• No results found

Limitations of current antiretroviral therapy in HIV-1 infection: the search for new strategies - CHAPTER 11 Summary & Discussion

N/A
N/A
Protected

Academic year: 2021

Share "Limitations of current antiretroviral therapy in HIV-1 infection: the search for new strategies - CHAPTER 11 Summary & Discussion"

Copied!
51
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Limitations of current antiretroviral therapy in HIV-1 infection: the search for new

strategies

Sankatsing, S.U.C.

Publication date

2004

Link to publication

Citation for published version (APA):

Sankatsing, S. U. C. (2004). Limitations of current antiretroviral therapy in HIV-1 infection: the

search for new strategies.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)

and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open

content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please

let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material

inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter

to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You

will be contacted as soon as possible.

(2)
(3)
(4)

Potentt therapy for HIV-1 infected patients became available in the

mid-nineties,, with the introduction of highly active antiretroviral therapy (HAART).

Suchh therapy resulted in many patients in a plasma HIV-1 RNA below the limit

off detection, and a restoration of their immune function

1

'

2

. This led to a

significantt decline in the incidence of AIDS and AIDS-related morbidity and

mortalityy in the developed world

3

'

7

. Based on early viral decay studies

assumingg total suppression of viral replication in patients using HAART, it was

estimatedd that with this therapy HIV-1 could be eliminated after 2-3 years of

treatment

8

.. However, in the following years it became clear that with currently

availablee anti-HIV-1 therapy eradication of HIV-1 is not possible

9

"

16

.

Thee persistence of HIV-1 is a dynamic process that depends on several

factorss influencing each other. HIV-1 can persist in sanctuary sites and

cellularr reservoirs consisting of latently infected cells and there is ongoing

residuall replication, as described in chapter 1

9

-

111314

'

17

-

26

The cellular

reservoirss are a result of viral latency and might contribute to residual

replication,, which in its turn can refeed the reservoirs. Before eradication and

thuss curation of HIV-1 can be accomplished, these factors need to be

targeted.. This thesis investigates several strategies to do that.

Thee pool of latently infected cells is established early during infection. The

initiationn of a three-drug regimen within 10 days of a primary (acute) infection

cannott prevent this

27

. We treated patients with a primary HIV-1 infection with

aa five-drug, triple class regimen, which is more potent than a standard

triple-drugg regimen

28,29

, to study if such a regimen could affect the size of this

latentlyy infected reservoir. The results are discussed in chapter 2. Although in

patientss treated with a triple class, five-drug antiretroviral regimen the amount

off resting CD4+ T cells containing replication-competent HIV-1 dropped below

thee lower limit of quantification (LLQ), replication competent HIV-1 persisted in

thee body

30

. This was demonstrated by the rebound of both the number of

latentlyy infected cells and the plasma HIV-1 RNA after the interruption of

HAART. .

(5)

wass studied . This study demonstrated that lopinavir has a poor penetration

intoo seminal plasma, with a median concentration of only 0.23 mg/L, while the

minimumm required concentration to inhibit HIV-1 replication is believed to be

5.00 mg/L (Abbott product information). These results were later also confirmed

byy other studies

37,38

. Because of this poor penetration of lopinavir into

seminall plasma it would be expected that HIV-1 RNA would be detectable in

seminall plasma, thereby confirming that the male genital tract really is a

sanctuaryy site. However, HIV-1 RNA was undetectable in the seminal plasma

off most of the patients studied. This led us to reconsider the male genital tract

ass being a sanctuary site, and after an extensive review of the literature we

refutedd this site being a sanctuary site

39

, except in the presence of another

sexuallyy transmitted infection.

Nevertheless,, all data to date confirm that in the male genital tract, as well as

inn other sites such as the central nervous system (CNS), there can be a

suboptimall penetration of drugs. The CNS may be a true sanctuary site

17

~

19,40-422 j

n e

suboptimal penetration of particular antiretrovirals might partly be

causedd by the action of drug transporters, of which P-glycoprotein (P-gp) is

one,, and this will be discussed further on.

AA possible strategy to lower the residual HIV-1 replication is the use of more

potentt antiretroviral drugs or drug combinations. It has been demonstrated

thatt a triple class, five-drug regimen results in a faster decay of the plasma

HIV-11 RNA and a better long-term suppression of HIV-1 replication than a

standardd dual class, triple regimen

28,29

. That the potency of antiretroviral

agentss can be improved upon is demonstrated in the study described in

chapterr 4. Monotherapy during one week with the new non-nucleoside

reversee transcriptase inhibitor (NNRTI) TMC125 resulted in a decay of the

plasmaa HIV-1 RNA which was comparable with that achieved by a triple class

five-drugg regimen

43

. We suggested that a possible explanation for this potent

effectt might be the higher accumulation of TMC125 in the lymph nodes

comparedd to plasma. This is compatible with the lymph nodes being the major

sitee for HIV-1 replication

u

. It has recently been demonstrated that

intensificationn of antiretroviral therapy with currently available drugs

acceleratess the decay rate of the latent cellular reservoir and decreases

(6)

residuall viral replication, but even this can not completely suppress ongoing

virall replication

45

. Further studies are necessary to elucidate the effect of

TMC1255 containing anti retroviral therapies on the viral decay rate, and on the

residuall replication, by measuring intracellular unspliced HIV-1 RNA as

discussedd below.

Nott only residual replication but also the presence of a pool of latently infected

cells,, even during potent antiretroviral therapy, is a major obstacle in the

treatmentt of HIV-1. In the search for new approaches to reduce the pool of

latentlyy infected cells and (residual) HIV-1 replication, a role for mycophenolic

acidd (MPA), the active metabolite of mycophenolate mofetil (MMF), has been

suggestedd

4fr48

. By blocking lymphocyte proliferation, MPA can limit the

availabilityy of target cells for HIV-1, thereby reducing HIV-1 replication. By

decreasingg the dGTP production it can also directly inhibit HIV-1 replication,

ass dGTP is necessary for HIV-1 replication. The depletion of endogenous

dGTPP further results in an altered competition between CBVTP (the active

metabolitee of abacavir) and dGTP, thereby increasing the antiretroviral

efficacyy of abacavir. In one study MPA was able to reduce the pool of latently

infectedd cells in patients with a undetectable plasma HIV-1 RNA

48

. Chapter

5,, 6, 7 and 8 describes the use of MMF in HIV-1 infection. Both patients with a

primaryy and a chronic HIV-1 infection were included in this study (the MAN

study).. They all started therapy with a triple class, five-drug regimen

consistingg of once daily didanosine e.c. 400 mg and twice daily abacavir 300

mg,, lamivudine 150 mg, indinavir 800 mg (boosted with ritonavir 100 mg bid)

andd nevirapine 200 mg (first 2 weeks nevirapine 200 mg once daily). They

weree randomised to a group with or without MMF.

Thee results presented in chapter 5 demonstrate that MMF was well tolerated

inn HIV-1 positive patients starting HAART. However, MPA had no effect on the

decayy rate of the plasma HIV-1 RNA during the first 14 days of therapy, or on

thee decay rate of the pool of latently infected cells during the first 24 weeks of

therapyy

49

. It is likely that MPA has no additional effect on the HIV-1

replicationn rate when given in combination with such a highly potent regimen

(7)

drug,, dual class regimen was used . Surprisingly, the pool of latently

infectedd cells increased temporarily in our study after stopping MMF. A

possiblee explanation is that when therapy is started, MPA blocks the cells in

theirr cell cycle. Upon stopping MMF, these blocked cells can complete their

celll cycle and can temporarily contribute to the pool of latently infected cells.

Inn chapter 6 the immunological effects of MPA in patients treated with HAART

withh or without MMF are described. Although T cell proliferation was

completelyy inhibited in patients using MMF, the changes in the total numbers

off CD4

+

and CD8

+

T cells and their subsets were comparable in both patient

groupss

50

. This may be explained by the fact that the key enzyme in the de

novonovo synthetic pathway inhibited by MPA (inosine 5'-monophosphate

dehydrogenase)) exists in two isoforms. One isoform (type II), mainly used by

activatedd lymphocytes, is much more actively inhibited by MPA than the other

isoformm (type I), used by resting cells

51,52

. Since activated T cells are prone to

diee by activation-induced cell death, proliferation within this population

presumablyy does not contribute to maintain the T cell pool.

Further,, there was also no difference in the development of HIV-1 specific

cellularr immunity in patients with and without MMF.

Thee findings in this study combined with a recently published study, in which

MMFF was safely given to HIV-1 patients with a median CD4

+

T cell count of 34

xx 10

6

/L

53

, increases confidence that MMF can be given safely to HIV-1

infectedd patients.

Althoughh the effects on the virological response seem to be minimal, there

mightt be other potential uses of MMF. It has been demonstrated that chronic

hyperactivationn of the immune system in HIV-1 infected patients leads to

enhancedd T-cell turnover and exhaustion of the naive T-cell compartment.

Suppressionn of viral replication by HAART was believed to prevent the loss of

CD4

++

T cells by the prevention of direct virus mediated killing, but preventing

thee further loss of CD4

+

T cells might also or even mainly be the result of

reducingg the antigenic trigger that leads to a deleterious immune activation.

Afterr starting HAART an immediate reduction in CD4

+

and CD8

+

T-cell

divisionn rates can be seen

54

~

57

. Using MMF in therapy naive HIV-1 patients

might,, by inhibiting proliferation and thereby decreasing the level of immune

(8)

activation,, lower the rate of CD4

+

T cell loss, thereby delaying the need for

antii retroviral therapy. Indeed, recent studies demonstrated that stopping

HAARTT in the presence of MMF resulted in improved control of virus

replicationn compared to stopping without MMF

5 M 0

. A study in patients with

multidrugg resistant HIV did not demonstrate viro logica I efficacy but

demonstratedd nevertheless an increase in CD4

+

T cell counts

53

. This study

didd not look at the effect of MMF on the immune activation but it is

conceivablee that the immunesuppressive effect of MMF prevented the further

losss of CD4

+

T cells. Therefore, the use of MMF might be a rational option to

increasee the CD4

+

T cell count in patients without other treatment options.

Thee pharmacological interactions between MPA and HAART were studied in

chapterr 7, demonstrating that there are no interactions between MPA and

abacavirr or indinavir. However, MPA lowered the plasma concentration of

nevirapinee significantly, possibly by interfering with the enterohepatic recycling

off nevirapine

61

.

Thee supposed working mechanism of MPA is the inhibition of dGTP

productionn and an increase in the formation of CBVTP, as discussed in

chapterr 1. We therefore measured intracellular dGTP and CBVTP

concentrationss in our study patients. Surprisingly, no differences were seen in

intracellularr dGTP concentrations between patients with or without MMF

61

.

Onee might argue that MMF dosages used were suboptimal, but plasma

concentrationss were above the minimum required concentration of 0.14 ug/mL

622

and lymphocyte proliferation was completely blocked in patients using

MMF.. One possible explanation for this lack of effect on dGTP concentrations

couldd be the interpatient variability in tri phosphorylation or, alternatively, that

proliferationn assays are more sensitive than dGTP measurement. Another

possibilityy is that cells might compensate the effect of MPA by using other

meanss for dGTP production. dGTP measurement over time might shed some

lightt on whether cells can compensate the effect of MPA. Such a study is

currentlyy underway in kidney transplant patients starting MMF.

(9)

twoo months after starting therapy the concentration of his serum anti-HIV-1

antibodiess decreased, resulting in seronegativity, which persisted for a year

63

.

AtAt that time the patient stopped therapy, resulting in a detectable but very low

plasmaa HIV-1 RNA within 6 days and the re-emergence of anti-HIV-1

antibodiess within one month. Probably, the early potent antiviral therapy, and

thee MMF treatment together resulted in decreased viral antigen exposure and

abrogationn of antibody formation.

Itt has been demonstrated that all HIV-1 protease inhibitors are substrates for

P-gpp

64

~

74

. A well-known effect of P-gp in HIV infection is that P-gp can limit

thee penetration of these drugs into the CNS and therefore might contribute to

thee existence of sanctuary sites

64

-

676971

. Chapter 9 is a review of the

potentiall role of P-gp in HIV-1 infection and therapy. It is clear that P-gp can

potentiallyy lower the penetration of the protease inhibitors in CD4

+

T

lymphocytess

75,76

and the different anatomical sites, given its distribution in the

bodyy

77

. A logical step therefore could be to inhibit the P-gp activity, thereby

increasingg the penetration of protease inhibitors. However, it is necessary to

knoww what the effect in vivo is, because P-gp can also protect cells against

HIV-11 replication

78 79

.

Thiss was elucidated in the study described in chapter 10. In this study, naive

andd memory CD4

+

T cells were collected from 27 patients, 13 therapy naive

andd 14 on a protease inhibitor containing regimen including either nelfinavir or

indinavir.. Based on their P-gp activity cells were sorted into a P-gp

h,gh

and a

P-gp

loww

fraction. In these fractions unspliced HIV-1 RNA was measured, as

markerr of active viral replication

13,8

. HIV-1 replication was lower in patients

onn successful treatment, as could be expected, but intracellular HIV-1 RNA

wass still detectable, as has been reported in the past

1 3 1 4 2 6

. in patients on a

PII containing regimen unspliced HIV-1 RNA was significantly lower in P-gp

h,gh

naivee cells than in P-gp

low

naïve cells and DNA was significantly lower in

P-gp

hl9hh

memory cells than in P-gp

low

memory cells. These data make clear that

thee protective effect of P-gp activity against HIV-1 replication is more

importantt in vivo than its negative effect on the penetration of the Pis

81

.

Therefore,, contrary to previous suggestions, even during Pl-therapy not P-gp

inhibition,, but P-gp induction might reduce HIV-1 replication.

(10)

Thee studies described in this thesis demonstrate that there are stilt new

strategiess and mechanisms that can be used to further optimise antiretroviral

therapyy or that warrant further study.

Ass stated earlier the loss of CD4

+

T cells is a result of the chronic

hyperactivationn of the naive T cell compartment

54

~

57

. There is ample evidence

thatt T regulatory (or suppressor) cells (Tregs) are responsible for the down

regulationn of immune responses, resulting in suppression of proliferative T-cell

responsess

82,83

. At this time there are no data on Tregs in HIV-1 patients, but

givenn the chronic hyperactivation of the immune system during HIV-1 infection

itt seems likely that Treg activity might be decreased in HIV-1 patients. On the

otherr hand one could wonder if Treg function is not higher in HIV-1 infected

patients,, because of the observed decrease of the HIV specific T-cell

responses.. If the role of Tregs in HIV-1 infection is better understood, they

mightt be a target for manipulating the immune system.

Althoughh it is clear that even the most potent combinations of current

antiretroviralss cannot clear the reservoir of latently infected cells, it has been

demonstratedd that more potent drug regimes can further decrease its size

30,45

.. Furthermore, even in the presence of potent antiretroviral therapy,

resultingg in a plasma HIV-1 RNA below the lower limit of quantification, still

somee degree of HIV-1 replication takes place ii.i3.i4.25.26.8M6_

T h e

f j

n d

j

n g t n a t

moree potent combinations of antiretroviral therapy accelerate the decay of the

pooll of latently infected cells again proofs that residual replication is an

importantt factor for the maintenance of this pool, because the antiretrovirals

usedd are only effective during active replication

14

'

25

. Therefore more potent

antiretrovirall drugs than currently available are needed. The results with

TMC1255 show that this is possible

4387

.

Thee availability of a new potent class of antiretrovirals, the fusion inhibitors

88

*

95

,, gives us the opportunity to study the antiretroviral effects of a four-class

drugg regimen. Given the previous results, the expected increased

antiretrovirall potency might further improve the inhibition of viral replication

(11)

thatt are targeted against the CCR5 co-receptor, which is necessary for viral

attachment

96

,, and against HIV-integrase, which is necessary for integration of

thee virat DNA in the cellular DNA

97

~

101

. When these drugs become available

wee might even think about inhibiting HIV replication at six different targets at

thee same time to fully suppress the ongoing residual replication.

Off interest is the fact that TMC125 and the NNRTI efavirenz have the same

antivirall potency in vitro but not in vivo. This might be explained by the 4-fold

accumulationn of TMC125 in lymph nodes as compared to blood, as was

demonstratedd in dogs

102

. Because the lymph nodes are the most important

sitee where HIV-1 replication is taking place

103

'

110)

jt is important that

antiretrovirall drugs penetrate these sites well. At this time not much is known

aboutt the accumulation of antiretroviral drugs in lymph nodes. It was recently

demonstratedd that the lymph node / blood plasma ratio for ritonavir, nelfinavir

andd lopinavir were 0.64, 0.58 and 0.21 respectively

111

. However, the potency

off antiretroviral drugs cannot fully be explained by the penetration in the lymph

nodes.. Although nelfinavir has a better penetration in lymph nodes than

lopinavir,, the last one is more potent in a clinical setting, probably because

plasmaa lopinavir levels are more stable than those of nelfinavir

112

. The lymph

nodee / blood plasma ratio for indinavir was investigated in two studies. In one

studyy a ratio of 2.07 was seen

111

but in the second study this was only 0.25

m

.. The penetration of other drugs in the lymph nodes and possible strategies

too improve it should be studied because this might be a target to further

optimisee currently used antiretrovirals.

Too improve the (bio)availability of antiretroviral drugs, the clinical relevance of

drugg transporters in HIV-1 patients using HAART needs to be further studied.

Althoughh we demonstrated that the drug efflux function of P-gp is not that

importantt during PI treatment, it is clear that other drug transporters might be

off importance. Other drug transporters, especially transporters of the

multidrugg resistance protein (MRP) drug transport family, have also been

identifiedd as a transporters for Pis

66

-

114

-

117

and NRTIs

116118

. Further studies

aree necessary to clarify what their effects in vivo are, as it seems likely that

theree is some combined effect between P-gp and the other drug transporters.

(12)

Thee pool of latently infected cells consists of CD4

+

T cells (mainly resting

memoryy cells) containing replication competent, integrated provirus, which is a

resultt of viral latency 91012,21,22,24,119,120

A c t j v a t i o n o f t n e s e

|

a t e n

tly infected

cellss results again in replication and thus in production of HIV-1 virions

120121

.

Becausee this pool of latently infected cells cannot be completely eradicated

withh current available therapy we have to look for other strategies to minimise

thee contribution of this reservoir to HIV-1 replication. Such a strategy could be

too interfere with the transcription of the provirus to the complete virion. This

mightt be accomplished by using the mechanism of RNA interference (RNAi)

122-1300

R N A J j s a m e c

h

a n

j

s r n 0

f g

e n e

regulation in which target mRNAs are

degradedd in a sequence-specific manner with small interfering RNAs

(siRNAs).. It was already known that such a mechanism existed in plants, but

onlyy recently it was also discovered in animals

131137

. in vitro studies

demonstratedd that siRNAs targeted against specific HIV mRNA sequences

resultedd in inhibition of HIV-1 replication

122

-

124

>

126

.

127

The problem is how to

deliverr an si RNA in a patient at those sites where replication is taking place.

Vectorss based on lentiviruses are promising candidates to introduce siRNA in

cells,, which then become able to produce the siRNA themselves

123

-

138

-

143

. But

thee use of viruses as a vector can be dangerous, as was seen in a study in

whichh a retrovirus was used to transfer a gene in 10 patients with X-linked

severee combined immunodeficiency (SCID). Two of the 10 treated patients

developedd an uncontrolled exponential clonal proliferation of mature cells

144

.

Furthermore,, it was recently demonstrated that HIV-1 can escape from

RNAi-mediatedd inhibition by selecting mutations in the viral target sequence

145>146

.

Thee potential usage of siRNA is not only limited to HIV-1 therapy, but might

alsoo be used in other fields and therefore warrants further research.

(13)

References s

1.. Gulick RM, Mellors JW, Havlir D et al. Treatment with indinavir, zidovudine, andd lamivudine in adults with human immunodeficiency virus infection and priorr antiretroviral therapy. N Engl J Med. 1997;337:734-739.

2.. Hammer SM, Squires KE, Hughes MD et al. A controlled trial of two nucleosidee analogues plus indinavir in persons with human immunodeficiencyy virus infection and CD4 cell counts of 200 per cubic millimeterr or less. AIDS Clinical Trials Group 320 Study Team. N Engl J

Med.Med. 1997;337:725-733.

3.. Detels R, Munoz A, McFarlane G et al. Effectiveness of potent antiretroviral therapyy on time to AIDS and death in men with known HIV infection duration.. Multicenter AIDS Cohort Study Investigators. JAMA. 1998;280:1497-1503. .

4.. Lee LM, Karon JM, Selik R et al. Survival After AIDS Diagnosis in Adolescentss and Adults During the Treatment Era, United States,

1984-1997.. JAMA. 2001;285:1308-1315.

5.. Mocroft A, Vella S, Benfield TL et al. Changing patterns of mortality across Europee in patients infected with HIV-1. EuroSIDA Study Group. Lancet. 1998;352:1725-1730. .

6.. Patella FJ, Delaney KM, Moorman AC et al. Declining morbidity and mortalityy among patients with advanced human immunodeficiency virus infection.. HIV Outpatient Study Investigators. N Engl J Med. 1998;338:853-860. .

7.. Mocroft A, Ledergerber B, Katlama C et al. Decline in the AIDS and death ratess in the EuroSIDA study: an observational study. Lancet. 2003;362:22-29. .

8.. Perelson AS, Essunger P, Cao Y et al. Decay characteristics of HIV-1-infectedd compartments during combination therapy. Nature. 1997;387:188-191. .

9.. Chun TW, Carruth L, Finzi D et al. Quantification of latent tissue reservoirs andd total body viral load in HIV-1 infection. Nature. 1997;387:183-188. 10.. Chun TW, Stuyver L, Mizell SB et al. Presence of an inducible HIV-1 latent

reservoirr during highly active antiretroviral therapy. Proc Natl Acad Sci U S

(14)

11.. Dornadula G, Zhang H, VanUitert B et al. Residual HIV-1 RNA in blood plasmaa of patients taking suppressive highly active antiretroviral therapy.

JAMA.JAMA. 1999;282:1627-1632.

12.. Finzi D, Hermankova M, Pierson T et al. Identification of a reservoir for HIV-11 in patients on highly active antiretroviral therapy. Science. 1997;278:1295-1300. .

13.. Furtado MR, Callaway DS, Phair JP et al. Persistence of HIV-1 transcription inn peripheral-blood mononuclear cells in patients receiving potent antiretrovirall therapy. N EnglJ Med. 1999;340:1614-1622.

14.. Sharkey ME, Teo I, Greenough T et al. Persistence of episomal HIV-1 infectionn intermediates in patients on highly active anti-retroviral therapy.

NatNat Med. 2000;6:76-81.

15.. Wong JK, Hezareh M, Gunthard HF et al. Recovery of replication-competentt HIV despite prolonged suppression of plasma viremia. Science. 1997;278:1291-1295. .

16.. Yerly S, Kaiser L, Perneger TV et al. Time of initiation of antiretroviral therapy:: impact on HIV-1 viraemia. The Swiss HIV Cohort Study. AiDS. 2000;14:243-249. 2000;14:243-249.

17.. Cunningham PH, Smith DG, Satchell C et al. Evidence for independent developmentt of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinall fluid. AIDS. 2000;14:1949-1954.

18.. Venturi G, Catucci M, Romano L et al. Antiretroviral resistance mutations in humann immunodeficiency virus type 1 reverse transcriptase and protease fromm paired cerebrospinal fluid and plasma samples. J Infect Dis. 2000;181:740-745. .

19.. Schrager LK, D'Souza MP. Cellular and anatomical reservoirs of HIV-1 in patientss receiving potent antiretroviral combination therapy. JAMA. 1998;280:67-71. .

20.. Blankson JN, Persaud D, Siliciano RF. The challenge of viral reservoirs in HIV-11 infection. Annu Rev Med. 2002;53:557-593.

21.. Saksena NK, Potter SJ. Reservoirs of HIV-1 in vivo: implications for antiretrovirall therapy. AIDS Rev. 2003;5:3-18.

22.. Chun TW, Finzi D, Margolick J et al. In vivo fate of HIV-1-infected T cells: quantitativee analysis of the transition to stable latency. Nat Med. 1995;1:1284-1290. .

(15)

23.. Demoustier A, Gubler B, Lambotte O et al. In patients on prolonged HAART,HAART, a significant pool of HIV infected CD4 T cells are HIV-specific.

AIDS.AIDS. 2002;16:1749-1754.

24.. Lambotte O, Demoustier A, de Goer MG et al. Persistence of

replication-competentcompetent HIV in both memory and naive CD4 T cell subsets in patients on prolongedd and effective HAART. AIDS. 2002;16:2151-2157.

25.. Ramratnam B, Mittler JE, Zhang L et al. The decay of the latent reservoir of replication-competentt HIV-1 is inversely correlated with the extent of residuall viral replication during prolonged anti-retroviral therapy. Nat Med. 2000;6:82-85. .

26.. Fraser C, Ferguson NM, Anderson RM. Quantification of intrinsic residual virall replication in treated HIV-infected patients. Proc Natl Acad Sci USA. 2001;98:15167-15172. .

27.. Chun TW, Engel D, Berrey MM et al. Early establishment of a pool of latentlyy infected, resting CD4(+) T cells during primary HIV-1 infection. Proc

NatlNatl Acad Sci USA. 1998;95:8869-8873.

28.. Weverling GJ, Lange JM, Jurriaans S et al. Alternative multidrug regimen providess improved suppression of HIV-1 replication over triple therapy.

AIDS.AIDS. 1998;12:F117-F122.

29.. van Praag RM, Wit FW, Jurriaans S et al. Improved long-term suppression off HIV-1 replication with a triple-class multidrug regimen compared with standardd of care antiretroviral therapy. AIDS. 2002;16:719-725.

30.. Sankatsing SU, van Praag RM, van Rij RP et al. Dynamics of the pool of infectedd resting CD4 HLA-DR- T lymphocytes in patients who started a triple classclass five-drug antiretroviral regimen during primary HIV-1 infection. Antivir

Ther.Ther. 2003;8:137-142.

31.. Kashuba AD, Dyer JR, Kramer LM et al. Antiretroviral-drug concentrations inn semen: implications for sexual transmission of human immunodeficiency viruss type 1. Antimicrob Agents Chemother. 1999;43:1817-1826.

32.. Hoetelmans RM. Sanctuary sites in HIV-1 infection. Antivir Ther. 1998;3 Suppll 4:13-17.

33.. Taylor S, Pereira AS. Antiretroviral drug concentrations in semen of HIV-1 infectedd men. Sex Transm Infect. 2001;77:4-11.

34.. Pomerantz RJ. Reservoirs, sanctuaries, and residual disease: the hiding spotss of HIV-1. HIV Clin Trials. 2003;4:137-143.

(16)

35.. Reddy YS, Kashuba A, Gerber J et al. Roundtable report: importance of antiretrovirall drug concentrations in sanctuary sites and viral reservoirs.

AIDSAIDS Res Hum Retroviruses. 2003;19:167-176.

36.. Sankatsing SU, Droste J, Burger D et al. Limited penetration of lopinavir into seminall plasma of HIV-1-infected men. AIDS. 2002;16:1698-1700.

37.. Lafeuillade A, Solas C, Chadapaud S et al. HIV-1 RNA levels, resistance, andd drug diffusion in semen versus blood in patients receiving a lopinavir-containingg regimen. J Acquir Immune Defic Syndr. 2003;32:462-464. 38.. Solas C, Lafeuillade A, Halfon P et al. Discrepancies between protease

inhibitorr concentrations and viral load in reservoirs and sanctuary sites in humann immunodeficiency virus-infected patients. Antimicrob Agents

Chemother.Chemother. 2003;47:238-243.

39.. Lowe SH, Sankatsing SUC, Repping S et al. Is the male genital tract really aa sanctuary site for HIV? AIDS, accepted for publication.

40.. Enting RH, Hoetelmans RM, Lange JM et al. Antiretroviral drugs and the centrall nervous system. AIDS. 1998;12:1941-1955.

41.. Eggers CC, van Lunzen J, Buhk T et al. HIV infection of the central nervous systemm is characterized by rapid turnover of viral RNA in cerebrospinal fluid.

JJ Acquir Immune Defic Syndr Hum Retrovirol. 1999;20:259-264.

42.. Ellis RJ, Gamst AC, Capparelli E et al. Cerebrospinal fluid HIV RNA originatess from both local CNS and systemic sources. Neurology. 2000;54:927-936. .

43.. Sankatsing SU, Weverling GJ, Peeters M et al. TMC125 exerts similar initial antivirall potency as a five-drug, triple class antiretroviral regimen. AIDS. 2003;17:2623-2627. .

44.. Pantaleo G, Graziosi C, Butini L et al. Lymphoid organs function as major reservoirss for human immunodeficiency virus. Proc Natl Acad Sci USA. 1991;88:9838-9842. .

45.. Ramratnam B, Ribeiro R, He T et al. Intensification of antiretroviral therapy acceleratess the decay of the HIV-1 latent reservoir and decreases, but does nott eliminate, ongoing virus replication. J Acquir Immune Defic Syndr. 2004;35:33-37. .

46.. Margolis D, Heredia A, Gaywee J et al. Abacavir and mycophenolic acid, an inhibitorr of inosine monophosphate dehydrogenase, have profound and synergisticc anti-HIV activity. J Acquir Immune Defic Syndr.

(17)

1999;21:362-47.. Heredia A, Margolis D, Oldach D et al. Abacavir in combination with the inosinee monophosphate dehydrogenase (IMPDH)-inhibitor mycophenolic acidd is active against multidrug-resistant HIV-1. J Acquir Immune Defic

Syndr.Syndr. 1999;22:406-407.

48.. Chapuis AG, Paolo RG, D'Agostino C et al. Effects of mycophenolic acid on humann immunodeficiency virus infection in vitro and in vivo. Nat Med. 2000;6:762-768. .

49.. Sankatsing SUC, Jurriaans S, Swieten P et al. Highly active antiretroviral therapyy with or without mycophenolate mofetil in treatment naive HIV-1 patients.. Submitted for publication.

50.. Vrisekoop N, Sankatsing SUC, Jansen CA et al. No detrimental immunologicall effects of mycophenolate mofetil and HAART in treatment naïvee acute and chronic HIV-1 infected patients. Submitted for publication. 51.. Carr SF, Papp E, Wu JC et al. Characterization of human type I and type II

IMPP dehydrogenases. J fi/o/ Chem. 1993;268:27286-27290.

52.. Fairbanks LD, Bofill M, Ruckemann K et al. Importance of ribonucleotide availabilityy to proliferating T-lymphocytes from healthy humans. Disproportionatee expansion of pyrimidine pools and contrasting effects of de novoo synthesis inhibitors. J Biol Chem. 1995;270:29682-29689.

53.. Coull JJ, Turner D, Melby T et al. A pilot study of the use of mycophenolate mofetill as a component of therapy for multidrug-resistant HIV-1 infection. J

AcquirAcquir Immune Defic Syndr. 2001 ;26:423-434.

54.. Hazenberg MD, Hamann D, Schuitemaker H et al. T cell depletion in HIV-1 infection:: how CD4+ T cells go out of stock. Nat Immunol. 2000; 1:285-289. 55.. Hazenberg MD, Stuart JW, Otto SA et al. T-cell division in human

immunodeficiencyy virus (HIV)-1 infection is mainly due to immune activation:: a longitudinal analysis in patients before and during highly active antiretrovirall therapy (HAART). Blood. 2000;95:249-255.

56.. Hazenberg MD, Otto SA, Benthem BHB et al. Persistent immune activation inn HIV-1 infection is associated with progression to AIDS. AIDS. 2003;17:1881-1888. .

57.. Hazenberg MD, Otto SA, Hamann D et al. Depletion of naive CD4 T cells by CXCR4-usingg HIV-1 variants occurs mainly through increased T-cell death andd activation. AIDS. 2003;17:1419-1424.

58.. Tambussi G, Rizzardi GP, Lazzarin A et al. Patterns of Viral Rebound and CD44 Slopes in patients with Primary HIV-1 Infection with Persistent Undetectablee Viremia Treated with Supervised Treatment Interruption Plus

(18)

Mycophenolatee Mofetil. 10th Conference on Retroviruses and Opportunistic Infections,, Boston, USA, February 2003, Abstract 658.

59.. Arnedo M, Garcia A, Plana M et al. Effect of mycophenolate mophetil on virall replication in plasma and reservoirs after interruption of HAART in chronicc HIV-infected patients. A pilot randomized study. 1st International Workshopp on HIV Persistence during therapy, French West Indies, Decemberr 2003, Abstract 9.6.

60.. Rizzardi GP, Guaraldi G, Lazzarin A et al. Long-term Control of HIV-1 RNA Replicationn following a Unique Supervized Treatment Interruption and Mycophenolatee Mofetil Therapy in Patients Treated with HAART since Primaryy HIV-1 Infection. 11th Conference on Retroviruses and Opportunistic Infections,, San Francisco, USA, February 2004, Abstract 400.

61.. Sankatsing SUC, Hoggard PG, Huitema ADR et al. Effect of mycophenolate mofetill on the pharmacokinetics of antiretroviral drugs and the intracellular nucleosidee triphosphate pools. Clinical Pharmacokinetics, accepted for publication. .

62.. Gummert JF, Barten MJ, Sherwood SW et al. Pharmacodynamics of immunosuppressionn by mycophenolic acid: inhibition of both lymphocyte proliferationn and activation correlates with pharmacokinetics. J Pharmacol

ExpExp Then 1999;291:1100-1112.

63.. Jurriaans S, Sankatsing SUC, Prins JM et al. HIV-1 seroreversion in an HIV-11 seropositive patient treated during acute infection with HAART and mycophenolatee mofetil. AIDS, accepted for publication.

64.. Huisman MT, Smit JW, Wiltshire HR et al. P-glycoprotein limits oral availability,, brain, and fetal penetration of saquinavir even with high doses off ritonavir. Mol Pharmacol. 2001;59:806-813.

65.. Choo EF, Leake B, Wandel C et al. Pharmacological inhibition of P-glycoproteinn transport enhances the distribution of HIV-1 protease inhibitors intoo brain and testes. Drug Metab Dispos. 2000;28:655-660.

66.. van der Sandt CJ, Vos CM, Nabulsi L et al. Assessment of active transport off HIV protease inhibitors in various cell lines and the in vitro blood-brain barrier.. AIDS. 2001;15:483-491.

67.. Clayette P, Jorajuria S, Dormont D. Significance of P-glycoprotein for the pharmacologyy and clinical use of HIV protease inhibitors. AIDS. 2000;14:235-236. 2000;14:235-236.

(19)

68.. Gutmann H, Flicker G, Drewe J et al. Interactions of HIV protease inhibitors withh ATP-dependent drug export proteins. Mol Pharmacol. 1999;56:383-389. .

69.. Kim AE, Dintaman JM, Waddell DS et al. Saquinavir, an HIV protease inhibitor,, is transported by P-glycoprotein. J Pharmacol Exp Ther. 1998;286:1439-1445. .

70.. Kim RB, Fromm MF, Wandel C et al. The drug transporter P-glycoprotein limitss oral absorption and brain entry of HIV-1 protease inhibitors. J Clin

Invest.Invest. 1998;101:289-294.

71.. Lee CG, Gottesman MM, Cardarelli CO et al. HIV-1 protease inhibitors are substratess for the MDR1 multidrug transporter. Biochemistry. 1998;37:3594-3601. .

72.. Profit L, Eagling VA, Back DJ. Modulation of P-glycoprotein function in humann lymphocytes and Caco-2 cell monolayers by HIV-1 protease inhibitors.. AIDS. 1999;13:1623-1627.

73.. Washington CB, Duran GE, Man MC et al. Interaction of anti-HIV protease inhibitorss with the multidrug transporter P-glycoprotein (P-gp) in human culturedd cells. J Acquir Immune Defic Syndr Hum Retrovirol. 1998; 19:203-209. .

74.. Washington CB, Wiltshire HR, Man M et al. The disposition of saquinavir in normall and P-glycoprotein deficient mice, rats, and in cultured cells. Drug

MetabMetab Dispos. 2000;28:1058-1062.

75.. Chaillou S, Durant J, Garraffo R et al. Intracellular concentration of protease inhibitorss in HIV-1-infected patients: correlation with MDR-1 gene expressionn and low dose of ritonavir. HIV Clin Trials. 2002;3:493-501. 76.. Jones K, Bray PG, Khoo SH et al. P-glycoprotein and transporter MRP1

reducee HIV protease inhibitor uptake in CD4 cells: potential for accelerated virall drug resistance? AIDS. 2001;15:1353-1358.

77.. Sankatsing SUC, Beijnen JH, Schinkel AH et al. P-glycoprotein in Human Immunodefiencyy Virus 1 Infection and Therapy. Antimicrob Agents

Chemother.Chemother. 2004;48:1073-1081.

78.. Lee CG, Ramachandra M, Jeang KT et al. Effect of ABC transporters on HIV-11 infection: inhibition of virus production by the MDR1 transporter.

FASEBJ.FASEBJ. 2000;14:516-522.

79.. Speck RR, Yu XF, Hildreth J et al. Differential effects of p-glycoprotein and multidrugg resistance protein-1 on productive human immunodeficiency virus infection.. J Infect Dis. 2002;186:332-340.

(20)

80.. Furtado MR, Kingsley LA, Wolinsky SM. Changes in the viral mRNA expressionn pattern correlate with a rapid rate of CD4+ T-cell number decline inn human immunodeficiency virus type 1-infected individuals. J Virol. 1995;69:2092-2100. .

81.. Sankatsing SUC, Cornelissen M, Kloosterboer N et al. Antiviral activity of HIV-11 protease inhibitors nelfinavir and indinavir in vivo is not influenced by P-glycoproteinn activity on CD4+ T-cells. Submitted for publication.

82.. Read S, Powrie F. CD4{+) regulatory T cells. Curr Opin Immunol. 2001;13:644-649. .

83.. Curotto de Lafaille MA, Lafaille JJ. CD4(+) regulatory T cells in autoimmunityy and allergy. Curr Opin Immunol. 2002;14:771-778.

84.. Zhang L, Ramratnam B, Tenner-Racz K et al. Quantifying residual HIV-1 replicationn in patients receiving combination antiretroviral therapy. N Engl J

Med.Med. 1999;340:1605-1613.

85.. Martinez MA, Cabana M, Ibanez A et al. Human immunodeficiency virus typee 1 genetic evolution in patients with prolonged suppression of plasma viremia.. Virology. 1999;256:180-187.

86.. Gunthard HF, Frost SD, Leigh-Brown AJ et al. Evolution of envelope sequencess of human immunodeficiency virus type 1 in cellular reservoirs in thee setting of potent antiviral therapy. J Virol. 1999;73:9404-9412.

87.. Gruzdev B, Rakhmanova A, Doubovskaya E et al. A randomized, double-blind,, placebo-controlled trial of TMC125 as 7-day monotherapy in antiretrovirall naive, HIV-1 infected subjects. AIDS. 2003;17:2487-2494. 88.. Kilby JM, Eron JJ. Novel therapies based on mechanisms of HIV-1 cell

entry.. N Engl J Med. 2003;348:2228-2238.

89.. Lalezari JP, Henry K, O'Hearn M et al. Enfuvirtide, an HIV-1 fusion inhibitor, forr drug-resistant HIV infection in North and South America. N Engl J Med. 2003;348:2175-2185. .

90.. Lazzarin A, Clotet B, Cooper D et al. Efficacy of enfuvirtide in patients infectedd with drug-resistant HIV-1 in Europe and Australia. N Engl J Med. 2003;348:2186-2195. .

91.. Chen RY, Kilby JM, Saag MS. Enfuvirtide. Expert Opin Investig Drugs. 2002;11:1837-1843. .

92.. Cervia JS, Smith MA. Enfuvirtide (T-20): a novel human immunodeficiency viruss type 1 fusion inhibitor. Clin Infect Dis. 2003;37:1102-1106.

(21)

94.. Burton A. Enfuvirtide approved for defusing HIV. Lancet Infect Dis. 2003;3:260. .

95.. Robertson D. US FDA approves new class of HIV therapeutics. War

Biotechnol.Biotechnol. 2003;21:470-471.

96.. Doms RW. Beyond receptor expression: the influence of receptor conformation,, density, and affinity in HIV-1 infection. Virology. 2000;276:229-237. .

97.. Schroder AR, Shinn P, Chen H et al. HIV-1 integration in the human genomee favors active genes and local hotspots. Cell. 2002;110:521-529. 98.. Jordan A, Defechereux P, Verdin E. The site of HIV-1 integration in the

humann genome determines basal transcriptional activity and response to Tatt transactivation. EMBOJ. 2001;20:1726-1738.

99.. Nair V. HIV integrase as a target for antiviral chemotherapy. Rev Med Virol. 2002;12:179-193. .

100.. Nair V. Novel Inhibitors of HIV Integrase: The Discovery of Potential Anti-HIVV Therapeutic Agents. Curr Pharm Des. 2003;9:2553-2565.

101.. Billich A. S-1360 Shionogi-GlaxoSmithKline. Curr Opin Investig Drugs. 2003;4:206-209. .

102.. Piscitelli S, Baede P, DeGier K et al. Pharmacokinetics of TMC 125 in HIV infectedd patients and healthy volunteers. 3rd International Workshop on Clinicall Pharmacology of HIV Therapy, Washington, DC, April 2002, Abstractt 6.1.

103.. Gunthard HF, Havlir DV, Fiscus S et al. Residual human immunodeficiency viruss (HIV) Type 1 RNA and DNA in lymph nodes and HIV RNA in genital secretionss and in cerebrospinal fluid after suppression of viremia for 2 years.. J Infect Dis. 2001;183:1318-1327.

104.. Biberfeld P, Chayt KJ, Marselle LM et al. HTLV-III expression in infected lymphh nodes and relevance to pathogenesis of lymphadenopathy. Am J

Pathol.Pathol. 1986;125:436-442.

105.. Pantaleo G, Graziosi C, Demarest JF et al. HIV infection is active and progressivee in lymphoid tissue during the clinically latent stage of disease.

Nature.Nature. 1993;362:355-358.

106.. Pantaleo G, Graziosi C, Fauci AS. The role of lymphoid organs in the pathogenesiss of HIV infection. Semin Immunol. 1993;5:157-163.

107.. Saksela K, Muchmore E, Girard M et al. High viral load in lymph nodes and latentt human immunodeficiency virus (HIV) in peripheral blood cells of HIV-1-infectedd chimpanzees. J Virol. 1993;67:7423-7427.

(22)

108.. Tamalet C, Lafeuillade A, Yahi N et al. Comparison of viral burden and phenotypee of HIV-1 isolates from lymph nodes and blood. AIDS. 1994;8:1083-1088. .

109.. Cohen OJ, Pantaleo G, Holodniy M et al. Decreased human immunodeficiencyy virus type 1 plasma viremia during antiretroviral therapy reflectss downregulation of viral replication in lymphoid tissue. Proc Natl

AcadAcad Sci USA. 1995;92:6017-6021.

110.. Tenner-Racz K, Stellbrink HJ, van Lunzen J et al. The unenlarged lymph nodess of HIV-1-infected, asymptomatic patients with high CD4 T cell counts aree sites for virus replication and CD4 T cell proliferation. The impact of highlyy active antiretroviral therapy. J Exp Med. 1998;187:949-959.

111.. Lafeuillade A, Solas C, Halfon P et al. Differences in the detection of three HIV-11 protease inhibitors in non-blood compartments: clinical correlations.

HIVHIV Clin Trials. 2002;3:27-35.

112.. Walmsley S, Bernstein B, King M et al. Lopinavir-ritonavir versus nelfinavir forr the initial treatmentt of HIV infection. N Engl J Med. 2002;346:2039-2046. 113.. Kinman L, Brodie SJ, Tsai CC et al. Lipid-drug association enhanced HIV-1 proteasee inhibitor indinavir localization in lymphoid tissues and viral load reduction:: a proof of concept study in HIV-2287-infected macaques. J

AcquirAcquir Immune Defic Syndr. 2003;34:387-397.

114.. Miller DS, Nobmann SN, Gutmann H et al. Xenobiotic transport across isolatedd brain microvessels studied by confocal microscopy. Mol Pharmacol. 2000;58:1357-1367. .

115.. Sawchuk RJ, Yang Z. Investigation of distribution, transport and uptake of anti-HIVV drugs to the central nervous system. Adv Drug Deliv Rev. 1999;39:5-31. .

116.. Schuetz JD, Connelly MC, Sun D et al. MRP4: A previously unidentified factorr in resistance to nucleoside-based antiviral drugs. Nat Med. 1999;5:1048-1051. .

117.. Williams GC, Liu A, Knipp G et al. Direct evidence that saquinavir is transportedd by multidrug resistance-associated protein (MRP1) and canalicularr multispecific organic anion transporter (MRP2). Antimicrob

AgentsAgents Chemother. 2002;46:3456-3462.

118.. Wijnholds J, Mol CA, Van Deemter L et al. Multidrug-resistance protein 5 is aa multispecific organic anion transporter able to transport nucleotide

(23)

119.. Pierson T, Hoffman TL, Blankson J et al. Characterization of chemokine receptorr utilization of viruses in the latent reservoir for human immunodeficiencyy virus type 1. J Virol. 2000;74:7824-7833.

120.. Bukrinsky Ml, Stanwick TL, Dempsey MP et al. Quiescent T lymphocytes as ann inducible virus reservoir in HIV-1 infection. Science. 1991;254:423-427. 121.. Zack JA, Haislip AM, Krogstad P et al. Incompletely reverse-transcribed

humann immunodeficiency virus type 1 genomes in quiescent cells can functionn as intermediates in the retroviral life cycle. J Virol.

1992;66:1717-1725. .

122.. Lee NS, Dohjima T, Bauer G et al. Expression of small interfering RNAs targetedd against HIV-1 rev transcripts in human cells. Nat Biotechnol. 2002;20:500-505. .

123.. Stevenson M. Dissecting HIV-1 through RNA interference. Nat Rev

Immunol.Immunol. 2003;3:851-858.

124.. Novina CD, Murray MF, Dykxhoom DM et al. siRNA-directed inhibition of HIV-11 infection. Nat Med. 2002;8:681-686.

125.. Haasnoot JPC, Cupac D, Berkhout B. Inhibition of virus replication by RNA interference.. J Biomed Sci. 2003;10:607-616.

126.. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNAA interference. Nature. 2002;418:435-438.

127.. Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiencyy virus type 1 replication by RNA interference. J Virol. 2002;76:9225-9231. .

128.. Hu WY, Myers CP, Kilzer JM et al. Inhibition of retroviral pathogenesis by RNAA interference. CurrBiol. 2002;12:1301-1311.

129.. Kitabwalla M, Ruprecht RM. RNA interference-a new weapon against HIV andd beyond. NEnglJMed. 2002;347:1364-1367.

130.. Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interferingg RNA-mediated RNA interference. J Immunol. 2002; 169:5196-5201. .

131.. Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference byy double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806-811. .

132.. Zamore PD, Tuschl T, Sharp PA et al. RNAi: double-stranded RNA directs thee ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25-33. .

(24)

134.. Zamore PD. RNA interference: listening to the sound of silence. Nat Struct

Biol.Biol. 2001;8:746-750.

135.. Marx J. Interfering with gene expression. Science. 2000;288:1370-1372. 136.. Caplen NJ, Parrish S, Imani F et al. Specific inhibition of gene expression

byy small double-stranded RNAs in invertebrate and vertebrate systems.

ProcProc Natl Acad Sci USA. 2001;98:9742-9747.

137.. Elbashir SM, Harborth J, Lendeckel W et al. Duplexes of 21-nucleotide RNAss mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494-498. .

138.. Lewis DL, Hagstrom JE, Loomis AG et al. Efficient delivery of siRNA for inhibitionn of gene expression in postnatal mice. Nat Genet. 2002;32:107-108. .

139.. Naldini L, Blomer U, Gallay P et al. In vivo gene delivery and stable transductionn of nondividing cells by a lentiviral vector. Science. 1996;272:263-267. .

140.. Rubinson DA, Dillon CP, Kwiatkowski AV et al. A lentivirus-based system to functionallyy silence genes in primary mammalian cells, stem cells and transgenicc mice by RNA interference. Nat Genet. 2003;33:401-406.

141.. Stewart SA, Dykxhoorn DM, Palliser D et al. Lentivirus-delivered stable genee silencing by RNAi in primary cells. RNA. 2003;9:493-501.

142.142. Tiscornia G, Singer O, Ikawa M et al. A general method for gene knockdownn in mice by using lentiviral vectors expressing small interfering RNA.. Proc Natl Acad Sci USA. 2003;100:1844-1848.

143.. Qin XF, An DS, Chen IS et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediatedd delivery of small interfering RNA against CCR5. Proc

NatlNatl Acad Sci USA. 2003;100:183-188.

144.. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. LM02-associated clonal TT cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415-419. .

145.. Boden D, Pusch O, Lee F et al. Human immunodeficiency virus type 1 escapee from RNA interference. J Virol. 2003;77:11531-11535.

146.. Das AT, Brummelkamp TR, Westerhout EM et al. Human immunodeficiency viruss type 1 escapes from RNA interference-mediated inhibition. J Virol. 2004;78:2601-2605. .

(25)
(26)

CHAPTERR 11

(27)
(28)

Infectiee met het "human immunodeficiency virus" (HIV) leidt tot een langzame

afbraakk van het afweersysteem van de mens. In het bijzonder treedt er een

dalingg op van het aantal CD4

+

T cellen (een bepaald type witte

bloedlichaampjes).. Dit leidt uiteindelijk tot het optreden van ernstige infecties

enn kanker. Op dat moment spreken we van "acquired immunodeficiency

syndrome"syndrome" (AIDS).

Inn 1983 werd het HIV-1 ontdekt als verwekker van AIDS. In 1986 werd er een

tweede,, verwant virus ontdekt als verwekker van AIDS, namelijk HIV-2. Dit

viruss komt echter veel minder voor, zodat het meeste onderzoek zich

concentreertt op HIV-1, zoals ook alle studies in dit proefschrift. In 1987 kwam

hett eerste middel beschikbaar dat de vermenigvuldiging van HIV-1 kon

remmen.. Het bleek al snel dat het virus zich kan aanpassen, waardoor het

ongevoeligg (resistent) wordt voor dit middel. In de jaren die hierna volgden

werdenn er nieuwe middelen ontwikkeld om de HIV-1 vermenigvuldiging te

remmen.. Op dit moment zijn er vier verschillende klassen van anti-HlV

medicijnenn (antiretrovirale middelen), waarbij elke klasse op een andere

manierr de HIV-1 vermenigvuldiging remt. Halverwege de jaren negentig bleek

datt de HIV-1 vermenigvuldiging alleen effectief geremd kan worden door met

driee antiretrovirale middelen te behandelen (triple therapie). Deze combinaties

staann bekend als "HAART" (highly active antiretroviral therapy). Behandeling

mett deze medicijncombinaties resulteert in de meeste patiënten in een

onmeetbaarr lage hoeveelheid HIV-1 in het bloed plasma (uitgedrukt in HIV-1

RNAA deeltjes per mL bloed plasma), en een herstel van hun afweer systeem

12

.. Dit heeft geleid tot een significante daling in het voorkomen van AIDS en

AIDSS gerelateerde aandoeningen en sterfte in de Westerse wereld

3

"

7

.

Berekeningenn aan de hand van de daling van de hoeveelheid virus deeltjes in

hett bloed na start van de behandeling met drie antiretrovirale middelen wekte

dee hoop dat HIV geheel uit een patiënt zou kunnen verdwijnen na 2 tot 3 jaar

therapie.. Hierbij werd er van uitgegaan dat deze combinatie van middelen de

HIVV vermenigvuldiging geheel remt

8

. Het bleek echter in de jaren hierna dat

mett de huidige beschikbare antiretrovirale behandeling HIV niet geheel

verdwijntt uit een patient

9

"

16

.

(29)

Hett aanwezig blijven van HiV in het lichaam is een dynamisch proces dat

afhankelijkk is van verschillende factoren die elkaar beïnvloeden, zoals

uitgebreidd wordt beschreven in hoofdstuk 1. HIV kan aanwezig blijven in

schuilplaatsenn in het lichaam, zoals het centraal zenuwstelsel, omdat

bepaaldee geneesmiddelen daar moeilijk komen. Ook is er een cellulair

reservoir,, welk bestaat uit rustende cellen waarin zich HIV bevindt, de

zogenaamdee latent geïnfecteerde cellen. Verder blijft er ondanks het gebruik

vann de antiretrovirale middelen toch in beperkte mate vermenigvuldiging van

hett HIV plaats vinden ("ongoing residual replication")

9

-

111314

.

17

-

26

. Het

cellulairee reservoir is een gevolg van virale latentie. Virale latentie is het

vermogenn van een virus om voor langere tijd in een cel aanwezig te blijven

zonderr zich te vermenigvuldigen. De antiretrovirale middelen hebben dan

geenn vat op het virus. Deze virale latentie kan op zich ook weer bijdragen aan

dee residual replication, als latent geïnfecteerde cellen geactiveerd worden en

weerr virus gaan produceren. De residual replication kan op zijn beurt weer de

cellulairee reservoirs aanvullen. Voordat we HIV compleet uit een patiënt zullen

kunnenn verwijderen, zullen we eerst deze factoren moeten aanpakken.

Inn dit proefschrift worden nieuwe strategieën beschreven die de factoren

welkee eradicatie van HIV in de weg staan mogelijk zouden kunnen

beïnvloeden. .

Latentt geïnfecteerde cellen die het cellulaire reservoir vormen ontstaan al in

hett begin van een HIV infectie, tijdens de primaire of acute fase van de

infectie.. Het starten van behandeling met antiretrovirale middelen binnen 10

dagenn na de manifestatie van een primaire infectie kan dit niet voorkomen

27

.

Daaromm hebben wij patiënten met een primaire HIV infectie behandeld met vijf

antiretroviralee middelen uit drie verschillende klassen, wat een krachtiger

combinatiee is dan een standaard medicijncombinatie bestaande uit drie

middelenn

28,29

. Vervolgens keken we of een dergelijk combinatie effect heeft

opp de grootte van het latent geïnfecteerde reservoir. De resultaten van deze

studiee worden besproken in hoofdstuk 2. Deze studie toont aan dat in de

patiëntenn die behandeld werden met vijf antiretrovirale middelen het aantal

cellenn dat "levensvatbaar" HIV bevat onder de detectie grens van onze

bepalingsmethodee daalt. Maar toch blijft HIV aanwezig in het lichaam, zoals

(30)

blijktt uit het terugkeren van het HIV-1 RNA en de latent geïnfecteerde cellen

inn het bloed na het stoppen van de medicatie

30

.

Zoalss eerder gezegd zijn er bepaalde plekken in het lichaam waarin de

antiretroviralee middelen niet voldoende doordringen, zodat deze plekken een

schuilplaatss voor HIV kunnen zijn. Van een aantal antiretrovirale middelen is

bekendd dat ze slecht in het mannelijk genitaal stelsel kunnen komen, en

daaromm in het sperma niet aantoonbaar zijn

2021

-

31

-

35

. |

n

hoofdstuk 3 wordt de

penetratiee van de protease remmer lopinavir in het sperma beschreven, als

maatt voor de beschikbaarheid in het mannelijk genitaal stelsel

36

. Het blijkt dat

slechtss weinig lopinavir het sperma bereikt, met een mediane concentratie

vann maar 0,23 mg/L, terwijl de minimum vereiste concentratie voor een goede

remmingg van de HIV-1 vermenigvuldiging 5,0 mg/L is (Abbott product

informatie).. Deze resultaten werden later bevestigd in andere studies

37,3S

.

Vanwegee de slechte beschikbaarheid van lopinavir in het sperma zou men

verwachtenn dat het HIV-1 RNA in sperma meetbaar zou zijn, waarmee

bevestigdd zou worden dat het mannelijk genitaal stelsel een schuilplaats is

voorr HIV tijdens therapie. Maar het bleek dat ondanks de lage lopinavir

spiegelss HIV-1 RNA onmeetbaar was in sperma. Na een uitgebreid onderzoek

vann de beschikbare literatuur kwamen wij tot de conclusie dat het mannelijk

genitaall stelsel geen schuilplaats voor HIV is tijdens therapie, behalve als de

patiëntt ook andere seksueel overdraagbare aandoeningen heeft

39

.

Desalnietteminn is het duidelijk dat er andere plekken zijn in het lichaam waar

dee verminderde beschikbaarheid van antiretrovirale middelen kan leiden tot

doorgaandee virus vermenigvuldiging tijdens therapie, zoals bijvoorbeeld het

centraall zenuwstelsel

17194(M2

. De verminderde beschikbaarheid van

antiretroviralee middelen op die plaatsen zou gedeeltelijk veroorzaakt kunnen

wordenn door de activiteit van drugtransport eiwitten, waar P-glycoprotein

(P-gp)) een voorbeeld van is. Dit wordt verderop uitgebreider besproken.

Eenn mogelijke strategie om de residual replication te verminderen is het

gebruikk van krachtiger antiretrovirale middelen. In het verleden is aangetoond

(31)

medicijncombinatiee bestaande uit vijf antiretrovirale middelen uit drie

verschillendee klassen na start van de behandeling een snellere daling gaf van

dee hoeveelheid HIV-1 RNA in het bloed, en een betere remming van de HIV

vermenigvuldigingg op de langere termijn

28,29

. In hoofdstuk 4 beschrijven we

datt nog krachtiger antiretrovirale middelen mogelijk zijn. Monotherapie

gedurendee 1 week met de nieuwe non-nucleoside reverse transcriptase

inhibitorr (NNRTI) TMC125 gaf een daling van de hoeveelheid HIV-1 RNA in

hett bloed welke vergelijkbaar was met de daling die bereikt wordt met vijf

antiretroviralee middelen uit drie klassen

43

. Een mogelijke verklaring voor dit

krachtigee effect zou de grotere beschikbaarheid van TMC125 in de

lymfeklierenn vergeleken met het bloed kunnen zijn. Dit is in overeenstemming

mett het feit dat de lymfeklieren de belangrijkste plek zijn waar HIV

vermenigvuldigingg plaats vindt

44

.

Recentt is aangetoond dat het versterken van de anti-HIV therapie met meer

middelenn de daling van het cellulair reservoir versnelt en ook een daling geeft

vann de residual replication, maar deze toch niet geheel remt

45

.

Vervolgstudiess zijn nodig om te kijken naar het effect van TMC125 bevattende

antiretroviralee combinaties op de daling van het HIV-1 RNA in het bloed en op

dee residual replication. Dat laatste kan beoordeeld worden door intracellulair

unsplicedd HIV-1 RNA te meten, zoals verderop wordt besproken.

Niett alleen residual replication, maar ook het bestaan van latent geïnfecteerde

cellenn tijdens de HIV behandeling vormt een probleem. Tijdens de zoektocht

naarr nieuwe strategieën om de residual replication en de hoeveelheid latent

geïnfecteerdee cellen te verminderen ontstond het idee om mycophenolaat

mofetill (MMF) te gebruiken

46

~

48

. MMF wordt gebruikt bij de preventie en

behandelingg van afstotingsreacties na orgaantransplantaties, zoals

niertransplantaties.. MMF wordt in het lichaam omgezet in de werkzame stof

mycophenolzuurr (MPA), die het immuunsysteem remt door selectief de deling

vann T cellen te remmen. HIV kan zich alleen vermenigvuldigen in de T cellen

enn dan met name in T cellen die geactiveerd zijn. Door de deling van T cellen

tete remmen kan MPA ervoor zorgen dat er minder cellen beschikbaar zijn

waarinn HIV zich kan vermenigvuldigen. MPA verlaagt de productie van dGTP,

eenn van de bouwstoffen van DNA en dus nodig voor de HIV

(32)

vermenigvuldiging.. Daardoor kan MPA de HIV vermenigvuldiging ook

rechtstreekss remmen. De verlaging van de hoeveelheid natuurlijk dGTP zorgt

err verder voor dat het antiretrovirale middel abacavir beter werkt. MMF was in

eenn eerdere studie in staat de hoeveelheid latent geïnfecteerde cellen te

verlagenn bij patiënten die onder antiretrovirale therapie een onmeetbaar lage

hoeveelheidd virus deeltjes hadden in hun bloed

48

. In hoofdstuk 5, 6, 7 en 8

werdd het gebruik van MMF bij de behandeling van HIV infectie bestudeerd

(MANN studie). Patiënten met een primaire of een chronische HIV-1 infectie

werdenn in deze studie behandeld met vijf antiretrovirale middelen uit drie

beschikbaree klassen, te weten eenmaal daags didanosine 400 mg en

tweemaall daags abacavir 300 mg, lamivudine 150 mg, indinavir 800 mg (met

ritonavirr 100 mg) en nevirapine 200 mg (eerste 2 weken nevirapine 200 mg

eenmaall daags). De patiënten lootten voor het wel of niet gebruiken van MMF

naastt hun antiretrovirale medicatie.

Dee resultaten in hoofdstuk 5 tonen aan dat MMF goed werd verdragen door

HIVV patiënten die begonnen met antiretrovirale middelen. Er bleek echter

geenn effect van MMF op de snelheid van daling van de hoeveelheid HIV-1

RNAA in het bloed gedurende de eerste 14 dagen van de behandeling en ook

niett op de daling van de hoeveelheid latent geïnfecteerde cellen

49

. Zeer

waarschijnlijkk heeft MMF geen toegevoegd effect op de remming van de HIV

vermenigvuldigingg indien het wordt gebruikt in combinatie met een zeer

krachtigee combinatie zoals in onze studie. In een eerdere studie waarbij er wel

eenn effect van MMF werd gezien op de daling van het cellulaire reservoir

werdenn de patiënten behandeld met twee antiretrovirale middelen uit twee

klassenn

48

. Verrassend genoeg nam het aantal latent geïnfecteerde cellen in

onzee patiënten tijdelijk toe na het stoppen van MMF. Een mogelijke verklaring

hiervoorr is dat MPA geïnfecteerde cellen blokkeert in hun delingscyclus op het

momentt dat er gestart wordt met therapie. Op het moment dat MMF gestopt

wordtt kunnen deze geblokkeerde cellen hun celcyclus afmaken en kunnen

daardoorr tijdelijk een toename geven van het reservoir van latent

geïnfecteerdee cellen.

(33)

Inn hoofdstuk 6 werden de immunologische effecten bestudeerd bij de

patiëntenn die wel of geen MMF gebruikten naast hun antiretrovirale middelen.

Alhoewell de T cel deling compleet geremd was bij patiënten die MMF

gebruikten,, was de toename van het totaal aantal CD4

+

en CD8

+

T cellen en

hunn sub-sets tijdens therapie vergelijkbaar voor patiënten die wel of geen

MMFF gebruikten

50

. Dit kan verklaard worden door het feit dat het enzym dat

geremdd wordt door MPA, inosine 5'-monophosphate dehydrogenase, in twee

variantenn voorkomt. De ene vorm, type II, wordt vooral gebruikt door

geactiveerdee T cellen, en dit type II wordt meer geremd door MPA dan de

anderee vorm, type I, die vooral gebruikt wordt door rustende cellen

51,52

. Daar

geactiveerdee T cellen uiteindelijk gedoemd zijn te sterven zal de deling van

dezee cellen niet bijdragen aan het instandhouden van de totale groep van

CD4

++

T cellen, en heeft remming van deze deling dus evenmin veel invloed.

Err waren verder ook geen verschillen in de ontwikkeling van HIV specifieke

afweerr tussen patiënten met en zonder MMF.

Dee bevindingen van deze studie, samen met die van een recent

gepubliceerdee studie, waar MMF veilig gegeven werd aan HIV patiënten met

eenn mediaan CD4

+

T cel aantal van 34 x 10

6

/L

53

, tonen aan dat het gebruik

vann MMF in HIV patiënten relatief veilig is.

Alhoewell het erop lijkt dat het antiretrovirale effect van MMF minimaal is, zijn

err toch bepaalde situaties denkbaar waarin behandeling met MMF wel

toegevoegdee waarde zou kunnen hebben. Het idee was vroeger dat het

verliess van CD4

+

T cellen het directe gevolg was van de

virusvermenigvuldigingg in de cel. Door virusvermenigvuldiging te remmen met

antiretroviralee middelen kon dan het verlies aan CD4

+

T cellen worden

voorkomen.. Het is inmiddels aangetoond dat de chronische hyperactivatie van

hett immuunsysteem bij HIV patiënten leidt tot een verhoogde T cel activeit en

daardoorr een verkorte gemiddelde levensduur van de CD4

+

T cellen. Deze

verkortee levensduur leidt tot een verhoogde turnover van de CD4

+

T cellen en

ditt leidt uiteindelijk tot een daling van het totaal aantal van deze cellen doordat

dee aanmaak van deze cellen het verlies niet kan compenseren. De beperking

vann het verlies van CD4

+

T cellen na start van therapie zou dus ook mogelijk

eenn gevolg kunnen zijn van het feit dat het remmen van de

virusvermenigvuldigingg leidt tot minder prikkeling van het afweersysteem. Na

(34)

hett starten met antiretrovirale middelen wordt er direct een daling gezien van

dee deling van CD4

+

en CD8

+

T cellen als uiting van deze verminderde

immuunactivatiee

54

"

57

.

Hett gebruik van MMF bij patiënten die nog geen antiretrovirale therapie nodig

hebbenn zou het verlies van CD4

+

T cellen kunnen beperken door hun deling

tee remmen en daardoor zou MMF ervoor kunnen zorgen dat patiënten langer

kunnenn wachten met het starten van antiretrovirale middelen. Recent werd

inderdaadd aangetoond dat het stoppen met antiretrovirale therapie in de

aanwezigheidd van MMF een betere controle gaf van de

virusvermenigvuldigingg dan stoppen zonder MMF

58

~

60

. Een studie met MMF

bijj patiënten met resistentie tegen verschillende middelen kon geen

virologischh effect van MMF aantonen, maar er werd wel een stijging van het

aantall CD4

+

T cellen gezien

53

. In deze studie werd niet gekeken naar het

effectt van MMF op de chronische immuunactivatie, maar het is aannemelijk

datt deze geremd was door MMF, met als gevolg een afname van het verlies

vann het aantal CD4

+

T cellen. Daarom zou het gebruik van MMF een

mogelijkheidd kunnen zijn om het aantal CD4

+

T cellen te laten stijgen bij

patiëntenn die geen andere behandelingsopties hebben.

Dee farmacologische interacties tussen MPA (het werkzame deel van MMF) en

dee antiretrovirale middelen werden bestudeerd in hoofdstuk 7. Er bleek dat

err geen interacties waren tussen MPA en abacavir of indinavir maar het bleek

well dat MPA de concentratie van nevirapine in het bloed kon verlagen,

mogelijkk door het beïnvloeden van de enterohepatische kringloop van dit

middell

61

. De enterohepatische kringloop is het proces waarbij een

geneesmiddell in de darm wordt opgenomen, en vervolgens door de lever via

hett gal weer in de darm wordt uitgescheiden, waarna het weer wordt

opgenomen.. Als dit proces wordt verstoord, zoals in dit geval waarschijnlijk bij

nevirapine,, zal er uiteindelijk minder van het middel worden opgenomen.

Hett veronderstelde werkingsmechanisme van MPA bestaat eruit dat het de

productiee van dGTP verlaagt, zoals uitgebreid besproken is in hoofdstuk 1.

Daaromm bepaalden wij de intracellulaire dGTP concentratie bij onze studie

Referenties

GERELATEERDE DOCUMENTEN

therefore evaluate it at most left-wing entry position possible since this leads to the most favorable outcome for the entrant. Therefore no extreme candidate will enter to

Comparing entry rates across electoral rules I find that the higher entry rates under proportional representation compared to plurality rule when the costs of entry are low are

Furthermore, player 3 shows a lower probability of accepting the middle option when payoffs are asymmetric but this effect is not significant (p-value: 0.23 when probabilities

Der Mechanismus, welcher diesem Effekt zu Grunde liegt ist, dass, wenn es eine Möglichkeit gibt der Wahl fern zu bleiben, die Unterstützer extremer Parteien seltener aus

The analysis in the 2002 KPMG Survey of Corporate Responsibility Reporting (2002, p.18) suggests that the increased adoption of sustainability assurance arises from “…the demand

Smithson and Foucault are writing, of course, from different positions and with different purposes; nonetheless this coincidence of terminology offers an opportunity to consider to

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

UvA-DARE is a service provided by the library of the University of Amsterdam (http s ://dare.uva.nl) UvA-DARE (Digital Academic Repository).. Cultuur, koningen