• No results found

Saturation in C[a,b] of a special sequence of linear positive operators

N/A
N/A
Protected

Academic year: 2021

Share "Saturation in C[a,b] of a special sequence of linear positive operators"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Saturation in C[a,b] of a special sequence of linear positive

operators

Citation for published version (APA):

Morsche, ter, H. G. (1978). Saturation in C[a,b] of a special sequence of linear positive operators. (Eindhoven University of Technology : Dept of Mathematics : memorandum; Vol. 7805). Technische Hogeschool Eindhoven.

Document status and date: Published: 01/01/1978

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl

providing details and we will investigate your claim.

(2)

.~-- ....

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics

Memorandum 1978-05

June 1978

Saturation in C[a,bJ of a special sequence of linear positive operators

by

H.G. ter Morsche

Eindhoven University of Technology Department of Mathematics

PO Box 513, Eindhoven The Netherlands

(3)

by

H.G. ter Morsche

1. Summary and introduction

In this note we investigate the saturation problem for a sequence of ~inear 00

positive operators (L) 1 defined in C[a,bJ, which are related to

distribu-n distribu-n=

tion functions in the following way. (l()

Let (Y. (x». 1 be a sequence of random variables depending on a parameter

J. J.=

X E [a,bJ, mutually independent with a common distribution function Fl

,x

defined on JR, such that

x •

By X (x) we denote the

n 1 mean of Y1 (x) ,Y2(x) , •.• ,Yn(x),

X (x) :=-(Y 1(x)

n n + ••• + Y (x)}, and by F n n,x the distribution function of X n (x).

For expectations we use the notation E(X), where X is a random variable. (l()

Now the sequence (L) 1 is defined as follows:

n n=

( 1.1) L (f ; x) :

=

E ( f (X

»

=

n n

f

b f (T ) dF n,x (T )

a

where f E C[a,bJ.

A well-known example of such a sequence is the sequence of Bernstein opera-tors defined in C[O,lJ,

B (fiX) ==

n

In this case we have

\ n k n-k

F (t) == L (k)x (1 - x) •

n,x k.:Snt

The saturation order of the Bernstein operators is given by the sequence

x( 1 - x) (l()

( n ~ n= l' with trivial class the space of linear functions (cf. [2J, p. 102), and saturation class the space of functions with a

Lipschitz-con-tinuous derivative. We shall prove that the sequence (L ) has the same tri-n

(4)

2

-order is given by the sequence,

2. Preliminary notes

We start with a definition of saturation of a sequence of operators (L ) de-n fined in C[a,b].

Definition (2.1). A sequence of operators (L ) defined on [a,bJ is said to

n

be saturated on [a,bJ, if there exists a sequence of nonnegative functions

(tV (x» on [a,bJ, which tends to 0 uniformly on [a,b] I and a class T (L ) of

n n

functions such that

(2.2) f(x) - L (f;x)

=

0(, (x»,

n n (n -+ co) ,

uniformly on [a,b] if and only if f E T(L

n), and there exists a function fo E C[a,bJ, fO

i

T(L

n) for which (2.3)

uniformly on [a,bJ. We let S(L ) denote the set of functions for which (2.3)

n

holds. The set S(L ) is called the saturation class of (L ) and the set

n n

T(L ) is cailed the trivial class of (L ).

n n

We remark that the definition given above is almost identical to the defini-tion given in ([3J, p. 123); we don't assume that L is an operator from

n

C[a,b] into C[c,d] and that we only require that the functions, (x) are

n

nonnegative on [a,b] instead of positive on (a,b).

Now we return to the special sequence (L ) defined by (1.1). Since, n b b

f

dF 1 , a (t) = 1 and

f

tdF 1/a(t)

=

a I a a we have b b

o

~

f

(t - a)2dF1/a (t)

~

(b - a)

f

(t - a)dF1,a(t)

=

0 I a a hence (2.4) (J 2 (a) = 0 •

(5)

In a similar way we can prove

(2.5) o 2 (b)

=

0 .

From (2.4) and (2.5) it follows that

(2.6) L (f;a)

=

f(a), L (f;b)

=

f(b), (n

=

1,2, ••• j f E C[a,b]) ,

n n

as illustrated in the proof of the following lemma.

Lemma 2.7. If x E [a,b] is such that 02(x)

=

0, then L (fiX)

=

f(x), (n = 1,2, ••• ; f E C[a,b]) •

n

Proof. Let £ > O. Because of the continuity of f at X, there exists a 0 > 0 such that If(x)-f(t) I < E, provided Ix - tl <

o.

Therefore,

b 1Ln(f;X) - f(x)

I

~

f

If(x) - f(t)

IdFn,x(~)

= a

I

f (x) - f (t)

I

dF (t) +

f

n,x

I

f (x) - f (t)

I

dF n,x (t) < E + Ix-tl;::o b + 2M

f

dF (t)

~

£ + 2M

f

n,x 62 Ix-tl;::o a 2 (x - t) dF (t) . n,x

where M = max{

I

f(t) I, t E [a,b]}.

Lemma 2.8. The function 02(x) is bounded on [a,b].

Proof.

b

2

o

~ 0 (x)

=

f

(x - t) 2 dF 1, x (t)

a

From lemma (2.8) it follows that

2

+ x

tend uniformly to x2 on [a,b] and since

2

~ (b - a) •

L (1;x)

=

1, L (t;x)

=

x for all x E [a,b],

n n

=

£

o

(6)

4

-we can apply Korovkin's theorem to the convergence of the sequence L (fiX)

n

with the following result:

Theorem 2.9. Let f E C[a,b], then L (fiX) + f(x), (n +~) uniformly on [a,b].

n .

We will end this section with a qualitative result regarding the. convergence of the sequence L (fiY) if the function f E C[a,b] is twice continuously

dif-n

ferentiable in some neighbourhood of a point y E (a,b).

Lemma 2.10. Let f E C[a,b] have a continuous second derivative in a

neigh-bourhood of some point y E (a,b). Then

L (f iY)

n

fn (v) 2 02 ( )

=

f (Y) + "" 0 (y) + 0 ( X) ,

2n y n (n + ~) •

Proof. First we compute L «t - y) 4 iY). From the first section of this note n

there follows that

4 4

Ln«t - Y) iY) = E«Xn(y) - Y) ) •

4

Setting ~4(Y)

=

E«Y1 (y) - y) ), then a short calculation shows that

(2.11) Hence, (2.12) 4 L

«t -

y) iY) n b 3 (n - 1) 4 1

--'---=3""":" 0 (Y) +"3 J..I4(y)

n n

f

( t - y)4dF (t)

n,y (n + 00) •

a

If 02(y)

=

0, then L (fiY)

=

fey), so in this case lemma 2.10 is trivial. n

We now assume that 02(y) ~ O.

Let E > 0, then there exists a 0 > 0 such that the function R(y,t), defined by

f(t)

=

fey) + f' (y) (t - y) +

~f"(y)

(t _ y)2 + R(y,t) (t _ y)2 , satisfies the inequality

I

R(y, t)

I

< E:, provided Iy - t I < 0.< Thus,

=

a b

f

(f(t) - f(y»dF (t)

=

n,y a b

f

fl (y) ( t -y)dF )t) +

~

n,y a b

f

fll(y) (t_y)2dF (t) + n,y

(7)

b b +

f

R(y,t) (t- y) 2dF (t) n,y fn (y) 2 = 2n cr (y) +

I

R(y,t) (t - y) 2dF n,y (t) • a

The following estimation proofs the lemma.

a b

f

R(y,t) (t- y) 2dF (t)

I ::;

n,y + M

f

I

t-yl ~o 2 cr (y) 1 = E: - + 0 ( - 2 2) n n 0 Here M := maxiIR{y,t)

I,

a ::; t::; b}.

3. The saturation of the sequence (L )

n

f

I

t-yl <0 a IR(y,t)

I

(t - y) 2dF (t) + n,y

We start with the definition of a special subset of C[a,b] denoted by Lip(1,M), (M ~ 0).

Definition 3.1. f E Lip(1,M) if and only if

If{X) - fey)

I ::;

Mix - yl for all x,y E [a,b] • Now we state the main theorem of this note.

o

Theorem 3.2. The sequence of operators (L ) defined by (1.1) are saturated

n

with order cr2(x)/n and trivial class (L) the set of linear functions on

n [a,bJ. If f E C[a,bJ then 2

I

f (x) - L (f; x)

I ::;

Ncr (x) I n 2n

if and only if f' E Lip(l,M).

Remark. In fact this theorem is more or less a direct consequence of theorem 5.4 in ([3J, p. 136) I we prefer to give the whole proof here.

In the proof of theorem 3.2 we need a characterization of those ~functions

(8)

6

-Lemma 3.3. Let f E c[a,b] then the following assertions are equivalent.

i) The function f has a continuous derivative f' with f' E Lip(l,M) •

ii) For all x E (a,b) and h > 0 with x - h,x + h E [a,b] the following

inequa-lity holds

~I

f (x + h) - 2f (x) + f (x - h)

I

~

M •

h

Proof. It is obvious that i) implies ii) •

In order to prove i) from ii) we first show that in each subinterval

(c,d) c [a,b] there exists a point where f is differentiable. Let! be the linear function such that t(c)

=

fCc) and ted)

=

f(d). For the function

!p (x) := f (x) - 11, (x) I we have <p (c) = <p (d)

=

0 I and since t (x + h) - 211, (x) +

+ 11, (x - h) = 0 for all x, we have

(3.4)

~21

<p (x + h) - 2q> (x) + <p (x - h)

I

~

M •

h

The function <p attains an extreme value at an interior point ~ E (c,d) and

i t follows from (3.4) that <p is qifferentiable in ~ with <p'(~)

=

O. Hence,

f is differentiable in ~.

Let x/y be two arbitrary points in [a,b] with y

=

x + nh (n E:IN). Then

(3.5) h(f 1 (x + h) - f (x» = h (f (y) - f (y - h» 1

n

1

L

{f (x + kh) + h k=2

- 2f (x + kh - h) + f (x + kh - 2h» • It follows from ii) and (3.5) that

1 1

h(f(x+h) - f(x» = 'hefty) - fey-h»~ + R(x,y,h) I

where \R(X,y,h)

I

~ M\x-yl, uniformly in h.

Let £ > 0 and let y E [a,b] be such that Ix - yl < e and f is differentiable at y. Then for all h

1,h2 > 0 sufficiently small we have 'f(x + h

1) - f(x)' f(x + h2) - f(x)

I

h - h

I

< (M + 1)£ •

1 2

Hence, f has a right-hand derivative at x. Applying again ii) we conclude that f is differentiable at x. Moreover, according to (3.6), f' E Lip(l,M).O

(9)

Proof of theorem 3.2. If the function f E C[a,b] has a continuous derivative f' E Lip{l,M) I then b If{x) - L (f;x) I

=

n

f

(f(x) - f(t»dF n,x (t)

I

== a b x

f

f

f' {T)dT)dF n,x (t)

I

=

(f' (T) - f ' (x» dT) dF nix (t)

I

:5 a t a b :5

~

f

(x - t) 2p n,x (t) ==

~n

02 (x) a t

Now let f E C[a,b] be such that IL (f;x) - f(x) I :5 M2 02(x) and f'

l

Lip(l,M).

n n

Then according to lemma 3.3 there exists a point Xo e(a,b) and a number

I

.

I

2

h > 0 such that f (x

O - h) - 2f (xO) + f (xO + h) > Mh • We assume that

(3.7) where Ml < -M I

otherwise we replace f by -f. The function ~(x) := f(x) - t(x), where ~ is the linear function with ~(xO ± h)

=

f(x

O ± h), satisfies the same relation (3.7), and in addition we have

(3.8) IL

(~iX)

- <v (x) I = IL (fiX) - f(x)

I

:5 M2 02(x),

n n n X E [a,b] .

Let a be a positive number with M < a < -M

1 and let C be such that the

quadra-tic function

(3.9) Q(x) := T(x - x-a 2 O) + C I

satisfies the inequality

(3.10) Q(x) > cp(x), (x E [xO-h,xO+h]) •

Now we have

Q(x

o

± h)

= -

%

h2 + C ,

So, the function vex) := Q{x) - <vex) on [xO-h,xO +h] attains its minimum

*

value m at a point y E (x

(10)

...

8

-(3.11) Q (x) * = Q(x)

-

m, X E [a,bJ has the properties:

(3.12) Q * (x) :::::: qJ (x) , x E [xO-h,xO+hJ

,

* Q (y) q> (y)

.

Let

*

a' =min{x: X:S:; xO-h, Q (x) = q>(x)} and

*

b '

=

min{x: x ::::::

Xo

+h, Q (x) = q>{x)}

then a ::::; a ' < y < b ' :s:; band Q (x) :::::: q>(x) on [al,b'J.

*

Let hex) :=

{

a,

qJ(x) - Q*(X),. x

t

[a',b'J Then q> (x) :s:; Q (x) + h(x), (x

*

E [a,bJ). Hence

*

*

*

L (q>iY) - ql (Y) = L (q>iY) - Q (Y) ::::; L (Q + hiY) - Q (y)

=

n n n

2 2

=

L (Q*,y) - Q*(Y) + L (h;y) - hey)

= -

a

2 cr (Y) + 0 (cr (y» ,

n n n y n

according to lemma 2.10. This contradicts (3.8). To prove that the set

remark that

(L ) consists of all linear function, we have only to

n

. 2

I

f (x) - Ln (fiX)

I

=" o(cr

~x»,

(n + ~), uniformly in x ,

implies f' € Lip ( 1, E) for all E > O. Then f I is constant and so f is linear

.0

Remark. The parabola technique, applied in the proof of theorem (3.2) is in-troduced in [lJ byB. BajsVanski and R. Bojanic.

References

[lJ B. Baj~anski, and R. Bojanic, A note on approximation by Bernstein poly-nomials, Bulletin American Mathematical Society, 70 (675-677), 1964. [2J G.G. Lorentz, Approximation of Functions,: Holt, Rinehart and Winston,

New York, Chicago, San Fransisco, Toronto, London, 1966.

[3J Ronald A. De Vore, The approximation of Continuos Functions by Positive Linear Operators, Lecture Notes in Mathematics, 293, Springer-Verlag, Berlin, Heidelberg, New York, 1972.

Referenties

GERELATEERDE DOCUMENTEN

A In dit artikel gaat het over 'handwerk' bij het leren en het beoefenen van wis- kunde. De laatste jaren is van vele kanten gewezen op de grote aandacht voor het intellectueel

Hans Steur heeft zich als doel gesteld aan leraren materiaal te verschaffen om hun wiskundelessen met praktische toepassingen te kunnen verrjken. Hij is daarin voortreffelijk

Het systeem moet niet allen veilig zijn voor diegenen die zich erin bevinden, maar ook voor diegenen die aarzelen ervan gebruik te maken omdat het onveilig

Bodems van kommen, schalen en potten (Fig. Bodemscherf van pot of schaal met vlakke bodem. Kern : grijs, klei vermengd met stukjes kiezel ; goed gebakken. Binnenwand :

Bij Tabel 4.2. moet bovendien worden opgemerkt dat het niet mogelijk is om de verschillende vervoerswijzen met elkaar te vergelijken, aangezien het om aandelen gaat, en niet

Motivatie en handvaten voor het op kosteneffectieve wijze vermin- deren van de milieubelasting door een aantal belangrijke herbiciden in maïs en daardoor mogelijk behoud van

Dit laatste geval doet zich slechts voor als men de toelaatbare verzameling van oppervlakten heeft uitgebreid met die, waarvan de oppervlakte wordt uitgedrukt door een