,withchanges initsparametersbasedonthePAD.

ThefiveTFs,consideringthecalculationsbasedonthespecified parametersinTable3,arepresentedinTable4.

TheBodediagramwasconsidered(Fig.6), toobtainthe fre-quencyresponseoftheHFCTsensormodels,throughsimulation withMatlabsoftware.

Also,inFig.6,thefrequencyresponseallowedtheanalysisof magnitudedata(dB)andphase(degrees)inthefrequencydomain. Tables5and6showsthephysicalandelectricalparameters, respec-tively,calculatedandobtainedforallthemodels(PAD,N30,RL250, mur2300,andRLNmur),throughsimulationwithMatlabsoftware.

Fig.6.FrequencyresponseoftheHFCTsensormodels.

Table5

Performancebasedonthephysicalparametersobtainedforeachmodel.

Model Poles BW(Hz)

PAD s1=−2.92E+05 6.3104E+01 5.03E+09

s2=−4.65E+09

N30 s1=−3.24E+04 1.0930E+02 4.89E+08

s2=−1.55E+09

RL250 s1=−1.46E+06 1.2621E+01 1.32E+09

s2=−9.28E+08

mur2300 s1=−2.55E+05 6.7569E+01 4.95E+09

s2=−4.65E+09

RLNmur s1=−2.09E+05 3.0465E+01 1.32E+09

s2=−7.75E+08

Table6

Electricalstrayparametersobtainedforthemodels.

Model Rs() Ls(H) Cs(F)

PAD 3.84E-05 4.00E-06 4.30E-12

N30 1.15E-04 3.60E-05 1.29E-11

RL250 3.84E-05 4.00E-06 4.30E-12

mur2300 3.84E-05 4.00E-06 4.30E-12

RLNmur 7.68E-05 1.60E-05 8.60E-12

ThePAD’sgainreaches13.8dB(Fig.6),andintheresonance

frequency,thereisa180◦phaseshift,accordingtoLenz’sLaw.In thecaseofvariationmodels(N30,RL250,mur2300,andRLNmur), whicharedescribedinTables5and6.Sincethesizeofthecore (ri,ro,r,andrc)wasmaintained,andtheRL,Nsandrwerealtered (Table3),distinctperformanceswereobtainedbetweentheHFCT sensormodels.

(7)

Fig.7. MSEoftheHFCTsensormodels.

TheBodediagram(Fig.6),showsthattheN30’sgainreaches 4.23dB.Also,Table5presentsthesmoothestresponseduetothe increaseintheto1.0930E+02.Inaddition,alsointheBode dia-gram(Fig.6),thereisaflattercurveatthecenterofphasecharge attributedtotheincrease(higherwindingturns)inthereactive characteristicsoftheCsandLsinrelationtothePAD.

UnlikemodelN30,themodelRL250hasadirectchangeinthe RL,i.e.,non-reactiveelectricalparameter.ComparativelytoPAD, theBodediagram(Fig.6),showsthehighergain(27.8dB). Con-sequently,Table5showstheRL250responseresultsinawider bandwidth,BW=1.32E+09Hz,anddecreasingon=1.2621E+ 01.

Inthemur2300,ther=2300,basedon[26],andbasedonthe Bodediagram(Fig.6),itisobservedthatthegainis13.8dB.The characteristic responseofmur2300isalmostthesamefor PAD, oncechangingr(Table3)doesnotchangethereactiveparameters (Tables5and6).Thus,thisendsupcausinganoverlappinginthe PADresponsecurve(Fig.6).

TheRLNmur’sgainreaches17.3dBintheBodediagram(Fig.6), corresponding to the intermediate response between the PAD, mur2300,andRL250models,regardingthecharacteristicsofthe reactiveparameters.

4. HFCTperformanceevaluation

BasedonthesimulationresultspresentedinSection3.3,Ithas beenconsideredadecreaseinmagnitudeandanincreaseinBW withincreasedwindingsinthesecondarycircuit(modelN30).In themodelN30, thereis aphase advanceconcerningfrequency. Also,itwasfoundthatincreasingthevalueofr,inthecaseof mur2300,didnotleadtoaconsiderablechangeinmagnitudeand phaseresponse,comparedtoPAD.However,tocomplementthe HFCT performance evaluation analysis,the meansquared error (MSE)andcross-relation(XCORR)wereconsidered.

4.1. Dataanalysisevaluationmetrics

Twometricshasbeenusedinthispaper,theMSEandXCORR, betweensignalsobtained(Z(i))andtheinputsignals(s(i))(referto Fig.1).TheMSEisgivenby[12]:

MSE= N1 N

i=1

|z(i)−s(i)|2. (13)

TheMSEis generallyusedtoassessthedegreeof distortion causedby removingnoise froma signal,sothelower theMSE value,thesmallertheerror.Incontrast,theXCORRcoefficient( sz) isexpressedby[12]:

sz(n)= N

−n−1

i=0

s(i).z(i+n). (14)

TheXCORRcoefficientassessesthesimilarityintheshapeofthe signals’wave;itwasnormalizedinorderthatazeroXCORRfactor indicatestotal asymmetrywhileanXCORRfactorof1indicates completesymmetry.Therefore,theXCORRisappliedbetweenthe Z(i)ands(i)(seeFig.1)ondiscrete-time.Also,sincethisEq.(14) returnsavector,thesequencesoftheXCORRhavebeennormalized. TheMSEobtainedforallHFCTsensormodelsitisexpressedin Fig.7.TheMSEfortheRL250model(Fig.7)isthegreatestone.On theotherhand,increasingthenumberofwindings(N30model), thesimilaritybetweenthes(i)andtheZ(i)(HFCTsensorresponse) increases,giventhatthemutualinductanceisthehighestamong themodels,Mc=1.5mH,whileinthePADmodelthemutual induc-tanceisMc=0.17mH,i.e.,anincreaseof20inthenumberofturns ofthewindingresultsinanincreaseof8.82timesthevalueofMc (seeEq.(6)).Furthermore,ithasbeenobservedthatfromSNR=6 dB,theMSEremainsbelow1forallthemodelsexceptingRL250. Therefore,inthecaseofPAD,N30,mur2300,andRLNmurtheZ(i) mustbeatleast2twicethes(i)toreachanacceptablemeasurement error.

(8)

Fig.8. XCORRoftheHFCTsensormodels.

TheXCORRobtainedforallHFCTsensormodelsitisexpressed inFig.8.TheXCORRanalysis(Fig.8)reinforcesthattheTFsmodeled forHFCTsensormodels,providesagoodperformanceforanSNR above6dB(Fig.7),andXCORRcoefficientvaluesupper0.5(e.g. 0.7645forN30model).

5. Conclusionsandprospects

Thispaperaddressedthephysicaleffects,modelling,and simu-lationofthehigh-frequencycurrenttransformer(HFCT),appliedto timemeasurementsofthepartialdischarges(PD)underthestrong influenceofbackgroundnoises.

SeveralfactorslimitthefrequencyresponsesoftheN30,RL250, mur2300,andRLNmurmodels.IntherealHFCTsensor,the fre-quencyresponseentailsseveralparameters.Themainonesbeing reactive components with origin in construction and electrical phenomena since a coil has(i)capacitance and (ii)inductance, duetotheassociationofturns.Hence,thesereactivecomponents contribute to self-capacitanceand self-inductance, respectively. However,state-of-the-artstudiesdescribethattheloadresistance valuemustbe50,duetotheresistivecouplingwiththe measur-inginstruments,toeliminatelosses.Thepresentpaperemploysa variationofupto250toverifychangesinresponsetotheinput signalandperformanceevaluationundernoisyconditions.

Thus, thehypothesisofimprovement ordeterioration ofthe HFCTsignalresponse,throughatransferfunctionoptimization,for aneventualredefinitionofphysicalandgeometricalparametersof theHFCTsensor,canbevalidated,dependingonwhich parame-tersarechosentobechanged.Additionally,theHFCTmodelN30 providedmorereliableS-domainvaluesbyincreasingthenumber ofcoilturnsadaptivelytothenoisysignalcomparedtotheother modelsanalyzed,i.e.,RL250,mur2300,andRLNmur.

Therefore, the proposed transfer function optimization approachgivesarobustpre-processingbychangingthefeatures oftheHFCT’selectricalcircuitandcoilconstructionparametersto reachahighsignal-to-noise(SNR)ratio.Furthermore,thispaper

servesasaninspiration forpotentialsolutions throughartificial intelligence.In thisway,itis possibletooptimizetheelectrical parameterstoobtainidealcharacteristicsofmagnitudeandphase inthefrequency responsetorejectdifferentcharacteristic field noise(onsitemeasurement).

CRediTauthorshipcontributionstatement

DouglasNascimento:Conceptualization,Methodology, Inves-tigation, Data curation, Validation, Formal Analysis, Writing – original draft. Shady S. Refaat: Writing – review & editing, Resources, Project administration, Funding acquisition. Hermes Loschi:Datacuration,Visualization,Methodology,Writing– Orig-inal draft,Writing – review & editing.Yuzo Iano: Supervision, Writing–review&editing.EuclidesChuma:Writing–review& editing.WaseemEl-Sayed:Writing–review&editing.AmrMadi:

Writing-review&editing.

References

[1]D.A.Nascimento,Y.Iano,H.J.Loschi,L.A.S.Ferreira,J.A.D.Rossi,C.D.Pessoa, Evaluationofpartialdischargesignaturesusinginductivecouplingaton-site measuringforinstrumenttransformers,Int.J.EmergingElectricPowerSyst. 19(1)(2018),http://dx.doi.org/10.1515/ijeeps-2017-0160.

[2]D.A.Nascimento,S.S.Refaat,A.Darwish,Q.Khan,H.Abu-Rub,Y.Iano, Investigationofvoidsizeandlocationonpartialdischargeactivityinhigh voltageXLPEcableinsulation.,in:InWCNPS2019-Workshopon CommunicationNetworksandPowerSystems,numberWcnps.IEEE.ISBN 9781728129204.doi:10.1109/WCNPS.2019.8896268,2019,pp.1–6. [3]G.C.Montanari,A.Cavallini,Insulationconditionassessmentofpower

equipmentsinelectricalassetsbasedonon-linemonitoringofpartial discharges,in:In2008InternationalConferenceonConditionMonitoringand Diagnosis.IEEE,ISBN9781424416219.doi:10.1109/CMD.2008.4580483, 2007,pp.7–12.

[4]V.Estrela,Os.Saotome,H.Loschi,J.Hemanth,W.Farfan,J.Aroma,C. Saravanan,E.Grata,Emergencyresponsecyber-physicalframeworkfor landslideavoidancewithsustainableelectronics†,Technologies6(2)(2018) 42,2227-7080.doi:10.3390/technologies6020042.

[5]A.Cavallini,G.C.Montanari,A.Contin,F.Puletti,Anewapproachtothe diagnosisofsolidinsulationsystemsbasedonPDsignalinference,IEEEElectr.

(9)

InsulationMag.19(2)(2003)23–30,http://dx.doi.org/10.1109/MEI.2003. 1192033.

[6]IEC.IEC60270-High-voltagetesttechniques-Partialdischarge measurementsTechniques.TechnicalReport40,2015.

[7]F.Álvarez,F.Garnacho,J.Ortego,M.A.Sánchez-Urán,ApplicationofHFCTand UHFsensorsinon-linepartialdischargemeasurementsforinsulation diagnosisofhighvoltageequipment,Sensors(Switzerland)15(4)(2015) 7360–7387,http://dx.doi.org/10.3390/s150407360.

[8]IEC,IECTS62478-Highvoltagetesttechniques-Measurementofpartial dischargesbyelectromagneticandacousticmethods.Technicalreport,IEC, 2016.

[9]E.Gulski,W.Koltunowicz,T.Ariaans,G.Behrmann,R.Jongen,F.Garnacho,S. Kornhuber,S.Ohtsuka,F.Petzold,M.Sanchez-Uran,K.Siodla,S.Tenbohlen, Guidelinesforpartialdischargedetectionusingconventional(IEC60270)and unconventionalmethods.TechnicalReport288,Cigré,2016.

[10]A.Martins,V.V.Estrela,EM-basedmixturemodelsappliedtovideoevent detection,PrincipalComponentAnalysis-EngineeringApplications(2012), http://dx.doi.org/10.5772/38129.

[11]A.M.Coelho,V.V.Estrela,F.P.Carmo,S.R.Fernandes,Errorconcealmentby meansofmotionrefinementandregularizedBregmandivergence.,in:In LectureNotesinComputerScience(includingsubseriesLectureNotesin ArtificialIntelligenceandLectureNotesinBioinformatics),volume7435LNCS ISBN9783642326387.doi:10.1007/978-3-642-32639-478,2012,pp. 650–657.

[12]R.Hussein,K.B.Shaban,A.H.El-Hag,Denoisingdifferenttypesofacoustic partialdischargesignalsusingpowerspectralsubtraction,HighVoltage3(1) (2018)44–50,2397-7264.doi:10.1049/hve.2017.0119.URL

http://digital-library.theiet.org/content/journals/10.1049/hve.2017.0119. [13]R.Hussein,A.H.El-Hag,K.B.Shaban,Energyconservation-basedthresholding

foreffectivewaveletdenoisingofpartialdischargesignals,IETScience, Measurement&Technology10(7)(2016)813–822,1751-8822. doi:10.1049/iet-smt.2016.0168.URL

http://digital-library.theiet.org/content/journals/10.1049/iet-smt.2016.0168. [14]C.Zachariades,R.Shuttleworth,R.Giussani,R.Mackinlay,Optimizationofa

high-frequencycurrenttransformersensorforpartialdischargedetection usingfinite-elementanalysis,IEEESensorsJ.16(20)(2016)7526–7533, http://dx.doi.org/10.1109/JSEN.2016.2600272.

[15]H.A.Illias,H.R.Yon,A.H.A.Bakar,H.Mokhlis,G.Chen,P.L.Lewin,A.M.Ariffin, Modellingofpartialdischargepulsesinhighvoltagecableinsulationusing finiteelementanalysissoftware,in:2013IEEEElectricalInsulation

Conference,EIC2013,(June),doi:10.1109/EIC.2013.6554201,2013,pp.52–56. [16]X.Hu,W.H.Siew,M.D.Judd,X.Peng,Transferfunctioncharacterizationfor

HFCTsusedinpartialdischargedetection,IEEETransactionsonDielectrics andElectricalInsulation24(2)(2017)1088–1096,http://dx.doi.org/10.1109/ TDEI.2017.006115.

[17]YasinKhan,PartialdischargepatternanalysisusingPCAand

back-propagationartificialneuralnetworkfortheestimationofsizeand positionofmetallicparticleadheringtospacerinGIS,ElectricalEngineering 98(2016)29–42,doi:10.1007/s00202-015-0343-4.URL

https://link.springer.com/article/10.1007/s00202-015-0343-4.

[18]JankauskasAudriusLiudas,RekuvieneReginaSamaitis,VykintasMaˇzeika, Detectionandlocalizationofpartialdischargeinconnectorsofairpowerlines bymeansofultrasonicmeasurementsandartificialintelligencemodels, Sensors20(2021)1–21,doi:10.3390/s21010020.URL

https://www.mdpi.com/1424-8220/21/1/20#.

[19]M.Wu,H.Cao,J.Cao,H.L.Nguyen,J.B.Gomes,S.P.Krishnaswamy,An overviewofstate-of-the-artpartialdischargeanalysistechniquesfor conditionmonitoring,IEEEElectr.InsulationMag.31(6)(2015)22–35,http:// dx.doi.org/10.1109/MEI.2015.7303259.

[20]L.Satish,B.Nazneen,Wavelet-baseddenoisingofpartialdischargesignals buriedinexcessivenoiseandinterference,IEEETrans.Dielectr.Electr.Insul. 10(2)(2003)354–367,http://dx.doi.org/10.1109/TDEI.2003.1194122. [21]A.L.Kupershtokh,D.I.Karpov,D.A.Medvedev,C.P.Stamatelatos,V.P.

Charalambakos,E.C.Pyrgioti,D.P.Agoris,Stochasticmodelsofpartial dischargeactivityinsolidandliquiddielectrics,IETSci.Measure.Technol.43 (3)(2007)303–311,http://dx.doi.org/10.1049/iet-smt:20060104.

[22]A.K.A.Hagh,S.J.Ashtiani,A.A.ShayeganiAkmal,Awideband,sensitivecurrent sensoremployingtransimpedanceamplifierasinterfacetoRogowskicoil, SensorsandActuators,A:Physical256(2017)43–50,09244247. doi:10.1016/j.sna.2017.01.018.URL

https://doi.org/10.1016/j.sna.2017.01.018.

[23]M.H.Samimi,ArashMahari,M.A.Farahnakian,H.Mohseni,Therogowskicoil principlesandapplications:Areview,IEEESensorsJournal15(2)(2015) 651–658,http://dx.doi.org/10.1109/JSEN.2014.2362940.

[24]L.Kütt,AnalysisandDevelopmentofInductiveCurrentSensorforPowerLine On-LineMeasurementsofFastTransients.PhDthesis,2012.

[25]B.Mi.Amna,U.Khayam,DesignandSimulationofHighFrequencyCurrent TransformerasPartialDischargeDetector.,in:InThe3rdIEEEConferenceon PowerEngineeringandRenewableEnergyICPERE2016,ISBN

9781509051083.doi:10.1109/ICPERE.2016.7904854,2016,pp.135–139. [26]M.E.Kiziroglou,S.W.Wright,E.M.Yeatman,Coilandcoredesignforinductive

energyreceivers,Sens.ActuatorsA:Phys.313(2020)112206,09244247. doi:10.1016/j.sna.2020.112206.URL

https://doi.org/10.1016/j.sna.2020.112206.

Biographies

DouglasNascimento,M.Sc.,receivedhis B.Sc.at Uni-versity ofWestSantaCatarinaand M.Sc.inElectrical EngineeringfromtheUniversityofCampinas.Currentlyis aPh.D.candidateandEarlyStageResearcherintheETOPIA (EuropeanTrainingNetworkofPhDResearcherson Inno-vativeEMIAnalysisandPowerApplications)Project,a jointdoctoralprogrammeunderTheEuropean Commis-sion Horizon 2020initiative, MarieSkłodowska-Curie Actions, atTheUniversityofZielonaGóraandatThe University ofTwente.Heisa memberofInstituteof ElectricalandElectronicEngineers(IEEE),and Electro-magneticCompatibilitySociety(EMC-S)workingonTC-7 (TechnicalCommittee).Hisresearchareasaddresselectric vehicles,smartcities,sensors,EMCandEMI.Hehasexperiencein electromag-neticmodeling,cableandsensordesign,simulationofelectriccircuits,andpartial dischargetests.

ShadyS.Reffat,Ph.D.,isapostdoctoralresearchassociate intheDepartmentofElectricalandComputer Engineer-ing,TexasA&MUniversityatQatar,amemberofthe InstituteofElectricalandElectronicEngineers(IEEE),a memberofTheInstitutionofEngineeringand Technol-ogy(IET),amemberoftheSmartGridCenter–Extension inQatar(SGC-Q),hehasworkedwithindustryforover fifteenyearsaselectricaldesignengineer.Hehas pub-lishedovertwentyjournalandconferencepapers.His researchinterestsincludeelectricalmachines,power sys-tem,smartgrid,energymanagementsystem,reliability ofpowergridandelectricmachinery,faultdetection,and conditionmonitoringinconjunctionwithfault manage-mentanddevelopmentoffaulttolerantsystems.Hehassuccessfullyrealizedmany potentialresearchprojects.

HermesLoschi,M.Sc.,wasbornin1990,SaoPaulo,Brazil. HereceivedhismasterdegreeinElectricalEngineeringat theUniversityofCampinasandhisbachelor’sdegreein ControlandAutomationEngineeringatthePaulista Uni-versity.SinceApril2019,hestartedasaPh.D.studentin “SmartCitiesEMCNetworkforTraining(SCENT)”project intheInstituteofAutomaticControl,Electronicsand Elec-tricalEngineeringattheUniversityofZielonaGora,Poland aswellasthefacultyofElectricalEngineering, Mathemat-icsandComputerScience(EEMCS)intheUniversityof Twente,Netherlands.Hisresearchareasarepower sys-tems,renewableenergies,sensors,EMCandEMI.

YuzoIano,Prof.Ph.D.,hasadegree(1972),amaster’s degree(1974)andadoctorate(1986)inElectrical Engi-neeringfromtheUniversityofCampinas(Unicamp).Since then, he wasa supervisorin 5postdoctoralprojects, 34doctoraltheses,59master’sdissertations,74 under-graduatestudies,48undergraduateresearch, and198 otherorientations(TeacherInternshipProgram,projects, etc.).Authorof2booksandauthor/co-authorof8book chapters,and300publishedarticles.Hereceivedtwo InnovationAwards,Category“LicensedTechnology”,from InovaUnicampintheyears2013and2018,anAward forTeachingExcellenceinUndergraduateEducation,from theFacultyofElectricalandComputerEngineering,from theUniversityofCampinas(2012)anda“LifeMember”honorgrantedbythe Inter-nationalInstituteofElectricalandElectronicsEngineers-IEEE(2018).Heiscurrently FullProfessorMS6inRDIDPofDecom/Feec/Unicamp.

EuclidesChuma,Ph.D.,iscurrentlyR&DManagerof Pho-tonicsInnovationInstitute.Hecompletedhisdegreein MathematicsfromtheUniversityofCampinas(UNICAMP) (2003),graduatedegreeinNetworkand Telecommuni-cationsSystemsfromINATEL(2015),MScinElectrical EngineeringfromUNICAMP(2017),andPhDin Electri-calEngineeringinUNICAMP(2019).Hisresearchinterests includeantennas,microwave,millimeterwave, photon-ics,sensors,wirelesspowertransfer,andsoftwaredefined radio.

(10)

Referenties

GERELATEERDE DOCUMENTEN

Bovendien vervalt met deze wijziging van de Regeling de voorlopige vaststelling en uitkering van de vergoeding van kosten van zorg die niet door het CAK aan de zorgaanbieders

DEFINITIEF | Farmacotherapeutisch rapport viskeuze cysteamine oogdruppels (Cystadrops®) bij de behandeling van afzettingen van cystine kristallen in het hoornvlies bij cystinose |

De centrale vraag is of de nieuwe interventie in de toekomst blijvend kan worden toegepast, moet worden aangepast, of zelfs moet worden gestopt. Ga voor de volledige Leidraad

In Het schip Herman Manelli (1990) komt de hoofdpersoon een dood meisje tegen dat zelfmoord heeft gepleegd op de spoorrails, maar veel belangrijker is zijn psychotische dochter,

Extreem vroeg planten (half augustus) kon een aantasting door Pythium niet voorkomen.. Vroeg planten biedt dus niet de oplossing waarop

'De stagnatie in de daling vraagt om een nieuwe aanpak', aldus Fred Wegman, directeur Stichting Wetenschappelijk Onderzoek Verkeersveiligheid SWOV tijdens het Nationaal

The pressure points identified (Figure 5.1) and the mechanisms employed (Figure 5.2) in the practice of urban planning within the local authority setting demonstrates

The incremental cost effectiveness ratio was calculated by the difference in total direct medical costs divided by the difference in number of serious NSAID ulcer complication for