• No results found

On Lorentz violation in e−+e+→ μ−+μ+ scattering at finite

N/A
N/A
Protected

Academic year: 2021

Share "On Lorentz violation in e−+e+→ μ−+μ+ scattering at finite"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Souza, P.R.A., Santos, A.F., Ulhoa, S.C. & Khanna, F.C. (2019). On Lorentz

violation in e−+e+→ μ−+μ+ scattering at finite. Physics Letters B, (791), 195-200.

https://doi.org/10.1016/j.physletb.2019.02.033

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Science

Faculty Publications

_____________________________________________________________

On Lorentz violation in e

+e

+

→ μ

+

scattering at finite

P.R.A. Souza, A.F. Santos, S.C. Ulhoa, F.C. Khanna

April 2019

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article

under the CC BY license (

http://creativecommons.org/licenses/by/4.0/

)

This article was originally published at:

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

On

Lorentz

violation

in

e

+

e

+

μ

+

μ

+

scattering

at

finite

temperature

P.R.A. Souza

a

,

A.F. Santos

a,

,

S.C. Ulhoa

b

,

F.C. Khanna

c,1

aInstitutodeFísica,UniversidadeFederaldeMatoGrosso,78060-900,Cuiabá,MatoGrosso,Brazil bInternationalCenterofPhysics,InstitutodeFísica,UniversidadedeBrasília,70910-900,Brasília,DF,Brazil cDepartmentofPhysicsandAstronomy,UniversityofVictoria,BCV8P5C2,Canada

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received10October2018 Accepted21February2019 Availableonline26February2019 Editor:A.Ringwald

Keywords: Lorentzviolation Crosssection Finitetemperature

Small violation of Lorentz and CPT symmetries may emerge in models unifying gravity with other forces ofnature.An extensionofthe standardmodel withallpossible termsthatviolate Lorentzand CPTsymmetries are included.Here aCPT-evennon-minimal couplingterm isadded tothe covariant derivative.ThisleadstoanewinteractiontermthatbreakstheLorentzsymmetry.Ourmainobjectiveis tocalculatethecrosssectionforthe

e

−+e+→

μ

−+

μ

+scatteringinordertoinvestigateanyviolation of Lorentz and/orCPT symmetryatfinite temperature. Thermo Field Dynamicsformalism is used to considerfinitetemperatureeffects.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

TheStandard Model(SM) is a successfulfield theory that de-scribes fundamental particles and their interactions with high

precision. The SM is a gauge theory with the symmetry group

U

(

1

)

×

SU

(

2

)

×

SU

(

3

)

[1,2].TheSMisafundamentaltheory. How-everitdoesnotincludethetheoryofgravitationinitsframework, thatincludesthreefundamental forcesofnature: the electromag-netic,weakandstrongforces.Thereare severalattemptsto unify allinteractions ofnatureina uniquefundamental theory.Among

various candidates for a unified theory the most famous is the

stringtheory[3].Inadditionthismodeldoesnotexplainina sat-isfactory waysome problemssuch as, the hierarchy problem[4], theneutrinooscillation[5],cosmicparticlesathighenergies[6,7], amongothers. Includingthese issues leads to a physics well be-yondthestandardmodel.

It is anticipated that a fundamental theory would emerge at veryhighenergies(

1019GeV).At sufficientlyhighenergies,the possibilityof small violation of the Lorentz and CPTsymmetries maybe present. Some models,such asstring theory [8], lead to spontaneousbreakingofLorentzsymmetry.Itisinterestingtonote

*

Correspondingauthor.

E-mailaddresses:pablo@fisica.ufmt.br(P.R.A. Souza),

alesandroferreira@fisica.ufmt.br(A.F. Santos),sc.ulhoa@gmail.com(S.C. Ulhoa), khannaf@uvic.ca(F.C. Khanna).

1 PhysicsDepartment,TheoreticalPhysicsInstitute,UniversityofAlberta

Edmon-ton,Alberta,Canada.

that a quantum theory ofgravitation may be anticipated to vio-latetheLorentzsymmetry.TheseideasleadtotheStandardModel

Extension (SME) that violates Lorentz and CPT symmetry. Such

models havebeendeveloped[9–11]. The SMEconsistsofmodels ofwellknownphysics oftheSM plusallpossibletermsthat vio-lateLorentz andCPTsymmetry.Inaddition,itisdividedintotwo parts:(i) theminimalversion restrictedtopowercounting renor-malizable operators and(ii) the non-minimal version which also includesoperatorsofhigherdimensions.

ThestructureofSMEisawaytoinvestigatetheLorentz viola-tion.However, there isanotherinteresting wayto investigatethe Lorentz violation that modifies the interaction betweenfermions andphotons,i.e., a newnon-minimal couplingtermaddedto the covariantderivative [12]. Thenon-minimal couplingtermmaybe

CPT-odd or CPT-even that have been considered for various

ap-plications [12–22]. Here a CPT-even non-minimal coupling term will be included to analyze the e

+

e+

μ

+

μ

+ scattering, a well-knownquantumelectrodynamicsprocess,atfinite temper-ature.TheThermoFieldDynamics(TFD)formalismwillbeusedto introducetemperatureeffects.

TFD isarealtime finitetemperatureformalism[23–28].It in-cludes the statistical average of an observable

A

expressed asa thermalvacuumexpectationvaluei.e.,



A

= 

0

(β)

|

A|

0

(β)



,where

|

0

(β)



isthethermalvacuum,

β

=

k1

BT,withT beingthe

temper-atureandkB is theBoltzmannconstant (weusekB

= ¯

h

=

c

=

1). This formalism is composed of two ingredients, the doubling of theHilbertspaceandtheBogoliubovtransformation.Thisdoubling https://doi.org/10.1016/j.physletb.2019.02.033

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

196 P.R.A. Souza et al. / Physics Letters B 791 (2019) 195–200

consists of the Hilbert space composed of the original space, S, andafictitiousspace(tildespace), S.

˜

The mapbetweenthetilde andnon-tildeoperators isdefinedby thetilde(ordual) conjuga-tionrules. Thetemperatureeffectisimplemented inthedoubled Hilbertspaceby a Bogoliubov transformationwhich introduces a rotationofthetildeandnon-tildevariables.

Thispaperisorganizedasfollows.Insection2,an introduction totheTFD formalismisdeveloped.Inthesection 3,the modelis presented.Thetransitionamplitudeandthecrosssectionforthree differentverticesarecalculated.Insection4,someconcluding re-marksarepresented.

2. TFDformalism

TFDisathermalquantumfield theorywithathermalvacuum

|

0

(β)



. It iscomposed by two fundamental ingredients: (1) dou-bling thedegrees of freedom in a Hilbert spaceand (2) the Bo-goliubovtransformation.TheexpandedHilbertspaceisdefinedas ST

=

S

⊗ ˜

S,withS beingthestandardHilbertspaceand

˜

S the fic-titiousHilbertspace.Themap betweenthetilde B

˜

i andnon-tilde

Bioperatorsisdefinedbythefollowingtildeconjugationrules:

(

BiBj

)

= ˜

BiB

˜

j

,

(

c Bi

+

Bj

)

=

cB

˜

i

+ ˜

Bj

,

(

Bi

)

= ˜

Bi

,

( ˜

Bi

)

= −ξ

Bi

,

(1)

with

ξ

= −

1 forbosons and

ξ

= +

1 forfermions.TheBogoliubov transformation introduces a rotation in the tilde and non-tilde Hilbertspacewith thermaldependence.The Bogoliubov transfor-mationisdifferentforfermionsandbosons.Hereourinterestisin fermions.ThentheBogoliubovtransformationforfermionsis

cp

= u(β)

cp

(β)

+ v(β)˜

cp

(β),

cp

= u(β)

cp

(β)

+ v(β)˜

cp

(β),

(2)

˜

cp

= u(β)˜

cp

(β)

− v(β)

cp

(β),

˜

cp

= u(β)˜

cp

(β)

− v(β)c

p

(β),

wherecp andcp arethe annihilationandcreation operators.The factors

u

(β)

and

v

(β)

aregivenas

u

(β)

=

cos

(θ (β))

= (e

−β|κ0|

+

1

)

−1

,

(3)

v

(β)

=

sin

(θ (β))

= (e

β|κ0|

+

1

)

−1

.

Algebraicrulesforthermaloperatorsare

{

cp

(β),

cq

(β)

} = δ

3

(

p

q

),

(4)

cp

(β),

c

˜

q

(β)

} = δ

3

(

p

q

),

(5)

andotheranti-commutationrelationsarenull.

IntheframeworkoftheTFDformalismthetransitionamplitude foranyQEDprocessisgivenas

ˆ

S

f i

(β)

=



f

, β



S





i

, β



,

(6)

wherethethermalstatesaredefinedas

|

i

, β

 =

cp1

(β,

s1

)

dp2

(β,

s2

)

|

0

(β)

,

(7)

|

f

, β

 =

cp3

(β,

s3

)

d

p4

(β,

s4

)

|

0

(β)

,

(8)

withsi beingthespin variable(i

=

1

,

2

,

3

,

4)and S-matrix

ˆ

is

de-finedas

ˆ

S

=



n=0

(

−ı)

n n

!



dx1dx2

...

dxn

: [ ˆ

HI

(

x1

) ˆ

HI

(

x2

)... ˆ

HI

(

xn

)

] : ,

(9)

where H

ˆ

I

(

x

)

=

HI

(

x

)

− ˜

HI

(

x

)

is the interaction hamiltonian. Here uptothesecondordertermisconsideredandhastheform

ˆ

S(2)

=

(

−ı)

2 2



d4xd4y

: [ ˆ

HI

(

x1

) ˆ

HI

(

x2

)

] :=

S(2)

− ˜

S(2)

.

(10) Thenthetransitionamplitudebecomes

S

f i

(β)

=



f

, β





S(2)

|i

, β



=

(

−ı)

2 2

!



d4xd4y



f

, β



 : [

L

I

(

x

)

L

I

(

y

)

] :





i

, β



.

(11)

Itisimportanttonotethat,thereisasimilarequationforthetilde part. As the physicalquantities are givenby non-tilde part, only thispartisconsidered.

Using thetransitionamplitude, the crosssection forany scat-teringprocessatfinitetemperatureisconsidered.Thecrosssection isdefinedas d

σ

(β)

d



=

1 64

π

2 1 4s



Spin





S

f i

(β)





2

,

(12)

where

s

=

2E

=

EC M andEC Misthecenterofmass(CM)energy. Inadditionanaverageoverthespinoftheincomingparticlesand summingoverthespinofoutgoingparticlesisincluded.

Inthenextsection thetransitionamplitudewillbecalculated. Then the crosssection forthe e

+

e+

μ

+

μ

+ scatteringat finitetemperatureiscalculated.

3. Crosssectionofthee

+

e+

−→

μ

+

μ

+scattering

Herethecrosssectionforthee

+

e+

−→

μ

+

μ

+scattering atfinitetemperatureiscalculated.InadditionLorentz-violating ef-fects are included. The Lorentz violation is using a non-minimal couplingtermthatisaddedtothecovariantderivative,i.e.,

D

μ

=

+

λ

2Kμνθρ

γ

νFθρ

,

(13)

with

= ∂

μ

+

ie Aμ.Here

λ

isthecouplingconstantforLorentz violation term. The tensor Kμνθρ belongs to the CPT-even gauge

sector of the SME. It has the same symmetries as that of the

Riemann tensor and it possesses doublenull trace. Thus the in-teractionpartoftheDiracLagrangianbecomes

L

I

D

= −

e



γ

μ



+

λ

2Kμνθρ



μν



Fθρ

,

(14)

where



μν

=

2i

[

γ

μ

,

γ

ν

]

is used. The first term describes the

usual QEDvertex andthe second term isa new vertexthat

im-plies violationofLorentz symmetriesduetothe CPT-eventensor. The tensorKμνθρ maybedecomposedintobirefringentand non-birefringentcomponents.Hereourinvestigationisrestrictedtothe non-birefringent components that is represented by a symmetric andtracelessrank-2tensorKμν [29],i.e.,

Kμναβ

=

1 2



gμαKσβ

gναKμβ

+

gνβKμα

gμβKνα



,

(15)

where Kμν isdefinedbythecontraction Kμν

K ρ μρν .Then the interactionLagrangianbecomes

L

I D

= −

e



γ

μ



+ λ



βνKνμ

− 

μνKνβ

κ

βAμ

,

(16)

with

κ

μ being the 4-momentum of the photon. This interaction Lagrangianimpliesthefollowingvertices:

• →

Vμ(0)

= −

ie

γ

μ

,

(17)

⊗ →

Vμ(1)

= −

i

λ

κ

β



βνKνμ

− 

μνKνβ

(4)

Fig. 1. Tree-level Feynman diagrams with different vertices.

The Feynman diagrams that describe this scattering process are giveninFig.1.

Toanalyzethisprocess,considerthecenterofmassframe(CM) suchthat p1

= (

E

,

pi

),

p3

= (

E

,

p i

),

p2

= (

E

,

pi

),

p4

= (

E

,

p i

),

κ

= (

p1

+

p2

)

= (

s

,

0

),

(19)

with p1

,

p2

,

p3 and p4 being the 4-momentum of the electron, positron,muonandanti-muon,respectively.Thenewvertex com-ponentsare

V0(1)

=

0

,

(20)

Vi(1)

=

Vi+is

+

Vi+an

+

Vi (21)

wherethepartassociatedwiththeparity-evenisotropiccoefficient is

Vi+is

= −ı

sK00



0i

,

(22)

theanisotropicparity-evenpartis

Vi+an

= ı

sKij



0j

,

(23)

andtheparity-oddcomponentis

Vi

= −ı

sKj



ij

.

(24)

Thenthetransitionamplitudeiswrittenas

S

f iλ

(β)

=

1 2



d4xd4y

×



a,b



f

, β



 : (

x

)

Vμ(a)

(

x

)(

y

)

Vν(b)

(

y

)

(

x

)

(

y

)

:





i

, β



,

(25)

witha

,

b

=

0

,

1.Consideringthatthewavefunctionofthefermion fieldis

(

x

)

=



dp



cp

(

s

)

u

(

p

,

s

)

e−ıpx

+

d†p

(

s

)

v

(

p

,

s

)

px



,

(26)

with cp and dp being annihilation operators for electrons and positrons,respectivelywithu

(

p

,

s

)

andv

(

p

,

s

)

beingDiracspinors, theneq. (25) becomes

S

f iλ

(β)

=



d4p

(

2

π

)

4



d4xd4ye−ıx(p1−p3)−ıy(p2−p4)

×



a,b



v

(

p2

,

s2

)

V(μa)u

(

p1

,

s1

)



u

(

p3

,

s3

)

V(νb)v

(

p4

,

s4

)



×



0

(β)



 :

(

x

)

(

y

)

:





0

(β)



,

(27)

where the Bogoliubov transformation and the anti-commutation

relationbetweentheannihilationandcreationoperatorshavebeen used. The photon propagator at finite temperature [24,28,30] is givenas



0

(β)



 :

(

x

)

(

y

)

:





0

(β)



=

i



d4

κ

(

2

π

)

4eiκ(x−y)





f 0

(

κ

)

− 

f β

(

κ

)



η

μν

,

(28) where



0f

(

κ

)

=

1

κ

2

1 0 0

1

,

(29)

isthezerotemperaturepartofthephotonpropagatorand



βf

(

κ

)

=

2

π

i

δ(

κ

2

)

|κ0|

1

1 |κ0|/2 |κ0|/2

1

,

(30)

is the finite temperature part. Using the definition of the four-dimensional delta function and carrying out the

κ

integral, the

matrixelementbecomes

S

f iλ

(β)

=

i

u

2

(β)

− v

2

(β)

2





0f

(

κ

)

− 

βf

(

κ

)



S

f iλ

,

(31) with

S

f iλ

=

1

κ

2 1



a,b=0



v

(

p2

,

s2

)

V(μa)u

(

p1

,

s1

)



×



u

(

p3

,

s3

)

V(b)μv

(

p4

,

s4

)



,

(32)

(5)

198 P.R.A. Souza et al. / Physics Letters B 791 (2019) 195–200

beingthematrixelementatzerotemperature.Theremainingdelta functionthatexpressesoverallfour-momentumconservationis ig-nored.Usingtherelation

[

v2Vaμu1

][

u1Vbμv2

] =

tr

[

Vμau1u1Vμbv2v2

]

(33) andtheeq. (3) forthefunctions

u

(β)

and

v

(β)

,thesquareofthe transitionamplitudeisfoundas



spin

|

S

f iλ

(β)

|

2

=

B

(β)

s2



a,b



c,d

E

μν (a,b)

M(

c,d)μν

,

where

B

(β)

=

tanh4

β

EC M 2

1

+

(

2

π

)

2

δ

2

(

s

)

(

EC M

1

)

2



.

(34)

Hereonlythephysicalcomponentofthephotonpropagatoris con-sidered

E

μν (a,b)

=

V μ (a)



s1 u

(

p1

,

s1

)

u

(

p1

,

s1

)

Vν(b)



s2 v

(

p2

,

s2

)

v

(

p2

,

s2

)

=

tr



Vμ(a)

(

/

p1

+

me

)

Vν(b)

(

/

p2

me

)



,

(35)

M

μν (a,b)

=

V μ (a)



s3 u

(

p3

,

s3

)

u

(

p3

,

s3

)

Vν(b)



s4 v

(

p3

,

s4

)

v

(

p4

,

s4

)

=

tr



V(c),μ

(

p

/

3

+

)

V(d

(

/

p4

)



,

(36)

wheretherelations,



s u

(

p

,

s

)

u

(

p

,

s

)

=

p

/

+

m (37)



s v

(

p

,

s

)

v

(

p

,

s

)

=

p

/

m

,

(38)

areused.Thepropagatoratfinitetemperatureintroducesproduct ofdeltafunctionswith identicalarguments (34). Thisproblemis avoided by workingwith the regularized form ofdelta-functions andtheirderivatives[31]:

2

π

i

δ

n

(

x

)

=

1 x

+

i



n+1

1 x

i



n+1

.

(39)

Thusthedifferentialcrosssectionatfinitetemperatureforthis scatteringis d

σ

λ

(β)

d



=

B

(β)

d

σ

λ d



,

(40) where d

σ

λ d



=

1

(

8

π

)

24s3



a,b



c,d

E

μν (a,b)

M(

c,d)μν

,

(41)

isthedifferentialcrosssectionatzerotemperature.Thenthecross sectionatfinitetemperaturehastheform

σ

λ

(β)

=

B

(β)

σ

λ

,

(42) with

σ

λ

=

1 64

π

2 1 4s3



a,b



c,d

E

μν (a,b)



d



M(

c,d)μν

,

(43)

wheretheintegrationisonlyonangularvariablesofscattered par-ticles.

Now let usconsider the contribution of each vertex given in eqs. (22), (23) and (24) intheultra-relativisticlimit. Inthislimit

assume me

=

=

0, then the electronic and muonic

contribu-tionsbecome

E

μν (a,b)

=

tr



Vμ(a)

/

p1Vν(b)

/

p2



,

(44)

M

μν (a,b)

=

tr



Vμ(c)

/

p3Vν(d)

/

p4



.

(45)

It is important to note that, the non-null components are those witha

=

b.Whena

=

b thereareanoddnumberofDiracmatrices andtheir trace iszero.They are alsonullwhen

μ

=

0 or

ν

=

0, since thisimpliesthat V0(1)

=

0 and then,

E

(0iab)

= E

i0(ab)

= M

0i(ab)

=

M

i0

(ab)

=

0.Thereforethenon-zerocomponentsare

E

ij (0,0)

=

tr

[

V i (0)

/

p1Vj(0)p

/

2

],

(46)

E

ij (1,1)

=

tr

[

V i (1)

/

p1Vj(1)p

/

2

],

(47)

M

ij (0,0)

=

tr

[

V i (0)

/

p4Vj(0)

/

p3

],

(48)

M

ij (1,1)

=

tr

[

Vi(1)

/

p4Vj(1)p

/

3

].

(49) Usingtheseresultsthecrosssectionbecomes

σ

λ

=

1 64

π

2 1 4s3

E

i j (0,0)



d



M(

0,0)i j

+ E

(i j0,0)



d



M(

1,1)i j

+ E

i j (1,1)



d



M(

0,0)i j

+ E

(i j1,1)



d



M(

1,1)i j

.

(50)

3.1. Isotropicparity-evencontribution

In thiscasethevertexisgivenby eq. (22) and thenthe non-zerocomponentsofeqs. (46)-(49) are

E

ij (0,0)

=

2e 2

(

s

δ

ij

4pipj

),

(51)

E

ij (1,1)

=

8

λ

2sK2 00pipj

.

(52)

M

ij (0,0)

=

2e2

(

s

δ

ij

4p ip j

),

(53)

M

ij (1,1)

=

8

λ

2sK2 00p ip j

.

(54)

Thentheintegralsineq. (50) become

E

ij (0,0)



d



M(

0,0)ij

=

16

π

3 4s 2e4

,

(55)

E

ij (0,0)



d



M(

1,1)ij

= E

ij(1,1)



d



M(

0,0)ij

=

16

π

3 2s 3e2

λ

2K2 00

.

(56)

Here the term

E

(i j1,1)



d



M

(1,1)i j is ignored, since it is of the fourthorderinLorentz-violatingparameter.Thusthecrosssection atfinitetemperature(uptosecond orderinLorentz-violating pa-rameter)is

σ

i

(β)

=

B

(β)

σ

QED



1

+

λ

sK00 e

2



,

(57)

with

σ

QED

=

64

π

s2e4

/

3 and

B(β)

is defined in eq. (34). When temperature effects go to zero

B(β)

1, the resultis the same asin[19].

(6)

3.2.Anisotropicparity-evencontribution

Herethevertexisgivenineq. (23).Thenelectronicfactorsare givenas

E

ij (0,0)

=

2e 2

(

s

δ

ij

4pipj

),

(58)

E

ij (1,1)

=

8

λ

2sKikKj lp lpk

,

(59)

withcomponentsofthetensor

M

μν(a,b) beingsameif p ischanged top .Thentheintegralsineq. (50) are

E

ij (0,0)



d



M(

0,0)ij

=

16

π

3 4s 2e4

,

(60)

E

ij (0,0)



d



M(

1,1)ij

=

16

π

3 s 2e2

λ

2

s

|

K

|

2

4

(

piKij

)

2

,

(61)

E(

1,1)ij



d



M(

0,0)ij

=

16

π

3 4e 2s2

λ

2

(

piK ij

)

2 (62)

where

|

K

|

2

=

KijKij.Thereforethecrosssection atfinite tempera-tureis

σ

a

(β)

=

B

(β)

σ

Q E D

1

+

λ

e

2

√

s|K

|/

2



2

+ (

piKij

)

2



.

(63) 3.3.Parity-oddcontribution

Tocalculateparity-oddcontributionsthevertexgivenineq. (24) isconsidered.Then

E

ij (0,0)

=

2e 2

(

s

δ

ij

4pipj

),

(64)

E

ij (1,1)

=

8

λ

2s



ikl



jm nK kKlpmpn

,

(65)

andthe muons contributions are obtained in a similar way. The relevantintegralsare

E

ij (0,0)



d



M(

0,0)ij

=

16

π

3 4s 2e4

,

(66)

E

ij (0,0)



d



M(

1,1)ij

=

16

π

3 e 2

λ

2

s|K

|

2

+

4

(

p

·

K

)

2

,

(67)

E(

1,1)ij



d



M(

0,0)ij

=

16

π

3 e 2

λ

2

s

|

K

|

2

8

(

p

·

K

)

2

,

(68) with

(

p

·

K

)

=

piK

j.Thenthecrosssectionis

σ

(β)

=

B

(β)

σ

Q E D

1

+

λ

2e

2

3s

|

K

| −

4

(

|

p

||

K

|

cos

(θ ))

2



,

(69)

where

θ

istheanglebetweentheparticlebeamandthefieldK. Theresultsobtainedaregeneralandshowthatthetemperature effectsmodify the crosssection of thescatteringprocess for any chosenvertex.Inthelimitofzerotemperaturethestandardresult forthe QED modified by Lorentz-violatingparameters are recov-ered,inallcases.Theseresultsalsoindicatethat thetemperature effectsmayimproveconstraintsonLorentz-violatingparameter.

4. Conclusion

TheSMEisaframeworktostudyLorentzandCPTviolationthat includestheSM,generalrelativityandall possibletermsthat vio-latetheLorentzandCPTsymmetries.Anotherinterestingwayisto modifythe interactionvertexbetweenfermionsandphotons,i.e., a newnon-minimal couplingtermaddedtothecovariant deriva-tive. Here a Lorentz violating CPT-even term is chosen to study thee

+

e+

μ

+

μ

+scatteringatfinitetemperature.Thisnew couplinghasmassdimensionequalto

1,whichleads toa non-renormalizabletheory atpower counting.Howeverinthepresent casethisdoesnotposeanyproblemsinceourinterest isin ana-lyzingthetree-levelscatteringprocess.Thetemperatureeffectsare introducedusingtheTFDformalism.Threedifferentverticeswhich introducetheLorentzviolationareconsidered.Thenthecross sec-tionatfinitetemperatureiscalculated.Ourresultsshow thatthe temperatureeffectsmodifythecrosssection.Thennewconstraints

on Lorentz-violatingparametermay beimposed by the

tempera-tureeffects.Inaddition astrophysicalprocessesmaybe studiedif thetemperatureisveryhigh.

Acknowledgements

This work by A.F.S. is supported by CNPq project 308611/

2017-9. References

[1]T. Kioshita, Quantum Eletrodynamics, Adv. Ser. Dir. High Energy Phys., vol. 7, Word Scientific, 1990.

[2]M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory, West-view, 1995.

[3]E. Witten, Nucl. Phys. B 443 (1995) 85.

[4]N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429 (1998) 263. [5]V. Barger, D. Marfatia, K.L. Whisnant, The Physics of Neutrinos, Princeton

Uni-versity Press, ISBN 0-691-12853-7, 2012.

[6]L.J. Watson, D.J. Mortlock, A.H. Jaffe, Mon. Not. R. Astron. Soc. 418 (2011) 206, arXiv:1010 .0911.

[7]W. Bernreuther, M. Suzuki, Rev. Mod. Phys. 63 (1991) 313. [8]V.A. Kostelecky, S. Samuel, Phys. Rev. D 39 (1989) 683;

V.A. Kostelecky, R. Potting, Nucl. Phys. B 359 (1991) 545. [9]V.A. Kostelecky, R. Potting, Phys. Rev. D 51 (1995) 3923.

[10]D. Colladay, V.A. Kostelecky, Phys. Rev. D 55 (1997) 6760, Phys. Rev. D 58 (1998) 116002.

[11]V.A. Kostelecky, Phys. Rev. D 69 (2004) 105009.

[12]H. Belich, T. Costa-Soares, M.M. Ferreira Jr., J.A. Helayël-Neto, Eur. Phys. J. C 41 (2005) 421.

[13]H. Belich, T. Costa-Soares, M.M. Ferreira Jr., J.A. Helayël-Neto, M.T.D. Orlando, Phys. Lett. B 639 (2006) 678.

[14]H. Belich, L.P. Colatto, T. Costa-Soares, J.A. Helayël-Neto, M.T.D. Orlando, Eur. Phys. J. C 62 (2009) 425.

[15]H. Belich, T. Costa-Soares, M.M. Ferreira Jr., J.A. Helayël-Neto, F.M.O. Moucherek, Phys. Rev. D 74 (2006) 065009.

[16]H. Belich, M.M. Ferreira Jr., E.O. Silva, M.T.D. Orlando, Phys. Rev. D 83 (2011) 125025.

[17]B. Charneski, M. Gomes, R.V. Maluf, A.J. da Silva, Phys. Rev. D 86 (2012) 045003. [18]G.P. de Brito, J.T.G. Junior, D. Kroff, P.C. Malta, C. Marques, Phys. Rev. D 94

(2016) 056005.

[19]R. Casana, M.M. Ferreira, R.V. Maluf, F.E.P. dos Santos, Phys. Rev. D 86 (2012) 125033.

[20]R. Casana, M.M. Ferreira Jr, E.O. Silva, E. Passos, F.E.P. dos Santos, Phys. Rev. D 87 (2013) 047701.

[21]R. Casana, M.M. Ferreira Jr., R.V. Maluf, F.E.P. dos Santos, Phys. Lett. B 726 (2013) 815.

[22]J.B. Araujo, R. Casana, M.M. Ferreira Jr., Phys. Rev. D 92 (2015) 025049. [23]Y. Takahashi, H. Umezawa, Collect. Phenom. 2 (1975) 55, Int. J. Mod. Phys. B 10

(1996) 1755.

[24]Y. Takahashi, H. Umezawa, H. Matsumoto, Thermofield Dynamics and Con-densed States, North-Holland, Amsterdam, 1982.

[25]H. Umezawa, Advanced Field Theory: Micro, Macro and Thermal Physics, AIP, New York, 1993.

(7)

200 P.R.A. Souza et al. / Physics Letters B 791 (2019) 195–200

[26]A.E. Santana, F.C. Khanna, Phys. Lett. A 203 (1995) 68.

[27]A.E. Santana, F.C. Khanna, H. Chu, C. Chang, Ann. Phys. 249 (1996) 481. [28]F.C. Khanna, A.P.C. Malbouisson, J.M.C. Malboiusson, A.E. Santana, Thermal

Quantum Field Theory: Algebraic Aspects and Applications, World Scientific, Singapore, 2009.

[29]V.A. Kostelecky, M. Mewes, Phys. Rev. D 80 (2009) 015020. [30]A.F. Santos, F.C. Khanna, Int. J. Mod. Phys. A 31 (2016) 1650122.

[31]Ch.G. van Weert, An Introduction to Real- and Imaginary-Time Thermal Field Theory, Lect. Notes Stat. Field Theory, 2001.

Referenties

GERELATEERDE DOCUMENTEN

Haemophilus infJuenzae is an uncommon but important cause ·of lobar pneumonia, specifically in patients whose host defence mechanisms are impair.ed by unrecognized underlying

The structure of this study is as follows: Chapter I relates to the concept of denial as integral for the ideological and practical motivators employed in the early

Bovendien vervalt met deze wijziging van de Regeling de voorlopige vaststelling en uitkering van de vergoeding van kosten van zorg die niet door het CAK aan de zorgaanbieders

School of Physics and Technology, Wuhan University, Wuhan, China (associated with Center for High Energy Physics, Tsinghua University, Beijing,

Ek het al vir haar gesê, sy dink nie daaraan dat elke aand die kos wat sy in haar mond sit, en die Tab wat daar moet wees vir haar om te drink, sy dink nie daaraan dat ek betaal

Die besluitvorming systematisch en stapsge- wijs aanpakken met meerdere mensen uit het persoonlijke netwerk van de per- soon met dementie, blijkt de moeite waard en kan leiden

The stray light contribution of the system already existing at Pilot-PSI could be significantly reduced by application of a special carbon aperture system in

In this paper, an active chatter controller methodology for the high-speed milling process is presented, which can guarantee chatter-free cutting operations in an a priori de-