• No results found

Direct liquefaction of lignocellulose: exploration, design and evaluation of conceptual processes

N/A
N/A
Protected

Academic year: 2021

Share "Direct liquefaction of lignocellulose: exploration, design and evaluation of conceptual processes"

Copied!
190
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Direct Liquefaction of Lignocellulose:

Exploration, Design and Evaluation of Conceptual Processes

Shushil Kumar

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

ï

(19)

ë

(20)

ë

(21)
(22)
(23)
(24)

1. Motivation: In pursuit of a sustainable energy future

(25)

(26)
(27)
(28)
(29)
(30)
(31)

6. Characteristics of Liquefaction bio-crude

𝐻𝐻𝑉 (

𝑀𝐽𝑘𝑔

) = 0.341 × 𝐶 + 1.322 × 𝐻 − 0.12 × 𝑂

𝐻/𝐶

𝑒𝑓𝑓

=

𝐻−𝑂/8𝐶/12

(32)

(33)

Liquefaction Liquefaction Upgrading

Liquefaction Separation Liquefaction

Biomass Liquid effluent Biomass Liquid effluent

Upgraded liquid effluent

Biomass Liquid effluent

Heavy oil

(Bio-crude) Biomass Liquid effluent

Light oil a d b c Refinery stream

(34)
(35)

References

(36)
(37)

ş

®

(38)
(39)
(40)

1. Introduction

2. Materials and Methods

(41)

C TI C TI C TI PI Gas sample TI Air Pre-heater

Cooler water bath Autoclave Cylinder piston (Shaking) Removable line 180° Gate valve 3-way valve Reducing valve Pressure Indicator Temperature Indicator Temperature indicator and controller PI TI TI C FLUIDIZED BED

(42)
(43)

µ

Liquefaction

Filtration Biomass + Solvent + Water

Gas phase (Micro GC) Liquid (GPC/EA) Solid (FT-IR/EA) Reactor wall washed

with acetone

Filtration Retentate

Acetone

Slurry

Acetone rich phase Acetone Evaporation 1

(44)

µ

µ

(45)
(46)

3. Definitions and calculations

Char/Solid Liquefaction reactor Aq. phase Org. phase Filter Decanter Wood Liquefaction solvent Reactor effluent Degasser Liquid

Gas Aqueous phase

Organic liquid effluent (Organic phase) F ra c ti o n a to r Liquefaction solvent Bio-crude

𝑌𝑖𝑒𝑙𝑑

𝑆𝑜𝑙𝑖𝑑

(%) =

𝑀𝑀𝐴𝑐𝑒𝑡𝑜𝑛𝑒 𝑖𝑛𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑊𝑜𝑜𝑑 𝑖𝑛𝑡𝑎𝑘𝑒 (𝑑𝑟𝑦)

× 100

𝑌𝑖𝑒𝑙𝑑

𝐺𝑎𝑠

(%) =

𝑀𝐺𝑎𝑠 𝑓𝑜𝑟𝑚𝑒𝑑 𝑀𝑊𝑜𝑜𝑑 𝑖𝑛𝑡𝑎𝑘𝑒 (𝑑𝑟𝑦)

× 100

(47)

𝑌𝑖𝑒𝑙𝑑

𝐿𝑖𝑞𝑢𝑖𝑑

(%) = 100 − 𝑌𝑖𝑒𝑙𝑑

𝑆𝑜𝑙𝑖𝑑

(%) − 𝑌𝑖𝑒𝑙𝑑

𝐺𝑎𝑠

(%)

(48)

𝑉𝑎𝑐𝑢𝑢𝑚 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =

𝐴𝑟𝑒𝑎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑀𝑊,𝐺𝑃𝐶 > 1000 𝐷𝑎 𝐴𝑟𝑒𝑎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑀𝑊,𝐺𝑃𝐶 > 180 𝐷𝑎

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) = 100 − 𝑌𝑖𝑒𝑙𝑑

𝑆𝑜𝑙𝑖𝑑

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝐺𝑎𝑠

=

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑌𝑖𝑒𝑙𝑑𝐺𝑎𝑠

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝐿𝑖𝑞𝑢𝑖𝑑

=

𝑌𝑖𝑒𝑙𝑑𝐿𝑖𝑞𝑢𝑖𝑑 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑉𝑅

= 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝐿𝑖𝑞𝑢𝑖𝑑

× 𝑉𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

Selectivity

𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑒𝑠

= 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝐿𝑖𝑞𝑢𝑖𝑑

− 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑉𝑅

10

100

1000

10000

Signal I

nte

nsity

M

W,GPC

(Da)

Liquefaction

Solvent

Bio-crude: Distillates+Heavies

Vacuum residue/

Heavies

Distillates

(180 Da)

(49)
(50)

References

0 1 2 3 4 5 6 7 8 9 10 30 40 50 60 70 80 90 100

Cumula

tiv

e woo

d (w%

)

Run number

(51)
(52)

1. Introduction

2. Materials and Methods

(53)
(54)

240 260 280 300 320 340 360 380 400 0 20 40 60 80 100

Yield (C%)

Temperature (

O

C)

Liquid Solid Gas 0.1 0.2 0.3 0.4

Vacuu

m r

esidu

e f

ra

ction

(55)

10 100 1000 10000 0 5000 10000 15000 20000 25000 30000 320O C 250O C 350O C 300O C 400O C 250O C 300O C 320O C 350O C 370OC 400O C Guaiacol (350O C)

RI de

tect

or

sign

al

M

W,GPC

(g/mol)

370O C Guaiacol 350O C

(56)

100 1000 10000 0 20 40 60 80 100 Gas Solid

Yield (C%)

Reaction time (s)

Liquid 0.0 0.1 0.2 0.3 0.4 0.5

VR frac

tion

(57)

10 100 1000 10000 100000 0 5000 10000 15000 20000 25000 3 hrs 900 s 200 s 100 s 200 s 300 s 400 s 500 s 900 s 3 hrs

RID sign

al

M

W,GPC

(g/mol)

100 s

(58)
(59)
(60)
(61)

4000 3500 3000 2500 2000 1500 1000 500 C-O (1030) 350OC 400O C 370OC 250O C

Tr

an

smitta

nce

Wavelength (cm

-1

)

Pine wood O-H (3330) C-H(2900) C=O (1735) C=C, aromatic skeletal (1590, 1505) 4000 3500 3000 2500 2000 1500 1000 500 C-O

Tr

an

smitta

nce

Wavelength (cm

-1

)

Pine wood 3 hrs 100 sec 200 sec O-H C-H aromatic skeletal vibration

a

b

(62)
(63)

50 60 70 80 90 100 0.0 0.2 0.4 0.6 0.8 1.0 Liquid y = -0.0003x + 0.9736 Distillates y = 0.0026x + 0.3897 VR y = -0.0029x + 0.5839

Selectivity

Wood conversion (%)

Gas y = 0.0003x + 0.027

(64)

100 1000 10000 5.0 5.5 6.0 6.5 7.0 7.5 9 mL 45 mL

RI/UV signa

l@2kDa

Reaction time (s)

(65)

Lignocellulose Monomer Polymer Oligomer Secondary Char Primary Char Lights VR Distillates -water -water -water Gas H ig h T e m p e ra tu re Intermediates

(66)

5. Conclusion

References

(67)
(68)
(69)
(70)

1. Introduction

(71)

3. Results and Discussion

70 80 90 1002 4 6 8 10 0 5 10 2 4 6 8 10 0.1 0.2 0.3 0.4 0.5 H2SO4 (1 w%) No Cat CH3COONa (1 w%) CH3COOK (1 w%) KHCO3 (1 w%) KOH (1 w%) CH3COONa (5 w%) CH3COOK (5 w%) KHCO3 (5 w%) KOH (5 w%)

Li

qu

id

(C%)

Gas (C%)

VR fractio

n

(72)
(73)

0 2 4 6 8 10 12 0 2 4 6 8 10 12

pH of

org

ani

c

liqui

d e

fflu

ent

pH of feed

Solid symbol = 1 w%, Open symbol = 5 w%Additive loading

KOH KHCO3 CH3COOK CH3COONa Blank*+KHCO3 H2SO4 No cat.

(74)

8.2 79.3 47.3 17.5 3.9 12.2 12.7 8.2 21.3 9.2 79.6 7.9 44.4 61.2 86.9 0 20 40 60 80 100 (2) (2) Blank+KHCO3a Wood only Wood+KHCO3 KHCO3 only

Cumulative yield (C%)

Liquid Gas Solid Single run Refill of (1)

(75)

10 100 1000 10000 0 50000 100000 150000 Blank+KHCO3*

Refill of base only (1) Refill of wood only (2) Refill of wood and base (2)

R

ID

s

ign

a

l

M

W,GPC

(g/mol)

Single run

(76)

0 20 40 60 80 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Refill of wood + KHCO3

Blank+KHCO3* Refill of wood

V

ac

uu

m res

idu

e frac

tion

Cumulative solid yield (C%)

No cat

(77)

4. Conclusion

(78)

References

ş

(79)
(80)
(81)
(82)

1. Introduction

Wood +Water Recycle Upgraded org. liquid effluent To Refinery Direct Liquefaction Upgrading Recycle Organic liquid effluent Direct Liquefaction Wood +Water a b

(83)
(84)

µ

’,

(85)

20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90 Solid* Gas

Yield (C%)

Cumulative wood (w%)

Liquid

(86)
(87)

10 100 1000 10000 100000 0 5000 10000 15000 Liq-1 HDO-1

RID signa

l

M

W,GPC

(g/mol)

60 80 100 120 0 100000 200000 300000 400000

(88)

10 100 1000 10000 100000 0 5000 10000 15000 20000 25000 RID signal MW,GPC(g/mol) 1 2 3 4 60 80 100 120 0 100000 200000 300000 400000 500000 4 1 10 100 1000 10000 100000 0 10000 20000 30000 40000 RID Signal MW,GPC(g/mol) 1 2 3 4 60 80 100 120 0 50000 100000 150000 200000 1 4 10 100 1000 10000 100000 0 500 1000 1500 2000 2500 3000 3500 UV signal MW,GPC(g/mol) 1 2 3 4 10 100 1000 10000 100000 0 500 1000 1500 2000 2500 3000 3500 UV signal MW,GPC(g/mol) 1 2 3 4

a

b

c

d

(89)

20 30 40 50 60 70 20 30 40 50 60 70 80

GPC are

a %

Cumulative wood (w%)

0.0 0.1 0.2 0.3 0.4 Bio-crude

VR fract

ion

Solvent VR 20 30 40 50 60 70 10 100 1000 10000 HDO*

Viscosity (cP, at 30

O

C)

Cumulative wood (w%)

Liquefaction 10 20 30 40 50 60 70 4 6 8 10 12 Liquefaction

RI/UV

Cumulative wood (w%)

HDO

a

b

c

(90)
(91)

µ

(92)

10 20 30 40 50 60 70 0.0 0.1 0.2 0.3 0.4 0.5 With HDO y = 0.176e0.0092x

VR fract

ion

Cumulative wood (w%)

Without HDO y = 0.203e0.01134x after hydrotreatment 10 20 30 40 50 60 70 1 10 100 1000 10000 y = 10(-0.114+0.0676x) Without upgrading With upgrading (Ru/C)

Viscosity (cP, a

t 3

0

O

C)

Cumulative wood (w%)

y = 10(-0.143+0.0562x)

*

after hydrotreatment

a

b

(93)
(94)

∆:

5. Conclusion

0.0 0.1 0.2 0.3 0.4 1 10 100 1000 10000

Viscosity (cP, a

t 3

0

O

C)

VR fraction*

Poor solvent

Good solvent

(95)

References

(96)
(97)
(98)
(99)

Wood

Light oil

Heavy oil Org. liquid effluent

Org. liquid effluent

Org. liquid effluent Wood a b Liquefaction reactor Liquefaction reactor Separation Extraction Org. liquid effluent

Raffinate/Heavy oil Extract (Extraction solvent+Light oil) c Regeneration Extraction solvent Light oil

(100)

2. Materials and methods

Vacuum residue (VR) fraction =

Area corresponds to MW,GPC > 1000 Da

(101)

Extracted percentage = (1 −

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑟𝑎𝑓𝑓𝑖𝑛𝑎𝑡𝑒

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑙𝑖𝑞𝑢𝑖𝑑 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡

) × 100

Distribution coefficient =

Distillates concentration in raffinate (g/g)Distillates concentration in extract (g/g)

𝛿

𝐷𝑖

𝛿

𝑃𝑖

𝛿

𝐻𝑖

Ra

2

= 4(δ

(102)
(103)
(104)

(105)

‘ ’

0 10 20 30 40 50 60 70 80 90 0.1 0.2 0.3 0.4 0.5

0.6 Ideal end point

(85.7, 1)

Organic liquid effluent (feed to extraction) Water/Methanol* Hydrocarbon W/M(1.5:1)* W/M(0.67:1)* W/M(2:1)*

VR fract

ion

in r

aff

inat

e**

Extracted percentage

C7 C12C 16 C11 y=14.3/(100-x) Ideal operating line

(106)

0 20 40 60 80 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 (4) (3) (2)

VR frac

tio

n

Cumulative extracted percentage

Org. liquid effluent (1)

y=14.3 (100-x)-1

Ideal operating line

Experimental line Light oil (Extracted oil) Raffinate 40 50 60 70 80 90 100 0.00 0.05 0.10 0.15 0.20 0.25 (3) (2) (1)

Distribu

tion

coe

fficien

t

Cumulative extracted percentage

(4)

a

(107)
(108)

4. Discussion: Theoretical background

∆G

m

= RT[n

1

ln∅

1

+ n

2

ln∅

2

+ n

1

2

χ

12

]

𝑛

1

𝑛

2

1

2

𝜒

12

𝛿

1

𝛿

2

𝝌

12

𝜒

12

𝛘

12

=

Vseg(δ1−δ2)2 RT

V

seg

=

MW1 ρ1

(109)

𝑉

𝑠𝑒𝑔

𝑀

𝑊1

is molecular weight

𝜌

1

∆𝐺

𝑚

∆𝐺

𝑚

2𝑚𝑎𝑥

2𝑚𝑎𝑥

= −

1 𝛘12

(ln∅

1

+

n2 n1

ln∅

2

)

2𝑚𝑎𝑥

= −

1 𝛘12

(ln∅

1

+

∅2ρ2 ∅1ρ1 MW1 MW2

ln∅

2

)

𝑛

𝑖

=

V∅iρi MWi

𝑀

𝑊𝑖

𝜌

𝑖 ρ2 ρ1

2𝑚𝑎𝑥

= 𝑒

−MW2MW1 ρ1ρ2( 𝛘12−1)

𝑒

− MW2MW1 ρ1ρ2( Vseg(δ1−δ2)2RT −1)

𝑒

− MW2 ρ1ρ2( (δ1−δ2)2ρ1RT − 1 MW1)

2𝑚𝑎𝑥 (δ1−δ2)2 ρ1RT 1 MW1

𝛘

12

≤ 1

(110)

𝛘

12

0.0

0.1

0.2

0.3

600

2000

400

1000

Volume fraction of

polymer

Molar mass (Da)

90

O

C

25

O

C

200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2000

1000

400

600

Distribution coe

fficient

Molar mass (Da)

200

(111)
(112)

Wood

Off gas + Water

Make-up Solvent Raffinate (Heavy oil) Extract Solvent Water

Reactor effluent Org. liquid

effluent Light oil Extraction Gas + Water separator Liquefaction reactor Solvent recovery

(113)

Investment [ISBL, M$ 2014] = 4.7 × (energy transfer [MW])

0.55

(114)

Distill

atio

n

Ex

tra

ction

Ex

tra

ction

-op

t.

0 1 2 3 4 5 Heat duty Capital cost

Hea

t d

ut

y (% o

f HHV o

f wo

od

)

0 20 40 60 80 100 120

Cap

ita

l cost (M

$

20

14

-ISBL

)

(115)

6. Conclusion

References

(116)
(117)
(118)

1. Introduction

Wood Light oil Reactor effluent Liquefaction reaction 320OC Extraction 90OC Raffinate Extract (Extraction solvent+Light oil) Regeneration 25OC Extraction solvent Water/gas removal 25OC Distillation Org. liquid effluent Bio-crude Water+Gases Water

(119)
(120)
(121)

30 40 50 60 70 80 90 0 20 40 60 80 100 Solid Gas

Yield (C%)

Cumulative wood (w%)

Liquid 0 20 40 60 80 100 Water

Yield (w%)

Organics

(122)
(123)

10 20 30 40 50 60 70 80 90 100 0.0 0.1 0.2 0.3 0.4 0.5

Extracted oil (Light oil)

Organic liquid effluent

With fractionation

VR fract

ion

Cumulative wood (w%)

Without fractionation Raffinate 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70

Extract

ed

pe

rce

nta

ge

Cumulative wood (w%)

a

b

(124)

0 10 20 30 40 50 60 70 80 90 100 0 2 4 6 8

Ratio

of

ba

nd

inte

nsity

C=O/C-H C=C/C-H

Cumulative wood (w.%)

Wood Wavelength (cm -1) C=O:1698, C-H: 2922 C-O: 1023. C=C: 1596 C-O/C-H

(125)

(126)
(127)

Pyrol ysis oi l OFWA Bio-crude Pyrol ytic lig nin HDO of Bio. HDO of PO 0 10 20 30 40 50 60 MCRT, HHV ( dry) MCRT (dry w%) HHV (MJ/kg) 0.0 0.2 0.4 0.6 0.8 1.0 1.2

H/Ceff O/C (dry)

(H/C

eff ),

(

O/

(128)
(129)

Heat Exchange H e a t E x c h a n g e Wood Light oil Reactor effluent Liquefaction reaction 320OC Extraction 90OC Raffinate Extract (Extraction solvent+Light oil) Regeneration 25OC Extraction solvent Water/gas removal 25OC Distillation Org. liquid effluent Bio-crude Gases Water M ix e r Reactor feed Water H e a t E x c h a n g e Gases Light oil Bio-crude Water Reactor effluent Liquefaction reaction 320OC Distillation Wood Water/gas removal 25OC Org. liquid effluent Water M ix e r Reactor feed a b

(130)
(131)
(132)
(133)

6. Conclusion

(134)

References

É

(135)

ö

(136)
(137)
(138)

1. Introduction

Wood

VGO

Solid

Solid

FCC

Liquefaction

VGO

Filter

Fuels

(139)

2. Materials and methods

(140)

5.4 7.6 6.2 6.0 3.7 10.4 6.8 6.1 8.2 8.2 9.0 9.3 8.1 5.9 0.4 0.5 0.2 0.4 86.4 67.7 58.3 34.7 91.5 63.9 45.1 36.8 37.9 37.4 44.5 44.9 34.0 36.4 19.0 1.0 1.0 8.3 24.7 35.5 59.3 4.9 25.8 48.0 57.1 54.0 54.3 46.5 45.8 57.9 57.7 80.6 98.5 98.8 99.6

Crude oilHydrow ax

VGO LCO

Crude oilHydrow ax

VGO LCO VGO LCO VGO LCO VGO LCO

0 20 40 60 80 100 15 m 320OC 30 m 370OC  m 320OC

Yie

ld

(C%)

Liquid Solid Gas  m 320OC 30 m 60 min 350OC

(141)
(142)
(143)
(144)
(145)

4. Discussion: Comparison with pyrolysis and options of integration in

an oil refinery

(146)
(147)
(148)

Reactor Rct-feed-c Rct-effluent Filter 1 Filter 2 #4 #3 #5 #2 Decanter #6 #1 Gases Feed HE #8 VGO Mixer Wood (wet) Rct-feed Feed heater Rct-feed-b VGO+Bio-crude Water-phase Rct-feed-a Feed pump Condenser #9 Residual VGO+Bio-crude Char #7 Vacuum Drying

(149)
(150)
(151)

6. Conclusion

References

(152)
(153)
(154)

1. Introduction

Char Wood LCO-rich phase FCC Liquefaction Fuels Bio-crude rich phase VGO Make-up LCO Filter Decanter

(155)

2. Materials and Methods

µ

(156)

Liquid Collector Gas Collector

Reactor

Cooling

of the products

Product Collection

Gate valve Filter

(157)

𝐵𝑖𝑜 − 𝑐𝑟𝑢𝑑𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =

𝐴𝑟𝑒𝑎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑀𝑊,𝐺𝑃𝐶 > 150 𝐷𝑎 𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐺𝑃𝐶 𝑐𝑢𝑟𝑣𝑒

𝐿𝐶𝑂 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =

𝐴𝑟𝑒𝑎 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑀𝑊,𝐺𝑃𝐶 < 150 𝐷𝑎 𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐺𝑃𝐶 𝑐𝑢𝑟𝑣𝑒

3. Results

(158)
(159)

Start-up

1st r

efill

2n

d r

efill

3rd

re

fill

4th

re

fill

5th

re

fill

6th

re

fill

7th

re

fill

8th

re

fill

0 10 20 30 40 50 60 45 mL Autoclave Gas Solid

Yield (C%)

Liquid

Start-up

1st r

efill

2n

d r

efill

3rd

re

fill

4th

re

fill

0 10 20 30 40 50 60 560 mL Autoclave Gas Solid

Yield (C%)

Liquid

(160)

Start

-up

1st

ref

ill

2nd r

efil

l

3rd

ref

ill

4th

ref

ill

5th

ref

ill

6th

ref

ill

7th

ref

ill

8th

ref

ill

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

Pure LCO

C

=O

/C

-H

Bi

o-cr

ude f

ract

io

n

Pure LCO

VR

fract

io

n

0.0

0.1

0.2

0.3

0.4

LC

O

fract

io

n

(161)
(162)
(163)

35 40 45 50 55 60 65 70 0 500 1000 1500 2000 2500 3000 3500 y=15670.e-0.049x

(20)

(30)

(40)

Viscosity (cP)

Temperature (

O

C)

(10)

y=8931.e-0.024x

Pyrolysi

s/LCO

Start-Up

1st

Refil

l

2nd Re

fill

3rd Refill

4th Refill

0 20 40 60 80

TAN

(

mg

of KO

H/g)

Bio-crude-rich phase LCO-rich phase Pyrolysis Pure LCO

(164)

Pyrolysis

Start-Up

1st Re

fill

2n

d Ref

ill

3rd

Refill

4th

Refill

0 5 10 15 20 25 30 35

MCRT (

w%

)

(165)

WoodStart

-Up

1st

Refill

2nd Re

fill

3rd Re

fill

4th

Refill

LCO-

rich

phase

Bio-cru

de-r

ich p

hase

0 1 2 3

4 Ash content (% of sample) Ash yield (% of wood)

Ash (w%)

(166)
(167)
(168)
(169)

5. Process simulation and techno-economic analysis

(170)
(171)

6. Conclusion

(172)
(173)
(174)
(175)
(176)
(177)

(178)
(179)

Abbreviations

(180)
(181)

List of publications

In preparation

(182)

Patents

1.

(183)

Acknowledgments

(184)

(185)

(186)

(187)
(188)
(189)
(190)

Referenties

GERELATEERDE DOCUMENTEN

Een roman dient in zijn ogen niet alleen een verhaal bevatten, maar moet ook een beeld geven ,,van de geest van de schrijver zelf - op het moment dat hij schrijft''.. Vandaar

• Determine whether male and female Generation Y students differ in their reading habits, reading-medium preferences, awareness, interest and intention to use,

Three objectives were set out for this research: to determine the physical activity levels of male undergraduate students at the University of the Free State, to establish

When the focus of the research is one specific stage of the intervention cycle, the research questions highlight the specific stage (descriptive questions in problem

There was a practically visible and statistically significant positive correlation between questions Q9_6 and Q9_7, thus respondents who tended to agree that they have

Gold nanoparticles (GNPs) and differentially functionalised or ligand exchanged GNPs (Lig- GNPs) present promising advantages in a variety of fields. Surface functionalisation of GNPs

The focus will be on the three agricultural annual festivals: the Feast of Unleavened Bread; the Feast of the Harvest and the Feast of Booths (Exod 23:14-17). These annual

Vanuit een gegeven punt buiten een lijn de loodlijn op die lijn neerlaten Neem een willekeurige lijn en een willekeurig punt A niet gelegen op m.. We construeren de lijn door A