• No results found

A simple method for detection of low concentrations of fluoride in drinking water

N/A
N/A
Protected

Academic year: 2021

Share "A simple method for detection of low concentrations of fluoride in drinking water"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Moradia, V., Caws, E. A., Wilda, P. M., Buckley, H. L. (2019). A simple method for

detection of low concentrations of fluoride in drinking water. Sensors and Actuators

A: Physical, 303(1). https://doi.org/10.1016/j.sna.2019.111684

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Engineering

Faculty Publications

_____________________________________________________________

This is a post-print version of the following article:

A simple method for detection of low concentrations of fluoride in drinking water

Vahid Moradia, Emmanuelle A. Caws, Peter M. Wilda, Heather L. Buckley

2019

The final publication is available at:

(2)

Contents lists available atScienceDirect

Sensors and Actuators A: Physical

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

A simple method for detection of low concentrations of fluoride in

drinking water

Vahid Moradi

a

, Emmanuelle A. Caws

b

, Peter M. Wild

a

, Heather L. Buckley

b,∗,1

aDepartment of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada bDepartment of Civil Engineering, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada

a r t i c l e i n f o

Article history:

Received 24 June 2019 Received in revised form 24 September 2019 Accepted 16 October 2019 Available online 21 October 2019 Keywords:

Fluoride Drinking water Optical fibre

Non-colourimetric detection Trace element detection Geogenic contamination

a b s t r a c t

Naturally occurring elevated levels of fluoride in drinking water pose a health hazard throughout the developing world, with over 200 million people potentially impacted. In some cases, treatment meth-ods or safer alternative sources are available, but robust, simple, affordable technologies for measuring fluoride in drinking water are absent. In this work, a simple method for fluoride detection is presented comprising a 35 nm aluminum coating on the distal tip of a length of single mode optical fiber. Broadband light is launched into the proximal end of the optical fiber and a portion of this light is reflected by the distal tip of the fiber, which is immersed in water containing an unknown concentration of dissolved fluoride. The intensity of the reflected light is detected by a photodiode connected to the proximal end of the fiber. The aluminum coating is removed from the distal tip by reaction with the dissolved fluoride at a rate that depends on the fluoride concentration and the intensity of the light reflected from the distal tip depends upon the thickness of this coating. Therefore, the rate at which the intensity of light detected by the photodiode decreases is correlated with the concentration of fluoride. The fabricated sensor measures fluoride concentration within the range of 0–5 mg L−1.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Elevated fluoride concentrations in drinking water present sig-nificant risk to human health [1,2]. In regions where groundwater is the main source of drinking water, most notably in the East African Rift Valley and parts of India [3]. Sri Lanka and Northern China [4], over 200 million people consume water with naturally-occurring fluoride levels that exceed the World Health Organization (WHO)-recommended limit of 1.5 mg L−1[5,6]. While optimal low concentrations (0.5–1 mg L-1) prevent dental caries [7]. higher

con-centrations (>1.5 mg L-1) can lead to dental and skeletal fluorosis

[8–14]. Managing the concentration of fluoride in drinking water supplies is crucial [15], and reliable, frequent measurement is essential to the effective provision of safe drinking water either by accessing alternative sources [16–20] or through affordable treat-ment [6,21–27].

Various methods are currently used to measure the concentra-tion of fluoride in water [28] including ion-selective electrodes [29],

∗ Corresponding author.

E-mail address:hbuckley@uvic.ca(H.L. Buckley).

1 250-472-5879, https://oac.uvic.ca/greensafewater/, https://www.uvic.ca/

engineering/civil/people/home/hbuckley.php.

mass spectrometry [30], UV–visible spectroscopy [31], and fluores-cence techniques [32]. However, these methods are not suitable for field use as they require careful preparation and analysis in a labo-ratory setting. For communities in low-resource contexts, there is a need for a robust device that can be used in the field, such as a handheld sensor [33].

The current industry standard for field measurement of fluoride is the SPADNS method, named after the chromophoric reagent 2-(p-sulfophenylazo)-1,8-dihydroxy-3,6-napthalenedisulfonic acid) [34], developed by HACH and sold as a kit. This method mea-sures the reaction of a red zirconium dye with fluoride in solution using a pocket colorimeter [35]. This method can measure fluo-ride in the range of 0.1–2 mg L−1 with high sensitivity [36], but its application is limited due to the requirement for manipula-tion of liquid reagents and possible contaminamanipula-tion of glassware and equipment. Additionally, the SPADNS reagent for fluoride con-tains sodium arsenite, which is hazardous and proper disposal must follow strict protocols.

Alternative colorimetric fluoride detection methods have been developed that based on cell phone-compatible measurement kits, some of which are commercially available. In most of these meth-ods, water is mixed with a liquid reagent in a sample chamber and characterized using the camera on a smart phone and custom soft-ware [37–39]. Using a variant of this approach, Vidan et al. react

https://doi.org/10.1016/j.sna.2019.111684

(3)

2 V.Moradi,E.A.Caws,P.M.Wildetal./SensorsandActuatorsA303(2020)111684

fluoridewiththeSPADNSreagentonfilterpaperrather thanin solution,againusingacellphonecameraandimageprocessing softwaretoquantifytheanalytes[40].AswiththeHACHkit,allof thesemethodsarelimitedbytherequirementtomanipulateand disposeofliquidreagentsandbycontaminationbetweensamples. Photographsofsamplesarealsosubjecttovariabilityinlighting andimagequality.

Threestudiesdescribingfiberopticsensorsfordetectionof flu-orideinaqueoussolutionshavebeenidentifiedintheliterature;all arecolorimetricinnature.Jadhavetal.measurefluoride concentra-tionbasedontheinteractionoftheevanescentfieldofanin-fiber Bragggratingwithatestsolutiontowhichanunspecifiedreagentis added.TheBraggwavelength,measuredwithanopticalspectrum analyzer,shiftsinresponsetochanges influorideconcentration [41].Xiongetal.measuretheconcentrationoffluorideusinga pho-tomultipliertubepositionedadjacenttoanannularmicrofluidic channel,createdbythespacebetweenconcentricopticalfiberand plastictubing,containingthetestsolutionmixedwithaSPADNS reagent[42].Pillaietal.measureattenuationoflighttransmitted throughanopticalfiberthatisetchedtoenableopticalinteraction withthetestsolutiontowhichaSPADNSreagentisadded. Interro-gationofthissensorisbasedoncustom-builtphoto-electriccircuit. Allofthesemethodsrequireavailabilityofreagentsorspecialized opticalequipmentandare,therefore,notsuitableforlowcostfield measurements.

Opticalfibersensorshavebeenusedforthedetectionofother chemistries,includingpHmonitoring[43–47],explosivesdetection [48,49],methane[50,51],andCO2andsupercriticalCO2

measure-ment[52].Recently,PrussianBluehasbeendepositedontothetips ofopticalfibersandusedfordetectionofperoxideinafuelcell environment[53,54].

Inthiswork,wepresentasimplemethodtodetectlow con-centrationsoffluorideindrinkingwater.Thetipofasinglemode opticalfiberiscoated withaluminumusing sputterdeposition. Immersionofthecoatedfibertipinafluoridesolutionthenleads toremovalofthecoatingduetothereactionbetweenfluorideand aluminum.Removalofthecoatingreducestheintensityofthelight thatreflectsfromthefibertip,asillustratedinFig.1.Thesignal asso-ciatedwiththisintensitychangeisshowntobeproportionaltothe concentrationoffluorideupto5ppm,allowingsimple,reagent-free quantitationoffluorideconcentrationinwateratrelevant concen-trationsfordrinkingwatercharacterization.

2. Materialsandmethods

2.1. Chemicals

Distilledwaterandsodiumfluoride(NaF>0.99)(SigmaAldrich) wereusedtopreparetest solutions.pHwasnotexplicitly con-trolled,but was consistently measuredtobe between6.4±0.1 fordistilledwaterand6.9±0.1for80mgL−1fluoridesolution.To

Fig.1.Thealuminumcoatedfibertip.Thefluorideionsremovethereflective alu-minumlayerfromthefibertipreducingtheintensityofthereflectedlight.

preparea 100mgL−1 fluoridestocksolution,0.105gofNaFwas dissolvedin500mLofdistilledwater.Thestocksolutionwasthen dilutedtopreparesolutionswithconcentrationsof1.0(e.g.0.1mL stocksolutionand9.9mLofdistilledwater),2.0,3.5,5.0,10.0,20.0, 40.0,and80.0mgL−1F-solution.

2.2. Sensorfabrication

Theouterjacketandcladdingwereremovedfrom2cmatthe distalendsof45lengthsofsinglemodeopticalfiber(Simplex9/125, FS.COM-China).Onetipofeachofthesefiberlengthswassputter coatedwithaluminumtoathicknessof35±0.5nm(QUBE, Man-tisDeposition-UK).Thisthicknesswaschosenbecausethesensor responsetimeincreaseswithcoatingthickness,butcoatingsofless than35nmbreakdowneasilywhenbroughtintocontactwithan aqueoussolution.

2.3. Instrumentation

AsshowninFig.2,thecoatedfibertipisimmersedinthetest solution.1550nmlight istransmittedfromthebroadbandlight source(BBS1550,AFCTechnologies),throughtheopticalsplitter

(4)

Fig.3.(a)Representativevoltagegradientforsingleexperimentswithcoatedopticalfibersimmersedin0,1,2,3.5and5mgL−1F-solutions;(b)declineofvoltageratewith

theincreaseinconcentrationofF-for0,1,2,3.5and5mgL−1ofF-(meanvaluesforfivemeasurements,errorbarscorrespondtostandarddeviations).

(BRR-35S,BlueRoadResearchInc.)andtothecoatedfibertip.Light reflectedfromthecoatedtipistransmittedbackthroughthefiber, throughtheopticalsplittertothephotodiode(FDP510, MenloSys-tems)thatproducesvoltageproportionaltotheintensityofthe reflectedlight.Thissignalisacquiredbythedataacquisition(DAQ) module(NIUSB-6008,NationalInstruments)atarateof10Hz.

2.4. Testprocedures

Each sensor tip was tested in a single solution sample. In total, 45 experiments were conducted using one sensor tip in eachexperiment.Fiveexperimentswereconductedateachofthe followingconcentrations ofF−: 0.0,1.0, 2.0,3.5, 5.0,10.0, 20.0, 40.0 and 80.0mgL-1. In each experiment, the initialsignalwas

approximately1.4Vandthissignalwasrecordeduntilitfellbelow approximately0.4V.

3. Resultsanddiscussion

Fig.3(a)depictsrepresentativevoltageversustimedatafor sin-gleexperimentswithcoatedopticalfibersimmersedin0,1.0,2.0, 3.5and5.0mgL−1F-solutionsasshowninTable1.Foreach exper-iment,thevoltageratechange,orgradient,withrespecttotimeis calculatedbasedonalinearfitofthedatabetween1.2Vand0.6V. ThesegradientvaluesareshowninTableS1inthe Supplemen-taryinformation.Fig.3(b)depictsaveragevoltagegradientversus F-concentrationforthesensortipsateach ofthesolution con-centrationsbetween0and5mgL−1.Thegradientincreasesbytwo ordersofmagnitude,from-1.6×10-5mVs−1to-1.2×10-3mVs−1,

overthisrange.

Anexponentialcurvewasfittothe25voltagegradientvalues determinedfromtheexperimentsin0,1.0,2.0,3.5and5.0mgL−1 F-solutions.Theequationforthiscurveis:

V/t=(−0.297)e−(0.413)[F−] (1)

Theregressioncoefficientforthisfit isR2=0.993.Wedonot

postulateaspecificmechanismofreactionofthiscomplex hetero-geneoussystembasedonthisfit,butrathernoteitsempiricalvalue fordeterminationoftheconcentrationofunknownsampleswithin the0–5mgL−1F-concentrationrange.

WhenanAlcoatedfibertipisplacedincontactwithwater,with nodissolvedfluoride,amorphousoxide(Al2O3)forms,dissolves

inwater,andthenprecipitatesasaluminumhydroxide[55].The rateofthisreactionissignificantlylowerthanreactionofAlwith fluoride(asshowninFigs.3aand4a)

Fig.4(a)depictsrepresentativevoltageversustimedatafor sin-gleexperimentswithcoatedopticalfibersimmersedin10,20,40,

Fig.4.(a)characterizationofthesensorusingsolutionswith0,10,20,40,and 80mgL−1ofF-;(b)declineofvoltagechangewiththeincreaseinconcentrationof

F-for10,20,40,and80mgL−1ofF-(meanvaluesforfivemeasurements,errorbars

(5)

4 V.Moradi,E.A.Caws,P.M.Wildetal./SensorsandActuatorsA303(2020)111684

Table1

MeanandstandarddeviationofvoltagegradientbasedonfivetestsateachF−concentration.

F−concentration(mgL-1) Meanvoltagegradient(V/t) Standarddeviation Linearregressioncoefficient(R2)

0 −1.6×10-1mVs-1 ±3.3×10−2 0.999 1 −2.7×10-1mVs-1 ±1.7×10−1 0.997 2 −5.4×10-1mVs-1 ±3.3×10−1 0.999 3.5 −1.2mVs-1 ±3.8×10−1 0.999 5 −2.1mVs-1 ±4.3×10−1 0.999 10 −1.9×10mVs-1 ±6.4 0.999 20 −1.6×10mVs-1 ±5.0 0.999 40 −2.1×10mVs-1 ±6.3 0.999 80 −2.3×10mVs-1 ±10.7 0.994

and80mgL−1 F-solutionsasshowninTable1.Foreach experi-ment,thevoltageratechange,orgradient,withrespecttotimeis calculated,asdescribedearlier.Thesegradientvaluesareshownin TableS1intheSupplementaryinformation.Fig.4(b)depicts aver-agevoltagegradientversusF-concentrationforthesensortipsat eachofthesolutionconcentrationsbetween10and80mgL−1.

Fromthesefigures,itisclearthatthereisnosignificant differ-enceintherateofaluminumremovalfromthesensortipsasa functionofF−concentrationinthe10–80mgL-1range.AthighF

concentrations,theratesofreactionaretoofasttoresolvebythis method.Depositingathickeraluminumlayerorametalthatreacts moreslowlywithfluoridecouldimprovethesensitivityofthistype ofsensorathighfluorideconcentrations.However,towardsthe goaloflow-costdetectionoffluorideindrinkingwater,resolution inthe0–5ppmconcentrationrange,encompassingthe1.5mgL-1

WHOrecommendedmaximumfluorideconcentrationlimit,isof greaterpracticalutility.

4. Conclusions

Insummary,wehavefabricatedfluoridesensorsbydepositing a35nmthickaluminumlayeronthetipofasinglemode opti-calfiber.Exposure toanaqueousfluoridesolutionremovesthe reflectivealuminumlayerfromthesensortipataratecorrelatedto fluorideconcentrationandmeasuredbyvoltagechangeata photo-diode.Thesingle-useopticalfibertipsareinexpensivelyfabricated, easilycoupledtoasimplephotodiode,andaresensitiveat fluo-rideconcentrationsrangingfrom0to5mgL−1(encompassingthe WHOmaximumcontaminantlimitof1.5mgL−1),makingtheman importantfirststeptowardsthedevelopmentoflow-cost,robust sensorsforfielddetectionoffluorideindrinkingwater.

DeclarationofCompetingInterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorswouldliketothankJonathanRudgeofthe Cen-treforAdvancedMaterialsandRelatedTechnology(CAMTEC)at theUniversityofVictoriaforhisassistancewithsputter-coating ofthefibertips.EACacknowledgestheNSERCUSRAprogramand UNAssociationinCanadaGreenSpacesprogramforfunding.HLB acknowledgesCFIJELFandBCKDFforinfrastructuresupport.PMW andHLBacknowledgetheNSERCDiscoveryGrantsprogram.

AppendixA. Supplementarydata

Supplementarymaterialrelated tothis article canbefound, in the online version, at doi:https://doi.org/10.1016/j.sna.2019. 111684.

References

[1]W.M.Edmunds,P.L.Smedley,in:O.Selinus(Ed.),FluorideinNaturalWaters, inEssentialsofMedicalGeology:RevisedEdition,Springer,Netherlands: Dordrecht,2013,pp.311–336.

[2]E.Bazrafshan,K.A.Ownagh,A.H.Mahvi,Applicationofelectrocoagulation processusingIronandaluminumelectrodesforfluorideremovalfrom aqueousenvironment,E-J.Chem.9(4)(2012).

[3]UNICEF,StateofArtReportonExtentofFluorideinDrinkingWaterandthe ResultingEndemictyinIndia,1999,NewDehli.

[4]R.Wu,etal.,ModelingcontaminantconcentrationdistributionsinChina’s centralizedsourcewaters,Environ.Sci.Technol.45(14)(2011)6041–6048.

[5]M.Amini,etal.,Statisticalmodelingofglobalgeogenicfluoridecontamination ingroundwaters,Environ.Sci.Technol.42(10)(2008)3662–3668.

[6]S.Jagtap,etal.,Fluorideindrinkingwateranddefluoridationofwater,Chem. Rev.112(4)(2012)2454–2466.

[7]M.Fu,etal.,Natriumfluorideinfluencesmethylationmodificationsand inducesapoptosisinmouseearlyembryos,Environ.Sci.Technol.48(17) (2014)10398–10405.

[8]A.BalanPillai,B.Varghese,K.N.Madhusoodanan,Designanddevelopmentof novelsensorsforthedeterminationoffluorideinwater,Environ.Sci.Technol. 46(1)(2012)404–409.

[9]WHO,GuidelinesforDrinking-WaterQuality,Vol.1,2nded,1993,pp.2011, Geneva.

[10]B.D.Turner,P.Binning,S.L.S.Stipp,Fluorideremovalbycalcite:evidencefor fluoriteprecipitationandsurfaceadsorption,Environ.Sci.Technol.39(24) (2005)9561–9568.

[11]T.Jayarathne,etal.,Emissionsoffineparticlefluoridefrombiomassburning, Environ.Sci.Technol.48(21)(2014)12636–12644.

[12]K.Brindha,etal.,FluoridecontaminationingroundwaterinpartsofNalgonda District,AndhraPradesh,India,Environ.Monit.Assess.172(1)(2011) 481–492.

[13]A.A.Mohammadi,etal.,Skeletalfluorosisinrelationtodrinkingwaterinrural areasofWestAzerbaijan,Iran,Sci.Rep.7(1)(2017)17300.

[14]H.Biglari,etal.,Geochemicalstudyofgroundwaterconditionswithspecial emphasisonfluorideconcentration,Iran,Desalin.WaterTreat.57(47)(2016) 22392–22399.

[15]K.Jha,etal.,Hirudotherapyinmedicineanddentistry,J.Clin.Diagn.Res.: JCDR9(12)(2015),p.ZE05-ZE7.

[16]N.SubbaRao,Groundwaterquality:focusonfluorideconcentrationinrural partsofGunturdistrict,AndhraPradesh,India,Hydrol.Sci.J.48(5)(2003) 835–847.

[17]J.J.Carrillo-Rivera,A.Cardona,W.M.Edmunds,Useofabstractionregimeand knowledgeofhydrogeologicalconditionstocontrolhigh-fluoride

concentrationinabstractedgroundwater:sanLuisPotos´ibasin,Mexico,J. Hydrol.261(1)(2002)24–47.

[18]J.E.Podgorski,etal.,Predictionmodelingandmappingofgroundwater fluoridecontaminationthroughoutIndia,Environ.Sci.Technol.52(17)(2018) 9889–9898.

[19]L.Craig,etal.,Recommendationsforfluoridelimitsindrinkingwaterbased onestimateddailyfluorideintakeintheUpperEastRegion,Ghana,Sci.Total Environ.532(2015)127–137.

[20]J.-m.MwengeKahinda,A.E.Taigbenu,J.R.Boroto,Domesticrainwater harvestingtoimprovewatersupplyinruralSouthAfrica,Phys.Chem.Earth PartsA/B/C32(15)(2007)1050–1057.

[21]M.Habuda-Stani ´c,M.E.Ravanˇci ´c,A.Flanagan,Areviewonadsorptionof fluoridefromaqueoussolution,Materials(Basel,Switzerland)7(9)(2014) 6317–6366.

[22]N.Das,P.Pattanaik,R.Das,Defluoridationofdrinkingwaterusingactivated titaniumrichbauxite,J.ColloidInterfaceSci.292(1)(2005)1–10.

[23]A.Z.Haddad,etal.,Ontheconversionofbauxiteorestohighlyactivated aluminamediaforwaterremediation,Adv.Sustain.Syst.(2019)1900005, 0(0).

[24]W.-W.Choi,K.Y.Chen,Theremovaloffluoridefromwatersbyadsorption,J. Am.WaterWorksAssoc.71(10)(1979)562–570.

[25]H.L.Buckley,etal.,Addressingtechnicalbarriersforreliable,saferemovalof fluoridefromdrinkingwaterusingminimallyprocessedbauxiteores,Dev. Eng.3(2018)175–187.

(6)

[26]M.Mohapatra,etal.,Reviewoffluorideremovalfromdrinkingwater,J. Environ.Manage.91(1)(2009)67–77.

[27]L.Osterwalder,etal.,Multi-criteriaassessmentofcommunity-based fluoride-removaltechnologiesforruralEthiopia,Sci.TotalEnviron.488–489 (2014)532–538.

[28]A.Dhillon,M.Nair,D.Kumar,Analyticalmethodsfordeterminationand sensingoffluorideinbioticandabioticsources:areview,Anal.Methods8 (27)(2016)5338–5352.

[29]P.Anzenbacher,etal.,Simpleelectroopticalsensorsforinorganicanions,Org. Lett.7(22)(2005)5027–5030.

[30]S.Kage,etal.,Determinationoffluorideinhumanwholebloodandurineby gaschromatography-massspectrometry,ForensicToxicol.26(1)

(2008)23.

[31]Y.Li,etal.,Self-assemblyofgrapheneoxidewithasilyl-appendedspiropyran dyeforrapidandsensitivecolorimetricdetectionoffluorideions,Anal.Chem. 85(23)(2013)11456–11463.

[32]Y.Bao,etal.,A ¨nakedeye¨andratiometricfluorescentchemosensorforrapid detectionofF−basedoncombinationofdesilylationreactionand

excited-stateprotontransfer,Chem.Commun.47(13)(2011) 3957–3959.

[33]Hans-PeterBader,M.B.AnjaBretzler,GeogenicContaminationHandbook. GeogenicContaminationHandbook,Eawag:SwissFederalInstituteofAquatic ScienceandTechnology,Seitzerland,2017.

[34]SPADNS,ACSReagentChemicals,AmericanChemicalSociety,2017.

[35]G.Brambilla,V.Finazzi,D.J.Richardson,Ultra-low-lossopticalfiber nanotapers,Opt.Express12(10)(2004)2258–2263.

[36]Fluoride,SPADNSMethod(0.1to2.0mg/L),HACHCOMPANY,AccuVac®

Ampuls,USA,2017.

[37]I.Hussain,K.U.Ahamad,P.Nath,Low-cost,robust,andfieldportable smartphoneplatformphotometricsensorforfluorideleveldetectionin drinkingwater,Anal.Chem.89(1)(2017)767–775.

[38]S.Levin,etal.,Monitoringoffluorideinwatersamplesusingasmartphone, Sci.TotalEnviron.551–552(2016)101–107.

[39]Y.Wen,etal.,Microaxicavecolouranalysissystemforfluorideconcentration usingasmartphone,RSCAdv.7(67)(2017)42339–42344.

[40]E.Vidal,etal.,Micropaper-basedanalyticaldevice(␮PAD)forthe simultaneousdeterminationofnitriteandfluorideusingasmartphone, Microchem.J.143(2018)467–473.

[41]M.S.Jadhav,etal.,Fluoridecontaminationsensorbasedonopticalfiber gratingtechnology,Opt.FiberTechnol.38(2017)136–141.

[42]Y.Xiong,etal.,Opticalsensorforfluoridedeterminationinteasamplebased onevanescent-waveinteractionandfiber-opticintegration,Talanta174 (2017)372–379.

[43]A.K.Pathak,D.K.Chaudhary,V.K.Singh,Broadrangeandhighlysensitive opticalpHsensorbasedonHierarchicalZnOmicroflowersovertaperedsilica fiber,Sens.ActuatorsAPhys.280(2018)399–405.

[44]W.Li,etal.,AnexperimentalstudyofpHopticalsensorusingasectionof no-corefiber,Sens.ActuatorsAPhys.199(2013)260–264.

[45]S.H.Alabbas,etal.,Factorsaffectigtheresponsetimeofanoptical-fibre reflectancepHsensor,Sens.ActuatorsAPhys.51(2)(1995)129–134.

[46]S.Islam,etal.,Sol–gelbasedfiberopticpHnanosensor:structuralandsensing properties,Sens.ActuatorsAPhys.238(2016)8–18.

[47]S.Islam,etal.,Surfacefunctionalityandopticalpropertiesimpactofphenol reddyeonmesoporoussilicamatrixforfiberopticpHsensing,Sens. ActuatorsAPhys.276(2018)267–277.

[48]R.Orghici,etal.,Amicroringresonatorsensorforsensitivedetectionof 1,3,5-Trinitrotoluene(TNT),Sensors10(7)(2010)6788–6795.

[49]F.Chu,J.Yang,Coil-shapedplasticopticalfibersensorheadsforfluorescence quenchingbasedTNTsensing,Sens.ActuatorsAPhys.175(2012)43–46.

[50]M.Benounis,etal.,NIRandopticalfibersensorforgasesdetectionproduced bytransformationoildegradation,Sens.ActuatorsAPhys.141(1)(2008) 76–83.

[51]C.Ronot,etal.,Optimizationandperformanceofaspecificallycoatedintrinsic optical-fibresensorforthedetectionofalkanecompounds,Sens.ActuatorsA Phys.42(1)(1994)529–534.

[52]G.Burton,etal.,Fiberrefractometertodetectanddistinguishcarbondioxide andmethaneleakageinthedeepocean,Int.J.Greenh.GasControl.31(2014) 41–47.

[53]H.A.Khorami,etal.,SpectroscopicdetectionofHydrogenperoxidewithan opticalfiberprobeusingchemicallydepositedPrussianblue,Electrochim. Acta115(2014)416–424.

[54]J.F.Botero-Cadavid,etal.,Detectionofhydrogenperoxideusinganoptical fiber-basedsensingprobe,Sens.ActuatorsBChem.185(2013)166–173.

[55]W.Vedder,D.A.Vermilyea,Aluminum+waterreaction,Trans.FaradaySoc. 65(1969)561–584,http://dx.doi.org/10.1039/TF9696500561.

Biographies

Dr.VahidMoradireceivedhisB.S(2008)andM.S(2010)inAppliedChemistry. DuringhisM.S,heworkedonthedesignandoptimizationofreactorsincludinga reactorforliquid-liquidextraction,andaUV-assistedreactorforwastewater treat-ment.HereceivedhisPh.DinMechanicalEngineeringatUniversityofVictoria (2017).Hisfocuswasconductingresearchonsynthesisofphotocatalystmaterials, photocatalyticreactionsandband-gapengineeringofmaterials,whichwereused asself-cleaningsurfacesandwaterdisinfection.HejoinedInstituteforIntegrated EnergySystems(IESVic)in2017asresearchassociateandworkedonfabricationof chemicalsensorsusingopticalfibers.

EmmanuelleCawsisaResearchAssistantintheDepartmentofCivilEngineering atUniversityofVictoria.ShehasaBachelorofEngineeringinEnvironmental Engi-neeringfromtheUniversityofGuelphin2019.Herresearchinterestsfocusonclean drinkingwatersolutions,especiallyfordetectionandremovaloftracecontaminants inwater.

PeterM.Wild,PhDisaProfessorintheDepartmentofMechanicalEngineeringatthe UniversityofVictoria.HeholdstheNaturalSciencesandEngineeringResearch Coun-cil(NSERC)ChairinSustainableEnergySystemsDesignandistheDirectorofthe InstituteforIntegratedEnergySystemsatUVic(IESVic).Dr.Wild’sresearchinterests include:opticalsensorsforindustrial,environmentalandbiomedicalapplications; impactsofintegrationofrenewableenergygenerationintoexistinggrids;and renewableenergygenerationtechnologies.

Dr.HeatherBuckleyisanAssistantProfessorofCivilEngineering,anAdjunct Pro-fessorofChemistryattheUniversityofVictoriaandamemberofIESVicandCAMTEC, UVic’sCentreforAdvancedMaterialsandRelatedTechnologies.SheholdsaPhDin ChemistryfromtheUniversityofCaliforniaBerkeleyandisaGermanBMBFGreen TalentsandUSDepartmentofStateInternationalFulbrightS&TAlumna.Her inter-disciplinaryresearchgrouptacklesgreenchemistryandengineeringproblemsto improvehumanandenvironmentalhealth,withafocusondrinkingwater.Her interestsareindesigningtoolsforbetterenvironmentalmonitoringand strate-giesfortheproactiveuseofsaferalternatives.Thisempowerscommunitiesand industrialpartnerstowardsenvironmentalstewardshipandbetterpublichealth outcomes.

Referenties

GERELATEERDE DOCUMENTEN

Gezien het toene- mende belang van de sierteelt en gezien de goede kansen (maatschappelijke voorwaarden: milieu, werkgelegenheid, aanvaardbare productiemethodes) is het zinvol na

Active- Demand & Supply trade energy control user settings provide auxiliary services provide energy supply energy demand response framework agreement dispatch power plant

Abstract— This paper proposes a Distributed Second Order Sliding Mode (D-SOSM) control strategy for Optimal Load Frequency Control (OLFC) in power networks, where besides

Respondente meld vrees vir gevolge en moontlike konflik, die gesagsaspek, die aard van die verhouding met die supervisor asook die werksomstandighede as aspekte wat 'n

• The final author version and the galley proof are versions of the publication after peer review.. • The final published version features the final layout of the paper including

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Het plangebied, met een oppervlakte van 7.380m², bevindt zich aan de zuidwestelijke zijde van het  centrum  van  Gent,  gelegen  binnen  het  bouwblok  dat 

De elektromotoren c.ie uitsluitend of hoofdzakelijk worden aangedreven door in eigen bedrijf opgewekte stroom (de sekundair elektromotorenl zijn niet bij het