• No results found

The effect of gender diversity on team performance

N/A
N/A
Protected

Academic year: 2021

Share "The effect of gender diversity on team performance"

Copied!
30
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

 

Bachelor  Thesis  

The  effect  of  gender  diversity  on  team  performance  

 

Author:  Anne  van  der  Klugt  -­‐  10610936  

Programme:  Economics  and  Business  -­‐  Finance  and  Organization   Supervisor:  Adam  Booij  

Date:  June  29,  2016    

ABSTRACT  

The   purpose   of   this   thesis   is   to   examine   the   effect   of   gender   diversity   on   team   performance.   Data   for   this   study   were   collected   at   the   University   of   Amsterdam.   The   subjects   are   undergraduates   in   the   second-­‐year   course   ‘International   Money’.  They  were  distributed  over  379  self-­‐selected  teams  of   2-­‐3   students   that   differ   in   the   share   of   female.   The   teams   made  three  group  assignments  during  the  course:  an  essay,  a   presentation   and   a   discussion.   This   quasi-­‐experiment   examines   if   mixed-­‐gender   teams   perform   better   than   single-­‐ gender   teams   and   in   addition   to   that,   in   which   kind   of   assignments  gender  diversity  has  the  biggest  impact  on  team   performance.  The  results  did  not  support  the  hypothesis  that   diverse   teams   outperform   single-­‐gender   teams.   The   overall   result   shows   that   there   is   no   significant   difference   between   the   performance   of   mixed-­‐gender   teams   and   that   of   single-­‐ gender  teams  with  the  same  proportions.  

   

(2)

Statement  of  Originality    

This   document   is   written   by   Anne   van   der   Klugt   who   declares   to   take   full   responsibility  for  the  contents  of  this  document.    

I  declare  that  the  text  and  the  work  presented  in  this  document  is  original  and   that  no  sources  other  than  those  mentioned  in  the  text  and  its  references  have   been  used  in  creating  it.    

The  Faculty  of  Economics  and  Business  is  responsible  solely  for  the  supervision   of  completion  of  the  work,  not  for  the  contents.  

                                             

(3)

TABLE  OF  CONTENTS  

1. Introduction                   4  

2. Related  literature                 6  

2.1 The  synergetic  effect  of  teams             6   2.2 Determinants  of  team  performance           7   2.3 The  effect  of  gender  diversity  on  team  performance       8  

2.4 Main  hypothesis                 10  

3. Data  &  Methodology               11  

3.1 Participants                 11  

3.2 Procedures  and  quality  of  the  data           13  

3.3 Model  setup                 14  

3.4 Summary  statistics  and  balancing           16  

3.5 Sample  selection                 20  

4. Results                   20  

5. Discussion  and  conclusion             24  

REFERENCES                   27   APPENDICES                   29                                  

(4)

1. Introduction  

For   a   long   time,   the   use   of   teams   was   very   exceptional,   but   nowadays   many   organizations  assign  tasks  to  teams  instead  of  individuals  (Hamilton,  Nickerson   &  Owan,  2003;  Hertel,  2011;  Robbins  &  Judge,  2012).  This  shift  in  organizational   behavior   reflects   the   expectation   of   firms   that   teams   could   have   advantages   compared   to   individual   workers   (Hertel,   2011).   Therefore,   managing   team   performance  has  become  a  topic  of  interest.  Due  to  the  recent  globalization  and   changes   in   the   labor   market,   team   diversity   has   become   an   important   determinant  of  performance  (Robbins  and  Judge,  2012).  The  concept  of  diversity   is   very   broad.   This   thesis   focuses   on   one   specific   aspect   of   diversity   namely:   gender  diversity.  

  Kösters,   den   Boer   and   Lodder   (2009)   analyze   the   employment   rates   for   men   and   women   in   the   Netherlands.   Figure   1   illustrates   the   importance   of   managing   gender   diversity.   The   employment   rate   of   women   (dashed   line)   has   risen   by   more   than   30%   since   1970.   Although   the   employment   rate   for   men   (dotted  line)  is  still  higher,  it  has  not  changed  that  much  over  the  past  few  years.    

 

Figure  1  

Gross  employment  rate  in  the  Netherlands  in  1970-­‐2008  

Note:  For  this  graph,  Kösters,  den  Boer  and  Lodder  (2009)  used  data  of  the  CBS  

 

The  increase  of  female  on  the  labor  market  could  cause  a  change  in  gender   composition   of   teams   in   organizations.   To   reach   an   optimal   performance   level,   managers  should  know  how  to  compose  a  team  that  provides  the  best  outcomes.   Another  related  issue  is  the  underrepresentation  of  women  in  higher  functions   (Adams  &  Ferreira,  2009).  Governments  try  to  increase  the  share  of  females  in  

(5)

the  board  by  introducing  regulations  that  require  a  fixed  percentage  or  amount   of  female  in  the  board  (Ahern  &  Dittmar,  2012;  Masta  &  Miller,  2013).  It  remains   unclear   however,   whether   mixed-­‐gender   teams   would   outperform   teams   consisting  of  men  or  women.    

To   examine   the   effect   of   gender   diversity   on   team   performance,   this   study   looks   at   quasi-­‐experimental   evidence   of   teams.   The   teams   that   were   used   are   teams   of   students   in   the   course   ‘International   Money’1  at   the   University   of  

Amsterdam.  In  this  course,  the  students  divide  themselves  into  teams  of  two  or   three   students   that   differ   in   share   of   female.   Although   the   assignment   is   non-­‐ random,   the   students   in   the   different   teams   don’t   differ   much   in   observed   characteristics.   The   core   assumption   is   that   this   carries   over   to   unobserved   differences  as  well.  The  students  should  make  three  different  group  assignments   together:   an   essay,   a   presentation   and   a   discussion.   The   groups   receive   a   different   grade   for   each   assignment,   which   is   used   as   the   measure   of   performance.    

The   overall   results   show   that   gender   diversity   does   not   affect   team   performance.   There   is   some   suggestive   evidence   however,   that   single-­‐gender   teams  outperform  teams  of  one  female  and  two  male  students.  This  effect  is  only   significant   for   the   discussion   assignment.   In   the   other   assignments,   in   which   exactly   the   same   students   and   group   compositions   are   analyzed,   no   significant   relationship  was  found.  

This   thesis   contributes   to   literature   because   three   different   performance   measures  are  studied,  which  allows  us  to  examine  in  which  type  of  assignment   gender   composition   has   the   biggest   impact.   Fenwick   and   Neal   (2001)   provide   evidence   that   there   is   no   relation   between   the   share   of   women   in   a   team   and   their   performance   in   writing   a   business   report.   However,   Goldin,   Katz,   and   Kuziemko    (2006)  show  that  women  do  have  better  verbal  skills  than  men.  These   findings   suggest   that   the   impact   of   gender   diversity   could   differ   among   the   assignments;   the   influence   of   gender   diversity   should   be   larger   for   the   presentation  or  discussion  assignment  than  for  the  writing  assignment.  

In  the  next  section,  literature  that  is  related  to  this  topic  is  discussed.  After   that,  the  data  used  for  this   study  is  described  in  more  detail  and   the   empirical                                                                                                                  

(6)

model   is   explained.   In   the   fourth   chapter,   the   results   are   presented.   The   last   section  of  this  paper  discusses  the  results  and  sums  up  the  main  conclusions.  

 

2. Related  Literature  

2.1  The  synergetic  effect  of  teams  

The   rapid   increase   in   assigning   tasks   to   teams   instead   of   individuals   did   not   happen   by   accident.   Many   researchers   acknowledge   the   advantages   of   teams   compared  to  individuals.  According  to  Hertel  (2011),  this  phenomenon  is  called   the  synergetic  effect.  This  means  that  teams  could  obtain  a  higher  performance   level  compared  to  the  accumulated  individual  performance  of  all  the  members  of   the  team  (Robbins  &  Judge,  2012).  As  a  result,  an  organization  can  create  greater   outputs  by  using  the  same  inputs  as  before.    

The   positive   synergy   of   teams   is   caused   by   a   couple   of   processes.   According   to   Hertel   (2011),   teams   are   more   creative   and   can   provide   a   more   diverse  view  compared  to  individuals.  Additionally,  teams  are  better  in  providing   solutions   for   problems.   The   reason   for   this   is   that   teams   view   problems,   statements  or  ideas  from  all  different  kinds  of  perspectives.  The  effectiveness  of   teams   is   also   strengthened   by   the   competition   between   the   members.   Hertel   (2011)   says   that   due   to   intragroup   competition,   members   exert   more   effort.   Other  researchers  also  studied  the  difference  in  performance  of  teams  compared   to   individuals.   Gigone   and   Hatsie   (1997)   found   that   the   accuracy   of   a   team   is   higher   than   the   average   of   the   individuals   of   that   team.   On   top   of   that,   teams   could   give   support   to   other   team   members,   which   could   cause   a   higher   motivation  and  improves  coordination  (Hüffmeier  &  Hertel,  2010).    

There   are   also   papers   that   emphasize   the   drawbacks   of   using   teams.   Bennett   (2004)   examines   the   concept   of   social   loafing.   This   means   individuals   exert  less  effort  in  a  team  compared  to  individually.  Social  loafing  often  happens   when  a  team  becomes  too  large.  In  that  case,  team  members  are  unable  to  check   how   much   effort   each   individual   exerts   because   individual   performance   is   not   measurable  anymore  (Robbins  &  Judge,  2012).  According  to  them,  this  causes  a   lack   of   responsibility,   which   will   result   in   free   riding   of   individuals.   Another   drawback   of   the   use   of   teams   is   the   need   for   conformity.   Individuals   feel   the   pressure  of  the  group  to  act  the  same  as  them  and  adjust  their  behavior  in  line  

(7)

with   that   of   their   group   members   (Asch,   1956).   This   could   hurt   the   teams’   creativity  and  diverse  view.  

To   achieve   a   positive   synergy   by   using   teams,   a   manager   should   know   how  to  compose  the  most  effective  team.    

 

2.2  Determinants  of  team  performance  

According   to   Maznevskis’   basic   model   of   group   processes2  (1994),   there   are  

three   main   factors   that   influence   group   performance:   member   characteristics,   group   characteristics   and   group   processes.   For   this   thesis,   it   is   important   to   describe  a  couple  of  these  member-­‐  and  group-­‐characteristics  because  it  helps  to   understand  why  certain  variables  are  included  in  the  empirical  model.  

 

2.2.1  Group  characteristics  

A  first  determinant  of  group  performance  is  group  size.  Seijts  and  Latham  (2000)   argue   that   smaller   groups   are   faster   in   completing   tasks   and   that   the   performance  of  individuals  is  higher  in  a  smaller  team.  A  reason  for  this  could  be   that   social   loafing   hurts   team   performance   when   a   team   becomes   too   large   (Bennett,   2004).   Larger   teams   could   be   preferable   for   decision-­‐making   tasks   (Robbins  &  Judge,  2012)  because  a  larger  team  views  statements  from  different   perspectives  and  therefore  could  provide  a  more  diverse  output  (Hertel,  2011).       Furthermore,  group  cohesion  could  be  an  important  determinant  of  team   performance.  Members  in  teams  with  a  high  level  of  cohesiveness  are  attracted   to  each  other  and  want  to  stay  in  the  group  (Robbins  &  Judge,  2012).  Dorfman   (1984)  discusses  the  effect  of  cohesiveness  on  team  performance  in  his  paper.  He   observed   students   in   small   groups   that   participate   in   a   business   game.   Performance   was   measured   in   terms   of   profit.   The   results   suggest   that   teams   that   were   high   in   cohesiveness   outperform   teams   with   a   low   level   of   cohesiveness.    

 

2.2.2  Member  characteristics  

Besides  group  characteristics,  individual  characteristics  are  important.  The  skills   and   abilities   of   the   team   members   could   influence   the   total   team   performance                                                                                                                  

(8)

(Robbins  &  Judge,  2012).  According  to  them,  high-­‐ability  teams  perform  better   than  low-­‐ability  teams.  In  addition  to  that,  high-­‐ability  teams  are  more  flexible.    

Another   determinant   of   team   performance   is   the   average   age   of   the   team   members.  Streufert,  Pogash  Piaseck  and  Post  (1990)  studied  the  effect  of  age  on   team   performance   by   analyzing   teams   in   different   age-­‐categories.   The   results   suggest  that  teams  consisting  of  older  people  made  fewer  decisions.  These  teams   needed   more   time   to   make   decisions   and   ignored   relevant   information   for   making   these   decisions.   Furthermore,   older   teams   scored   lower   on   all   the   planning  and  strategy  performance  measures.    

 

2.3  The  effect  of  gender  diversity  on  team  performance  

This   paper   focuses   on   the   influence   of   gender   diversity   on   team   performance.   Despite  the  many  literature  written  about  the  effect  of  gender  diversity  in  teams,   there  is  no  clear  answer  about  which  kind  of  team  performs  best.    

Adams   and   Ferreira   (2009)   analyze   the   effect   of   gender   diversity   on   boardrooms  in  US-­‐firms.  They  use  firms  of  the  S&P  500,  S&P  MidCaps  and  S&P   SmallCap.   The   effect   of   gender   on   observable   measures   of   board   inputs   and   board  level  governance  characteristics  was  analyzed.  The  researchers  found  that   female  directors  are  less  likely  to  experience  attendance  problems  and  that  the   CEO  turnover  increases  with  the  share  of  female  directors.  Additionally,  women   participate   more   in   monitoring   committee   meetings   than   men.   The   overall   performance,  measured  in  Tobins’  Q  and  return  on  assets,  is  worse  when  there  is   greater   gender   diversity.   The   cause   for   this   could   be   that   women   increase   the   monitoring   intensity   of   the   board.   Too   much   monitoring   would   decrease   the   shareholders   value   (Adams   and   Ferreira,   2007).   They   conclude   that,   for   firms   with  strong  shareholder  rights,  extreme  monitoring  is  counterproductive.  

On   the   other   hand,   Carter,   Simkins   and   Simpson   (2003)   found   a   positive   relationship  between  gender  diversity  and  performance,  measured  in  Tobins’  Q.   To   study   this,   they   analyzed   638   publicly   traded   Fortune   1000   firms.   The   researchers   made   a   distinction   between   low-­‐women   firms,   which   means   the   firms  have  no  female  in  the  board,  and  high-­‐women  firms,  which  means  the  firm   had  two  or  more  women  in  the  board.  Besides  an  increase  in  performance  they  

(9)

also  found  that  firm  size  increases  when  the  share  of  female  is  larger.  However,   the  researchers  did  not  study  what  could  be  the  cause  of  these  relationships.    

Another   commonly   used   method   for   studying   the   effect   of   gender   diversity   on  performance  is  analyzing  performance  of  business  teams.  The  participants  in   these  games  are  mostly  undergraduate  students.  Fenwick  &  Neal  (2001)  studied   a   business   game   that   consists   of   65   self-­‐selected   teams   of   4-­‐7   individuals.   The   teams   were   ranked   into   five   groups   on   basis   of   their   profit.   In   addition,   the   researchers  include  a  second  measure  of  performance;  the  quality  of  a  business   report   that   the   teams   have   to   write.   No   relationship   was   found   between   the   writing  skills  of  the  teams  and  the  share  of  female.  However,  the  results  indicate   that  the  share  of  female  students  in  a  team  is  positively  related  to  profit.  88%  of   the   groups   that   had   a   high   ranking   (1   or   2)   were   consisting   of   two   or   more   female   students.   Additionally,   teams   with   a   share   of   female   of   at   least   0.4   obtained  higher  profits  over  the  ten  periods  of  the  game.  The  researchers  argue   that  women  are  more  cooperative  and  people-­‐oriented  compared  to  men.  On  the   other   hand,   men   are   more   competitive.   This   combination   explains   why   mixed-­‐ gender  teams  perform  better.      

Later   on,   Apesteguia,   Azmat,   and   Iriberri   (2012)   studied   another   business   game   with   teams   consisting   of   three   members.   They   classified   the   teams   into   four  groups:  teams  without  female,  teams  with  only  one  female,  teams  with  two   female   and   lastly,   a   team   consisting   of   only   female   students.   The   experiment   provides  evidence  that  all  the  other  teams  outperform  teams  consisting  of  three   women.  The  reason  for  this  could  be  that  these  teams  were  less  aggressive  than   others.  In  addition  to  that,  the  researchers  found  suggestive  evidence  that  a  team   of  two  men  and  one  woman  performs  best.    

Hoogendoorn,   Oosterbeek   and   Praag   (2013)   did   also   observe   the   performance   of   undergraduate   students   in   business   teams.   They   analyzed   45   teams   that   participated   in   an   entrepreneurship   program.   The   students   should   manage   a   business   in   small   teams.   The   share   of   women   in   the   team   varies   between  0.1  and  1.0.    Performance  was  measured  in  terms  of  sales,  profits  and   earnings  per  share.  They  conclude  team  performance  is  optimal  with  a  share  of   woman   between   0.5   and   0.6.   They   provide   evidence   that   the   graph   of   performance  has  an  inverse  U-­‐shape.  First,  performance  goes  up  when  the  share  

(10)

op   female   increases.   When   the   share   of   female   reaches   0.5-­‐0.6,   including   more   female   in   the   team   could   only   hurt   the   teams’   performance.   According   to   the   researchers,  part  of  this  relationship  could  be  explained  by  the  fact  that  diverse   teams   are   more   extreme   monitors.   They   found   that   the   level   of   monitoring   is   highest   in   teams   with   a   share   of   female   of   0.5   and   that   the   relation   between   performance   and   monitoring   is   again   inverse   U-­‐shaped.   In   contrast   to   the   findings   of   Adams   and   Ferreira   (2009),   monitoring   is   positively   related   to   performance.    

This   thesis   differs   from   former   literature   by   using   other   measures   of   performance.  Not  the  performance  of  boards  or  business  games  is  analyzed,  but   the  performance  of  student-­‐teams  in  a  course  at  university.  Where  other  papers   focus  on  firm  value  or  profit  as  a  measure  of  performance,  this  paper  examines   the   effect   of   gender   diversity   in   teams   on   writing   skills,   presenting   skills,   and   discussion  skills  of  the  group.  The  weighted  average  of  these  three  performance   measures  is  also  considered  for  reasons  of  accuracy.  On  top  of  that,  it  is  possible   to  examine  if  gender  diversity  of  teams  has  a  greater  impact  on  performance  in   one  particular  assignment.  Furthermore,  the  sample  that  is  used  for  this  study  is   larger  than  in  most  literature  in  which  undergraduates  are  studied.    

 

2.4  Main  hypothesis  

To   examine   the   effect   of   gender   diversity   on   team   performance,   the   following   hypothesis  follows  from  literature:  

 

H1:  Gender  diversity  has  a  positive  effect  on  team  performance.    

Because  this  quasi-­‐experiment  is  most  comparable  to  the  papers  in  which  they   use   undergraduates   (Apesteguia   et   al.,   2012;   Fenwick   and   Neal,   2001;   Hoogendoorn  et  al.,  2013),  the  expected  effect  of  gender  diversity  is  positive.  To   confirm   this   hypothesis,   the   coefficients   of   the   mixed-­‐gender   groups   should   be   positive  and  significantly  different  from  zero.    

     

(11)

3. Data  &  methodology   3.1.  Participants  

The   subjects   of   this   quasi-­‐experiment   are   students   in   the   course   ‘International   Money’.   The   course   is   a   second   year   course   of   the   bachelor   in   Economics   and   Business   at   the   University   of   Amsterdam.   For   students   that   have   chosen   the   track  Economics,  Finance  or  Economics  &  Finance  this  is  a  compulsory  course  in   their   programme.   The   course   is   focused   on   the   monetary   relations:   in   theory,   practice  and  policy.  Important  topics  in  this  course  that  will  be  studied  are  the   balance  payments  and  the  foreign  exchange  market  (UvA,  2014).  

Data  of  four  past  academic  years  is  studied,  namely:  2011-­‐2012  till  2014-­‐ 2015.  The  number  of  participants  varies  across  the  years  and  is,  after  cleaning   the   data,   146,   194,   196   and   308   respectively.   In   total   the   information   of   843   students   is   used.   The   fraction   of   female   students   in   this   sample   is   31.1%   (n=   262)   and   68,9%   (n=581)   are   male   students.   Only   data   of   the   Dutch   version   of   this  course  is  analyzed.    

In   each   workgroup   the   students   are   divided   into   self-­‐selected   groups   of   two  or  three  individuals.  The  teacher  of  the  course  is  not  involved  in  the  group   making  process,  unless  students  are  unable  to  find  a  group  by  their  selves.  The   students   are   distributed   over   378   groups.   23%   (n=87)   are   groups   of   three   students   and   77%   (n=291)   consists   of   two   students.   Participants   could   not   be   part  of  two  different  groups  in  the  same  academic  year,  but  there  are  a  couple  of   students   that   need   more   than   one   attempt   to   pass   this   course.   As   a   result,   the   same  students  could  participate  in  this  study  for  more  than  one  year.    

 

Table  1  

Distribution  of  students,  teams  and  share  of  female  over  academic  years  

Year   Students   Teams   Share  of  female  

2011-­‐2012   145   68   0.27   2012-­‐2013   194   85   0.32   2013-­‐2014   196   89   0.28   2014-­‐2015   308   136   0.34   Total   843   378   0.31    

During   the   course,   there   are   three   types   of   group   assignments,   namely:   (I)   writing   an   essay,   (II)   giving   a   presentation   and   (III)   discuss   another   groups’  

(12)

essay   in   presentation   form.   The   group   assignments   are   called   skills   activities   because  they  test  three  different  skills.    

First   of   all,   the   writing   skills   of   the   teams   are   tested.   The   students   should   write   an   essay   of   1200   words.   The   grade   obtained   for   the   essay   will   count   for   10%  of  the  end-­‐grade  of  the  course.  Students  write  about  a  self-­‐chosen  topic  that   is   related   to   the   curriculum   of   the   course.   The   students   need   to   write   a   short   analytical  and  critical  text  based  on  academic  sources.  In  the  essay,  they  answer   an   explanatory   research   question.   The   students   are   assessed   on   spelling   and   academic   writing,   and   should   only   give   information   that   is   necessary   and   important.  If  the  students  hand  in  their  essay  too  late,  it  is  graded  as  a  zero.    

Second,  the  group  has  to  present  their  essay  findings.  The  presentation  has   duration   of   ten   minutes   and   counts   for   5%   of   the   end-­‐grade.   The   students   are   evaluated  on  content,  non-­‐verbal,  and  verbal  skills.  Giving  the  right  answers  to   questions   of   fellow   students   is   also   taken   into   account.   When   the   students   are   not   present   during   the   workgroup   they   have   to   do   their   presentation,   the   assignment  is  again  graded  as  zero.  

The   last   assignment   is   the   discussion.   The   discussion   counts   for   5%   of   the   end-­‐grade   too.   The   purpose   of   this   assignment   is   to   give   critical   comments   on   another  groups’  essay.  First,  a  very  short  summary  should  be  given.  After  that,   the  essay  is  evaluated  and  finally  a  conclusion  is  provided.  Only  giving  comments   on   misspellings   and   the   layout   of   the   essay   is   not   sufficient.   Again   if   there   are   students  not  present,  their  grade  is  zero.    

 The  presentations  are  distributed  over  several  weeks.  There  are  a  couple  of   presentations  per  workgroup  and  after  each  presentation,  the  discussion  about   that   same   essay   follows.   The   teachers   differ   among   the   workgroups   and   the   grades  they  give  could  vary  between  0  and  10.  These  grades  are  announced  after   all  the  presentations  and  discussion  have  taken  place.  For  the  essay,  the  deadline   is  the  same  for  all  groups.  The  remainder  80%  consists  of  an  individual  grade  for   the  written  final  exam  that  counts  for  70%  and  a  group  presentation  about  the   theory   discussed   in   class   that   counts   for   10%.   Sometimes   students   are   not   picked  out  to  give  a  presentation.  If  not,  their  end-­‐term  counts  for  80%.  

   

(13)

   

3.2  Procedures  and  quality  of  the  data  

First   of   all,   with   the   approval   of   the   coordinator   of   the   course,   administrative   data  regarding  students’  ID,  group  composition  and  group  grades  were  collected.   After   that,   the   information   specialist   of   the   Faculty   of   Economics   and   Business   collected   additional   information   about   the   students’   gender,   age,   credits   obtained  in  the  first  year,  and  grades  obtained  in  the  first  year.  Before  the  data   could   be   used   for   research,   the   student   ID   numbers   of   the   participants   were   replaced  for  random  numbers,  so  the  subjects  in  this  study  are  as  anonymous  as   possible.    

  The   advantage   of   collecting   data   in   this   way   is   that   there   is   no   problem   with  low  response  rates  or  inaccurate  answers.  Additionally,  it  is  possible  to  use   a  large  sample,  which  makes  the  quasi-­‐experiment  more  precise.    

  Nonetheless,   some   observations   were   left   out   because   these   were   not   useful.   First   of   all,   some   student   ID   numbers   and   group   grades   were   missing.   According   to   the   explanation   of   the   coordinator,   these   missing   observations   were   due   to   students   that   signed   up   for   the   course,   but   never   showed   up.   The   students   without   a   student   ID   are   students   that   decided   to   participate   in   this   course   after   the   official   registration.   It   was   impossible   to   track   down   these   students,  which  means  there  is  too  little  information  about  their  demographics.   Both  groups  are  ignored.  

Another  complication  of  this  sample  is  that  some  students  obtained  a  zero   for   all   three   assignments.   This   means   the   students   never   handed   in   any  

Table  2  

Summary  of  the  assignments  in  the  course  International  Money  

Essay   Presentation   Discussion  

Evaluated  on:   -­‐ Spelling   -­‐ Academic  writing   -­‐ Giving  only   necessary  and   important   information   Evaluated  on:  

-­‐ Non  verbal  skills   -­‐ Verbal  skills   -­‐ Answering   questions  of   fellow  students     Evaluated  on:   -­‐ Critical  comments     Weight:  

(14)

assignment  and  were  not  present  in  the  workgroups  when  they  had  to  present   or  discuss  an  essay.  An  explanation  for  this  could  be  that  the  students  gave  up  on   the   course   in   an   early   stage.   Under   assumption   the   students   did   not   leave   the   course  because  of  their  team  composition,  the  students  were  left  out.    

A   third   complication   is   that   there   were   some   groups   where   the   teacher   individually   graded   the   members   of   the   team.   In   addition   to   that,   there   were   team  members  that  decide  to  not  show  up  for  their  presentation  or  discussion   but  the  other  team  members  did.  Both  lead  to  different  grades  within  one  team.   To   tackle   this   problem   the   dummy   ‘intact’   was   created.   With   a   regression   for   binary   outcomes   it   was   tested   if   the   group   composition   had   an   effect   on   the   group  be  intact  or  not.  If  not,  sample  selection  is  not  a  problem.    

Because   this   paper   ignores   the   observations   mentioned   above,   some   ‘teams’   were   left   with   only   one   person.   These   observations   measure   the   performance   of   an   individual,   rather   than   team   performance.   Therefore,   these   observations  are  ignored  in  this  study.    

 

3.3  Model  setup  

Performance   is   the   dependent   variable   in   the   model.   To   measure   group   performance,   the   grades   for   the   three   different   kinds   of   assignments   are   used:   the   essay,   the   presentation,   and   the   discussion.   All   the   members   of   the   group   receive   the   same   grade   for   their   assignment.   For   every   kind   of   assignment,   a   separate   regression   is   done   so   that   the   degree   of   influence   on   performance   among  the  assignments  is  comparable.  There  are  also  two  regressions  done  for   the  weighted  average  of  the  three  assignments  in  which  the  essay  counts  twice   as  much  as  the  presentation  and  discussion  assignment,  just  like  in  the  course.     Share   of   female   is  the  variable  of  interest.  The  share  of  women  in  the  groups   could   be   0,  !!,  !!,  !!  or   1.   The   distribution   is   57.7%   (n=218),   4.8%(n=18),   14.8%(n=56),  2.11%(n=8)  and  20.6%  (n=78),  respectively.  These  five  different   groups  are  distinguished  in  the  model  with  dummy  variables:  F=0,  F=𝟏

𝟑,  F= 𝟏 𝟐,  F=

𝟐 𝟑   and  F=1.  The  two  homogeneous  groups  (F=0  and  F=1)  are  used  as  a  reference   point.   The   most   interesting   team   is   the   team   consisting   of   one   female   and   two  

(15)

male  students  because  this  team  best  represents  the  share  of  female  in  the  total   sample  (31.1%).                                  

Control   variables   that   are   included   in   the   regression   are   group   size,   average   age,   average   credits,   and   average   GPA.   There   are   also   dummies   included   for   special  students  that  finished  their  first  year  under  certain  circumstances.  

Size:     As   discussed   in   the   literature   section,   size   could   be   an   important  

determinant  of  performance.  The  groups  in  this  quasi-­‐experiment  consist  of  two   or   three   students,   which   means   groups   are   small   and   do   not   vary   a   lot   in   size.   The  teams  where  the  share  of  female  is  𝟏

𝟑  or   𝟐

𝟑  are  always  groups  of  three  students  

and  teams  that  have  a  share  of  female  of  !!  are  always  consisting  of  two  students.   The  single-­‐gender  teams  could  vary  in  size.    

Age:  The  age  of  the  students  could  also  influence  group  performance.  The  

age  that  is  included  is  the  age  of  the  students  at  the  beginning  of  the  course.  This   means   the   students   that   need   more   than   one   attempt   to   pass   the   course   could   have  different  ages  over  the  academic  years.  

    Credits:   The   average   credits   are   calculated   over   the   first   year   only,  

because  ‘International  money’  is  a  second  year  course.    

GPA:  GPA  is  also  calculated  only  over  the  first  year.  In  fact,  it  is  not  the  real  

GPA   but   an   approximation.   It   is   measured   as   an   average   of   all   the   end-­‐term   grades  in  the  first  year.  Because  of  the  administration  system  of  the  University  of   Amsterdam,   insufficient   grades   are   not   taken   into   account   by   calculating   the   GPA.  Therefore,  it  is  measured  in  this  way.    

Table  3  

Frequency  of  share  of  female   Share  of   female   N   %   0   218   57.7%   1 3   18   4.8%   1 2   56   14.8%   2 3   8   2.11%   1   78   20.6%  

Note:  ‘N’  denotes  the  number  of  groups   observed  for  the  given  share  of  female    

0   50   100   150   200   250   0            1/3    1/2    2/3   1           Figure  2  

Distribution  of  teams  

(16)

NE,  FS  and  HC:  These  control  variables  are  all  dummies.  The  dummies  

have   the   value   1   if   there   is   a   student   in   the   group   that   finished   the   first   year   suffering  from  one  of  the  following  circumstances:  (I)  negative  study  advice  =  NE   (II)   ’februari-­‐stakers’   =   FS   or   (III)   ’hardheidsclausule’   =   HC.   The   dummies   are   included  because  these  students  have  a  very  low  number  of  credits,  and  often  a   GPA  below  the  average.  By  negative  study  advice  the  University  of  Amsterdam   means  students  that  have  not  reached  the  mandatory  amount  of  42  credits.  They   have  to  leave  the  faculty  but  could  try  it  again  after  three  years.  In  this  sample   there   are   four   of   these   students.   The   second   special   group   consists   of   three   students  who  are  called  ‘februari-­‐stakers’.  These  students  quit  the  study  in  their   first  year  before  February.  In  this  way,  students  get  part  of  their  tuition  back  and   can  sign  up  again  for  a  study  at  the  Faculty  of  Economics  and  Business  next  year.   Their  credit  points  are  between  0  and  6.  Lastly,  there  were  students  that  had  not   obtained   enough   credits   the   first   year,   but   could   stay   because   of   a   special   personal  reason,  which  is  called  the  ‘hardheidsclausule’.  This  was  the  case  for  25   students.  Their  credit  points  are  below  42.      

 

3.4  Summary  statistics  and  balancing  

Table  4  reports  the  mean  sample  statistics  of  the  teams.  The  table  shows  that  the   grades   for   the   three   assignments   vary   between   0-­‐9.5.   This   is   because   some   teams  did  not  hand  in  their  assignments  in  time,  or  were  absent  when  they  had   to   do   their   discussion   or   presentation.   Furthermore,   the   fraction   of   females   among   the   teams   varies   between   0-­‐1,   which   means   there   exist   groups   without   women   as   well   as   groups   without   men.   The   average   age   in   the   groups   is   quite   different,  with  a  difference  of  almost  8  years  between  the  team  with  the  youngest   and  the  team  with  the  oldest  members.  The  minimum  amount  of  credits  of  the   group  is  a  bit  confusing  because  normally,  students  need  to  have  42  credits  or   more   to   go   to   the   next   year.   The   ‘special   students’   that   were   discussed   before   cause   this   low   number.   The   low   GPA   is   because   in   the   approximation   that   is   used,  only  the  end-­‐term  grades  are  included.  This  means  also  insufficient  grades   are  taken  into  account  for  the  GPA.    

In  table  5  the  mean  characteristics  are  shown  for  the  teams  classified  by   the  share  of  women  in  the  team.  The  classification  of  the  teams  corresponds  with  

(17)

the  dummies  for  the  different  team  compositions  in  the  model.  Interesting  is  that   the  mean  credits  of  a  team  increases  when  the  share  of  female  goes  up.  However,   GPA   is   highest   in   a   group   with   one   man   and   two   women.   If   there   was   not   controlled   for   these   characteristics,   this   could   complicate   the   analysis.   If   the   number  of  credits  were  positively  related  to  performance,  teams  with  a  higher   share  of  female  students  would  always  do  better  regardless  of  team  composition.   In  addition,  when  the  GPA  is  positively  related,  teams  consisting  of  two  female   and  one  male  would  do  better.  The  inclusion  of  team  characteristics  as  control   variables   will   reduce   the   selectivity   of   the   assignment.     However,   it   cannot   eliminate  it.    

 

Table  4  

Descriptive  statistics  of  performance  measures  and  group  characteristics  

Variable   N   Mean   Standard  

deviation   Min   Max  

Size   378   2.23   0.42   2   3   Age   378   21.3   1.18   19.3   27.1   Credıt     378   53.64   6.22   24   60   GPA     378   6.25   0.79   3.85   8.31   NE     378   0.01   0.1   0   1   FS     378   0.01   0.09   0   1   HC     378   0.07   0.25   0   1  

Share  of  female   378   0.31   0.40   0   1  

Essay   378   6.76   1.18   0   9.5  

Presentation   378   7.04   1.39   0   9.5  

Discussion   378   7.03   1.74   0   9  

 

Note:  ‘N’  denotes  the  number  of  groups  observed.    Over  bar  denotes  group  average.  

Table  5  

Mean  characteristics  by  gender  composition  of  teams  

  F=0   F=𝟏 𝟑   F= 𝟏 𝟐   F= 𝟐 𝟑   F=1     Size   2.21   (0.03)   3.00  (0.00)   2.00  (0.00)   3.00  (0.00)   2.21  (0.05)   Age     21.43   (0.08)   21.27   (0.25)   21.50   (0.15)   20.81   (0.28)   20.89   (0.10)   Credıts     52.89   (0.44)   52.56  (1.44)   54.21  (0.83)   55.71  (1.41)   55.35  (0.62)   GPA     6.18   (0.05)   6.03  (0.21)   6.27  (0.10)   6.67  (0.35)   6.44  (0.08)   NE     0.02   (0.01)   0.00  (0.00)   .  .   .  .   .  .  

(18)

 

After   this,   the   individual   characteristics   of   the   students   in   the   teams   are   analyzed.   Table   6   specifies   the   individual   characteristics   of   males   and   females   among  the  five  different  teams.  The  average  age  of  the  women  in  this  course  is   somewhat  lower  than  the  age  of  men.  Additionally,  females  have  collected  more   credits  and  have  rounded  the  first  year  with  a  higher  GPA  than  men  did.  

It   is   possible   to   test   if   the   students   among   the   teams   differ   in   their   characteristics.  In  other  words:  do  the  females  and  males  in  the  one  team  have   the  same  characteristics  as  females  and  males  in  other  teams.  Table  7  reports  the   results   of   a   regression   of   the   individual   characteristics   on   the   dummies   that   indicate   the   share   of   female,   separately   for   male   and   female   students.   Each   column   represents   a   different   regression.   There   are   not   many   significant   differences   in   individual   characteristics   among   the   teams   but   a   few   exceptions   are  shown.  When  you  are  a  man  with  negative  study  advice,  the  chance  is  higher   that   you   are   in   a   team   with   only   men.   In   addition,   men   that   made   use   of   the   ‘hardheidsclausule’  more  often  work  together  with  one  female.  However,  when  a   female  used  the  ‘harheidsclausule’  the  probability  that  she  is  in  a  group  with  only   female  is  higher.    This  is  also  the  case  for  female  that  were  a  ‘februari-­‐staker’  in   their  first  year.  Additionally,  when  a  female  student  has  a  higher  age,  they  more   often   work   together   with   one   man.   To   check   if   the   characteristics   are   jointly   significantly   different   from   zero,   an   F-­‐test   is   done.   In   almost   all   cases,   the   variables  are  jointly  significantly  different  from  zero.  Which  means  they  have  an   effect  on  team  composition.  On  top  of  that,  a  second  test  is  done  to  check  if  there   is   any   significant   joint   effect   of   the   characteristics.   These   results   also   indicate   that  there  is  imbalance  in  characteristics  (p<.01).    

        FS     0.01   (0.00)   0.06  (0.06)   .  .   .  .   0.01  (0.01)   HC     0.064   (0.02)   0.11  (0.08)   0.04  (0.03)   .  .   0.09  (0.03)    

Note:  The  values  in  parenthesis  denote  standard  errors.  ‘.’  Denotes  that  there  are  no  students  under  this  circumstance  for  the   given  share  of  female.  Over  bar  denotes  group  average.  

(19)

     

Table  7  

Assignment  of  individuals  separated  for  male  and  female  students  among  teams     Female  in  teams  consisting  of:   Male  in  teams  consisting  of:  

  F=  𝟏 𝟑   F=   𝟏 𝟐   F=   𝟐 𝟑   F=1   F=0   F=   𝟏 𝟑   F=   𝟏 𝟐   F=   𝟐 𝟑   Age   0.006   (0.013)   0.044*  (0.025)   -­‐0.003  (0.010)   -­‐0.041  (0.027)   -­‐0.009  (0.010)   -­‐0.001  (0.006)   0.012  (0.008)   -­‐0.002  (0.002)   Credit   -­‐0.002   (0.004)   -­‐0.002  (0.006)   -­‐0.005  (0.005)   0.009  (0.007)   -­‐0.001  (0.003)   0.001  (0.002)   -­‐0.000  (0.003)   0.000  (0.000)   GPA   -­‐0.003   (0.021)   -­‐0.035  (0.033)   0.049*  (0.026)   -­‐0.012  (0.040)   0.005  (0.024)   -­‐0.013  (0.016)   0.014  (0.019)   -­‐0.006  (0.007)   NE   .   .   .  .   .  .   .  .   0.182**  (0.089)   -­‐0.055  (0.051)   -­‐0.112  (0.075)   -­‐0.015  (0.016)   FS   -­‐0.183   (0.194)   -­‐0.420  (0.286)   -­‐0.145  (0.197)   0.745**  (0.340)   -­‐0.343  (0.386)   0.421  (0.365)   -­‐0.044  (0.103)   -­‐0.034  (0.030)   HC   -­‐0.114   (0.082)   -­‐0.157  (0.171)   -­‐0.099  (0.080)   0.369**  (0.181)   0.054  (0.104)   0.069  (0.095)   -­‐0.108**  (0.049)   -­‐0.014  (0.011)       F-­‐value   3.80***   14.47***   3.45***   27.63***   12.07***   4.59***   9.15***   1.32   P-­‐value   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.25    

Note:  The  values  in  parenthesis  denote  standard  errors.  The  means  are  measured  at  the  individual  level.  ‘.’  Denotes  that  there  are  no  students  under  this   circumstance  in  the  team.  Each  column  represents  a  separated  regression.  ***/**/*  Denotes  significance  at  the  1%/5%/10%-­‐level.  

Table  6  

Characteristics  of  individuals  by  gender  composition  of  teams     Female  in  teams  consisting  of:   Male  in  teams  consisting  of:     F=  𝟏 𝟑   F=   𝟏 𝟐   F=   𝟐 𝟑   F=1   F=0   F=   𝟏 𝟑   F=   𝟏 𝟐   F=   𝟐 𝟑   Age   20.95   (0.28)   21.30  (0.18)   20.73  (0.23)   20.87  (0.09)   21.45  (0.08)   21.47  (0.29)   21.70  (0.24)   21.03  (0.35)   Credit   55.33   (1.42)   54.43  (0.82)   56.94  (1.57)   55.47  (0.62)   52.75  (0.42)   51.17  (1.84)   54.00  (1.23)   53.25  (1.68)   GPA   6.36   (0.24)   6.20  (0.12)   7.03  (0.25)   6.47  (0.08)   6.16  (0.05)   5.87  (0.22)   6.33  (0.14)   5.95  (0.43)   NE   .   .   .  .   .  .   .  .   0.01  (0.00)   .  .   .  .   .  .   FS   .   .   .  .   .  .   0.01  (0.01)   .  .   0.03  (0.03)   .  .   .  .   HC   .   .   0.04  (0.03)   .  .   0.04  (0.02)   0.03  (0.01)   0.06  (0.04)   .  .   .  .    

Note:  The  values  in  parenthesis  denote  standard  errors.  The  means  are  measured  at  the  individual  level.  ‘.’  Denotes  that   there  are  no  students  under  this  circumstance  for  the  given  share  of  female.  

(20)

3.5  Sample  selection  

Before  starting  to  test  the  effect  of  gender  diversity,  first  should  be  tested  if  the   teams  that  are  not  intact  could  be  deleted  from  the  sample.  With  a  simple  logistic   regression   for   binary   outcomes,   the   effect   of   all   the   variables   included   in   the   model  on  the  dummy  intact  was  tested.  The  dummy  variables  that  indicate  the   share  of  female  had  no  significant  effect  on  the  dummy  intact.  A  second  check  is   done   to   see   if   the   dummies   had   a   joint   effect.   Again   no   relationship   was   found   (p=.84).  This  means  the  teams  (n=53)  could  be  deleted3.    

Thereafter,   some   descriptive   statistics   about   performance   and   characteristics   are   analyzed.   This   is   done   at   the   group-­‐level   as   well   as   for   the   individual-­‐level.    

In   order   to   examine   if   mixed-­‐gender   teams   outperform   single-­‐gender   teams,  this  thesis  uses  the  ordinary  least  squares  method.  This  technique  is  most   commonly   used   in   papers   that   discuss   gender   diversity.   To   confirm   the   hypothesis,   the   betas   of   the   mixed-­‐gender   teams   need   to   be   significantly   different  form  zero  and  positive  (𝛽 > 0).  This  is  tested  with  a  T-­‐test.  For  every   regression,   the   option   for   robust   standard   errors   is   used.   After   the   OLS-­‐ regressions,   a   joint   F-­‐test   was   done.   This   test   examines   if   all   the   betas   of   the   mixed-­‐gender  teams  are  jointly  significantly  different  from  zero  (𝛽 ≠ 0).    

  4. Results  

In   table   8   the   mean   performance   of   the   three   different   assignments   is   shown.   The  last  row  shows  the  weighted  average  for  all  the  assignments.  The  weighted   total  indicates  that  when  the  share  of  female  goes  up,  performance  goes  up.  But   when   the   share   of   female   becomes   larger,   performance   goes   down.   After   the   share   of   female   reaches  𝟐𝟑  ,   performance   goes   up   again.   Figure   2   reports   this   relation  between  the  share  of  female  in  a  team  and  the  average  of  the  weighted   average  of  the  performance  measures.    

   

                                                                                                               

(21)

 

Figure  2  

Relation  performance  and  share  of  female                    

In  table  9  the  correlations  for  the  three  performance  measures  are  shown.  These   are   all   significant   and   positively   correlated.   This   means   that   when   the   group   obtains  a  high  grade  for  the  one  assignment  it  is  likely  to  get  also  a  higher  grade   for   the   others.     All   can   thus   be   used   to   measure   an   underlying   performance   concept.  

Table  8  

Mean  team  performance  by  gender  composition  of  teams  

  F=0   F=𝟏 𝟑   F= 𝟏 𝟐   F= 𝟐 𝟑   F=1   Essay   6.72   (0.07)   6.78  (0.24)   6.48  (0.22)   7.21  (0.62)   7.00  (0.11)   Presentation   6.99   (0.11)   7.11  (0.17)   7.10  (0.16)   6.91  (0.86)   7.16  (0.11)   Discussion   6.92   (0.12)   6.90  (0.44)   6.85  (0.29)   7.13  (0.90)   7.48  (0.09)   Weighted   Average     6.84   (0.07)   6.89   (0.18)   6.72   (0.16)   7.11   (0.73)   7.16   (0.08)  

Note:  The  values  in  parenthesis  denote  standard  errors.  The  weighted  average  denotes  the  average  of  the  grades   weighted  by  the  count  for  the  end  term  namely:  10%  for  the  essay  and  5%  for  the  presentation  and  discussion.  

Table  9  

Correlations  between  performance  measurements  

  Essay   Presentation   Discussion  

Essay     1.00      

Presentation   0.42***   1.00    

Discussion   0.27***   0.42***   1.00  

 

(22)

Table   10   provides   the   results   of   five   different   OLS-­‐regressions.   The   first   three   columns  give  the  results  for  the  three  different  kinds  of  performance  measures   separated.   The   fourth   column   is   a   regression   for   the   weighted   average   of   the   three   performance   measures   without   the   inclusion   of   control   variables.   In   the   last  column  the  weighted  average  is  again  the  measure  for  performance  but  now   control  variables  are  included.    

  The   results   of   the   last   two   columns   are   a   little   bit   different.   This   is   because  the  inclusion  of  control  variables  removes  the  selectivity  represented  in   table   7.   Controlling   for   observable   characteristics   will   reduce   the   selectivity   of   the  assignment,  but  not  eliminate  it.  Factors  like  motivation  or  cohesiveness  are   ignored  but  could  seriously  affect  the  results.  In  the  regression  of  the  weighted   average  measured  without  controls  as  well  as  the  one  measure  with  controls  no   significant  effect  of  gender  diversity  on  performance  was  found.  This  means  H0   could  not  be  rejected  and  mixed-­‐gender  teams  do  not  perform  better  than  single-­‐ gender   teams.   The   results   indicate   that   gender   diversity   has   no   effect   on   team   performance.    

There   is   one   exception   to   this   statement.   There   is   suggestive   evidence   that   single-­‐gender   teams   outperform   teams   consisting   of   one   woman   and   two   men.   This   coefficient   is   different   from   zero   at   the   10%-­‐level.   However,   this   is   only   the   case   in   the   discussion   assignment.   No   systematic   relation   is   found   among  the  other  assignments.  The  result  is  surprising  because  most  comparable   literature  says  gender  diverse  teams  should  outperform  single-­‐gender  teams.  In   addition  to  that,  Apesteguia  et  al.  (2012)  found  suggestive  evidence  that  a  team   of  two  men  and  one  woman  performs  best.    

There  are  some  other  conclusions  that  could  be  drawn  from  these  results.   In  all  three  assignments  as  well  as  in  the  regressions  for  the  weighted  average,   the  GPA-­‐coefficient  is  positive  and  significantly  different  from  zero.  This  means   when  GPA  goes  up,  the  performance  goes  up.  Because  GPA  is  used  as  a  measure   for  ability,  this  result  is  in  line  with  the  findings  of  Robbins  and  Judge  (2012).    

Another  more  remarkable  finding  is  that  when  students  have  a  ‘Februari-­‐   staker’  in  their  team,  their  performance  is  higher.  Reason  for  this  could  be  that   these   students   are   extremely   motivated.   After   all,   they   signed   up   for   the   same  

Referenties

GERELATEERDE DOCUMENTEN

The control variable of LNMC is the market capitalization; MTB is market-to-book value; leverage is total debt to total asset that is used to measure the risk of a firm; LNFirm is

In each model the independent variable is the team tenure diversity squared(tenure div²), the moderator is openness to experience(openness) and the control variables are

bijvoorbeeld naar Duits recht – niet een regel op grond waarvan een lening door een aandeelhouder of moedervennootschap, verstrekt op een moment dat het eigen vermogen van

Abbreviations: AC, articular cartilage; AMSC, adipose-derived mesenchymal stem cell; ANIMO, Analysis of Networks with Interactive Modeling; BMSC, bone marrow derived Mesenchymal

Box plots of selected global parameters of best 100 simulations for each calibration approach (single variable: Q and ET separately and multivariable: Q + ET) at Hkamti station

Synchronous intensity time traces of Rayleigh (blue) and Raman (orange) scattering signals from (a) LNCaP EVs and (b) RBC EVs, resulting from peak integration of the Rayleigh

in large spatial scales (1) Habitat mapping uncertainties ; (2) Data gaps ;(3) Data inconsistencies (no large scale data/ extrapolation needed) ; (4) Patchy dataset (various

Privacy Calculus Theory ( Culnan and Armstrong, 1999 ) The intention to disclose personal information is based on a rational risk-benefit calculation as perceived benefits are