• No results found

Atlasing the Human Subcortex: Sequence development

N/A
N/A
Protected

Academic year: 2021

Share "Atlasing the Human Subcortex: Sequence development"

Copied!
41
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Spring 2016

Research Project 1, 26 ECTS

 

 

 

 

 

 

Atlasing  the  Human  

Subcortex:  

Sequence  development  

 

 

 

 

Nicholas  Judd   11118032    

 

 

 

 

 

(2)

treated  in  extreme  cases  via  subcortical  deep  brain  stimulation  (DBS).  Yet   current  magnetic  resonance  (MR)  atlases  lack  the  anatomical  precision  needed   to  localize  these  subcortical  nuclei  of  interest,  highlighting  the  need  of  a  

comprehensive  subcortical  MR  atlas.  Using  high-­field  (7T)  MR  technology,  it  is   now  possible  to  visualize  more  of  these  previously  unattainable  nuclei.  The  goal   of  this  project  is  two-­folded;;  firstly  to  develop  an  optimal  MR  sequence.  The   second  goal  is  to  segment  the  striatum.  These  two  goals  are  needed  for  the   grander  ambition,  which  is  to  obtain  visualization  of  as  many  subcortical  nuclei,  in   multiple  modalities,  sufficient  for  segmentation.  This  is  a  prerequisite  towards   building  a  comprehensive  subcortical  MR  atlas.  Firstly  we  report  our  signal-­to-­ noise  and  contrast-­to-­noise  calculations  which  led  us  to  develop  a  novel  MR   sequence;;  Magnetization-­Prepared  2  Rapid  Gradient  Echo  with  Multiple  Echoes   (MP2RAGEME).  MP2RAGEME  is  a  multiple  contrast  MR-­sequence  that  allows   the  visualization  of  multiple  subcortical  nuclei  in  different  MR-­modalities.  For  the   segmentation  of  the  striatum  a  guideline  was  developed  and  three  main  

problems  were  identified;;  The  Accumbens  Nucleus  (NAcc)  problem,  Striatal  cell   bridges  problem  and  the  islands  or  noise  problem.  Inter-­rater  reliability  (IRR)  of   segmentations,  in  the  form  of  Dice  coefficient  and  the  modified  Hausdorff  

distance,  are  reported  and  generally  very  high.  These  measurements  will  also  be   used  as  a  secondary  measure  to  SNR/CNR  for  determining  sequence  efficacy.   Primarily  this  result,  of  high  IRR  measurements,  lead  us  to  value  the  merit  of  a   segmentation  guideline  for  the  striatum.    

   

 

 

 

 

 

 

 

 

(3)

Introduction  

 

Parkinson’s  disease,  dystonia  and  essential  tremors  are  a  result  of  neural  deficits   within  the  thalamus  and  basal  ganglia  (Hariz,  Blomstedt,  &  Zrinzo,  2013).  

Recently,  it  has  been  shown  that  the  application  of  Deep  Brain  Stimulation  (DBS)   helps  to  reduce  symptoms  in  a  range  of  neurological  disorders,  most  commonly   Parkinson’s.  DBS  is  a  surgical  procedure,  in  which  surgeons  plant  electrodes  to   target  nuclei  of  interest,  dependent  upon  the  disorder,  for  electrical  stimulation   (Trépanier,  Kumar,  Lozano,  Lang,  &  Saint-­Cyr,  2000).  Partially  due  to  the   successful  deployment  of  DBS  to  treat  Parkinson’s,  the  field  has  advanced,  to   study  a  myriad  of  potential  neurological  and  psychiatric  disorders;;  including,  but   not  limited  to,  pain,  epilepsy,  obsessive  compulsive  disorder,  depression,  bipolar   disorder,  autism,  post  traumatic  stress  disorder,  eating  disorders,  addiction,   cognition  and  tinnitus  (Hariz  et  al.,  2013).  Each  disorder  has  a  corresponding   anatomical  pathway  implicated,  therefore  leading  to  disorder  specific  structures   as  potential  targets  for  DBS.  For  example,  in  patients  with  treatment  resistant  (to   electroconvulsive  therapy  &  antidepressant  medication)  depression,  it  has  been   shown  that  stimulation  of  the  ventral  striatum  reduces  symptoms  (Malone  et  al.,   2009).    

 

Noninvasive  visualization  of  these  DBS  targets  is  crucial  for  a  precise  localization   of  the  DBS  electrodes;;  yet  magnetic  resonance  imaging  (MRI)  atlases  lag  behind   in  defining  the  boundaries  of  these  targets.  Alkemade  and  colleagues  in  2013,   highlight  the  lack  of  anatomical  structures  in  MRI  atlases.  This  was  accomplished   by  comparing  the  defined  subcortical  structures  in  the  Federative  Community  of   Anatomical  Terminology  to  those  listed  in  current  MRI  atlases,  resulting  in  the   finding  that  only  7%  of  named  subcortical  gray  matter  structures  are  accounted   for.  One  possible  reason  for  this  large  discrepancy,  between  named  structures   and  those  available  in  MRI  atlases,  is  due  to  the  low  spatial  resolution  of  current   MRI  technology.  Recent  advances  in  the  imaging  field,  such  as  high-­field  (7T)   MRI,  possess  the  ability  to  reveal  previously  unattainable  subcortical  structures.   The  advantages  of  a  7T  scanner  are  the  increase  of  signal-­to-­noise  ratio  (SNR)   and  contrast-­to-­noise  ratio  (CNR),  yet  one  main  disadvantage  is  the  high  cost.   Therefore  its  use  is  only  warranted  in  cases  when  the  increase  of  resolution  is  an   absolute  necessity,  for  example  to  visualize  small  subcortical  structures  (Webb  &   Van  de  Moortele,  2015).  Aptly,  multiple  recent  review  papers  on  DBS  highlight   the  utility  of  high-­field  MRI  to  distinguish  and  accurately  target  nuclei  of  interest   (Hariz  et  al.,  2013;;  Kopell  &  Greenberg,  2008;;  Udupa  &  Chen,  2015).  Adding   evidence  for  the  necessity,  particularly  within  the  DBS  field,  of  a  subcortical  high-­ field  MRI  atlas.  

(4)

interest.  Here,  we  will  develop  an  MR  sequence  with  sufficient  visualization  to   segment  as  many  subcortical  structures  possible;;  these  segmentations  will  lead   to  the  development  of  a  comprehensive  in-­vivo  MR  atlas.  Firstly,  I  will  briefly   review  the  MR  sequences  shown  to  produce  high  enough  visualization  to  be   used  for  manual  segmentation  of  subcortical  structures,  such  as  Magnetization-­ Prepared  Rapid  Gradient  Echo  (MPRAGE),  Magnetization-­Prepared  2  Rapid   Gradient  Echo  (MP2RAGE)  and  Quantitative  Susceptibility  Mapping  (QSM)  (de   Hollander  et  al.,  2014;;  Tourdias,  Saranathan,  Levesque,  Su,  &  Rutt,  2014).  This   report  will  then  proceed  to  explain,  and  later  on,  show  the  results  of  the  methods   used  for  determining  the  optimal  scan  sequence,  such  as  SNR/CNR  calculations   and  inter-­rater  segmentation  comparisons.  A  second  aspect  of  this  report  is  the   segmentation  of  the  striatum,  the  methods  and  results  of  which  will  be  presented   and  later  on  discussed.  Finally,  the  report  will  conclude  by  discussing  the  factors   and  considerations  leading  to  the  optimized  scan  sequence  and  its  utility  towards   building  a  subcortical  MR  atlas.    

 

MR  sequences  of  interest  

 

The  main  MR  sequences  of  interest  for  this  report  are  MPRAGE,  MP2RAGE  and   QSM.  Below  I  will  briefly  explain  the  characteristics  of  these  sequences  along   with  their  utility  for  subcortical  visualization.    

 

MPRAGE  

 

Tourdias  and  colleagues  (2014)  demonstrate  how  MRI  sequences,  such  as   MPRAGE,  can  be  optimized  to  visualize  intra-­thalamic  nuclei.  The  authors  used   a  high-­resolution  MPRAGE  sequence  with  a  resolution  of  1mm  isotropic.  The   MPRAGE  sequence  provides  a  T1-­weighted  scan  with  minimal  specific  

absorption  rates  (SAR)  and  relatively  short  scan  times  (6.8  min).  Typically  the   inversion  rate  is  set  to  null  the  cerebral  spinal  fluid  (CSF),  resulting  in  increased   gray  to  white  matter  contrast  (Saranathan,  Tourdias,  Bayram,  Ghanouni,  &  Rutt,   2015).  Tourdias  and  colleagues  article  aptly  demonstrates  how  scan  parameters,   such  as  inversion  time  (670ms),  can  have  profound  effects  on  visualization  even   if  the  timing  only  differs  by  +/-­  50ms  (Figure  1).  Delving  into  the  signal  equation   for  MPRAGE  reveals  multiple  intertwined  parameters;;  such  as  inversion  pulse   repetition  time  (TS),  number  of  readouts  per  inversion  (N),  excitation  flip  angle  

(5)

(α),  readout  sequence  repetition  time  (TR),  receiver  bandwidth  (BW)  and  RF   pulse  length.  Saranathan  and  colleagues  (2015)  state  these  scan  parameters   have  a  direct  effect  on  SNR  and  blurring  characteristics  of  the  image.  

Optimization  of  these  intertwined  parameters  is  critical  to  increase  SNR  and   CNR,  which  in  turn  allows  a  better  segmentation  of  any  structure  of  interest.  The   researchers  conclude  by  determining  a  white  matter  nulled  (WMn)  scan,  with  a   flip  angle  of  4  degrees  and  a  TS  of  6s,  produces  the  best  image  for  intra-­thalamic   delineation  in  the  shortest  amount  of  time  (5  mins).  

 

Figure 1: Contrast changes with differing first inversions (Tourdias et al., 2014, p. 540)

 

MP2RAGE  

 

MP2RAGE  is  another  T1-­weighted  scan,  which  is  a  modified  version  of  MPRAGE  

using  two  images  at  different  inversion  time  points  (Figure  2/3/4).  This  sequence   has  shown  promise  in  7T  to  visualize  subcortical  structures,  such  as  the  striatum   (Keuken  et  al.,  2014;;  Marques  et  al.,  2010).  Combining  these  two  images  allows   for  a  single  image  free  of  T2*  contrast,  proton  density  contrast  and  reception  bias  

field  (Marques  et  al.,  2010).  MP2RAGE  tackles  one  of  the  greatest  issues   hindering  7T  scanning,  transmit  field  inhomogeneities  (Jose  P.  Marques  &   Gruetter,  2013).  The  end  result  is  an  anatomical  image  with  higher  SNR/CNR   allowing  for  visualization  and  segmentation  of  these  elusive  subcortical  

(6)

weighted  imaging  as  a  superior  alternative.  Quantitative  susceptibility  mapping   (QSM)  is  a  T2*-­weighted  MR  calculation  that  has  shown  promise  for  the  

visualization  and  segmentation  of  subcortical  nuclei  (Darki,  Nemmi,  Möller,  

Sitnikov,  &  Klingberg,  2016;;  Keuken  et  al.,  2014).  QSM  utilizes  raw  gradient-­echo   phase  data  to  visualize  magnetic  susceptibility  (Schweser,  Deistung,  Sommer,  &   Reichenbach,  2013).  Therefore  it  is  particularly  useful  to  image  iron  rich  tissue,   such  as  the  medial  medullary  lamina  (Figure  2),  which  acts  as  a  border  to   separate  the  internal  from  the  external  segment  of  the  Globus  Pallidus  (Gp)   (Keuken  et  al.,  2014).  The  same  research  group  used  QSM  to  examine  the   borders  of  the  STN;;  hypothesizing  if  distinct  anatomical  borders  are  present  the   iron  content  will  reflect  this  characteristic  (de  Hollander  et  al.,  2014).  The  iron   content  indicated  a  gradual  increase  towards  the  medial-­inferior  tip,  adding   evidence  against  the  view  of  distinct  anatomical  borders.    

 

 

Figure 2: Medial Medullary Lamina (Max et al., 2014, p. 41)

   

(7)

Multimodal  Approach  

 

Combining  these  differing  scan  modalities  to  segment  subcortical  structures   offers  the  most  promising  route  to  build  a  MRI  atlas  of  the  subcortex.  Keuken  and   researchers  (2014)  aptly  demonstrated  this  by  developing  a  multimodal  atlas,   derived  from  30  young  subjects,  of  six  subcortical  structures:  the  striatum,  the   GPi/e,  the  substania  nigra  (SN),  the  subthalamic  nucleus  (STN)  and  the  red   nucleus.  The  sequences  used  where  a  whole  brain  MP2RAGE  (t  =  10:57  mins;;   voxel  size=0.7mm  isotropic),  a  zoomed  MP2RAGE  (t  =  9:08  mins;;  voxel  

size=0.6mm  isotropic)  and  a  muli-­echo  3D  FLASH  (t  =  17:18;;  voxel  size=0.5  mm   isotropic).  Using  the  acquired  FLASH  data  QSM  maps  were  derived,  adding   another  contrast  modality  (Figure  2).  In  collaboration  with  the  FSL  research   group,  an  automated  multimodal  segmentation  tool  was  developed,  aptly  named   MIST  (Mulitmodal  Image  Segmentation  Tool).  MIST  has  the  ability,  when  utilizing   multiple  scans,  to  produce  high  quality  segmentations  of  the  striatum  (Visser  et   al.,  2016).    

   

Optimizing  the  MR  sequences  

 

The  primary  aim  of  this  research  project  is  to  develop  an  MP(2)RAGE  based  MR   sequence,  which  results  in  the  visualization  of  as  many  subcortical  structures   feasible  for  segmentation.  When  developing  an  MR  sequence  it  is  important  to   consider  the  tradeoff  between  time,  resolution  and  signal.  

 

Since  this  sequence  will  eventually  be  utilized  in  Parkinson’s  patients  acquisition   time  should  be  minimized.  To  this  end,  one  might  want  to  use  acceleration  

techniques  that  minimize  acquisition  time.  For  example,  sense  is  a  MR  technique   that  utilizes  multiple  receiver  coils  in  parallel  to  drastically  reduce  scan  time   (Pruessmann,  Weiger,  Scheidegger,  &  Boesiger,  1999).  Since  acquisition  time  is   limited,  sense  may  be  a  necessity  for  our  sequence.  However,  if  utilized  it  will  be   at  the  expense  of  MR  signal.    

 

To  examine  this  tradeoff  five  key  questions,  listed  below,  will  be  calculated  for   SNR  and  CNR.  SNR  and  CNR  are  useful  quantities  for  image  evaluation  and   contrast  enhancement  (Dietrich  et  al.,  2007).  

 

1)   What  is  the  ideal  resolution  (0.7  isotropic  vs.  0.5  isotropic)  for  visualization   of  subcortical  structures?  

(8)

5)   What  is  the  contrast  difference   between  MP2RAGE  &  

MP2RAGE  with  four  echoes   (MP4/MP2RAGEME)?      

Once  the  optimal  sequence  has  been   determined;;  segmentations  from   independent  raters  will  be  compared   using  quantitative  measurements.   These  scores  will  act  as  a  secondary   measure  to  SNR/CNR  for  determining   the  efficacy  of  the  MR  sequence  

developed.  Yet  prior  to  segmentation  a   detailed  guideline  must  be  developed;;   this  is  necessary  to  facilitate  consistency   across  raters.  Due  to  time  limitations   this  project  will  focus  on  segmentation  of   the  striatum,  specifically  the  Putamen   (Pu),  Caudate  (Cd)  and  Nucleus  

Accumbens  (Ac).  The  quality  of  both  the   scan  and  the  segmentation  guideline  can   be  indirectly  measured  via  inter-­rater   reliability  of  segmentations.  Two   independent  raters  will  use  the  same   scans  and  segmentation  guidelines.  The   final  step  will  be  to  compare  our  

segmentations  with  the  automated  tool   MIST.    

   

Segmentation  of  the  Striatum    

 

Manual  segmentation  is  the  process  in  which  two  independent  raters  outline  the   boarders  of  a  structure  of  interest  in  a  continuous  direction  in  space.  Manual   segmentation  is  still  advantageous  to  automatic  segmentation  primarily  since  the   tools  have  not  yet  been  comprehensively  developed.  As  briefly  mentioned  MIST  

(9)

is  an  automatic  subcortical  segmentation  tool,  yet  it  only  includes  six  subcortical   structures  and  uses  a  reference  mesh  from  a  manual  segmentation  (Visser  et  al.,   2016).  One  of  the  main  limitations  of  manual  segmentation  is  the  time  in  which  it   takes  to  complete.  Yet  this  processes  is  a  necessity  in  the  development  of  a   subcortical  atlas.  As  aforementioned,  the  main  justification  for  building  a   subcortical  atlas  is  to  assist  surgeons  in  positioning  DBS  electrodes.      

 

The  above  suggests  the  need  for  a  comprehensive  subcortical  MR  atlas,  along   with  outlining  promising  MR  sequences  for  visualization.  The  goal  of  this  study  is   the  development  of  an  MR  sequence  that  visualizes  as  many  subcortical  

structures  possible  for  segmentation;;  these  segmented  structures  will  eventually   be  used  to  develop  an  atlas.  The  following  section  of  the  report  will  outline  the   methods  used  to  reach  this  twofold  goal;;  MR  sequence  development  &  

segmentation  of  the  striatum.  

 

Methods  

 

As  seen  in  the  project  overview  this  project  is  divided  into  two  sections;;  1)   optimizing  MR  sequences  and  2)  segmentation  of  the  striatum.  Firstly  the  

methods  used  to  determine  the  optimal  MR  sequence  (SNR  &  CNR  calculations)   will  be  described.  The  second  subsection,  segmentation  of  the  striatum,  will   outline  the  methods  used  to  for  inter-­rater  reliability  comparisons.    

 

Optimizing  MR  sequences  

 

To  acquire  the  structural  data  four  participants  were  scanned  in  a  variety  of   sequences.    

 

Participants  

All  subjects  signed  informed  consent  documents  prior  to  scanning.  Monetary   compensation  (20e)  was  granted  to  three  subjects,  one  was  excluded  since  they   were  university  staff.  All  structural  scans  were  acquired  on  a  Philips  7T  Achieva   MRI  with  a  2-­channel  transmit,  32-­channel  receive  head  coil  from  Nova  Medical   (NOVA  Medical  Inc.,  Wilmington  MA)  at  the  Spinoza  Center  for  Neuroimaging.   Since  this  project  is  the  advancement  of  a  technique,  multiple  differing  MR   sequences  were  used,  seen  on  table  one  below.  The  voxels  in  all  sequences   were  acquired  isotropic  yet  reconstructed  slightly  non-­isotropic,  the  reconstructed   voxel  sizes  can  be  found  in  Appendix  A.    

(10)

Table  One  MR-­Sequence  Overview  

Scan   Type   Voxel   Slices   Time   TR   TE   Inv1   Inv2   flip   1   MP2RAGE   0.5mm   328   13:00   6000   2.4   680   1965.5   7  7   2   MP2RAGE   0.7mm   234   13:00   6000   3   680   1965.5   4  4     3   MP_nosense   1mm   164   16:00   6000   3   670     4   4   MP_sense   1mm   164   6:30   6000   3   670     4   5   MP2RAGE   0.7mm   234   13:00   6000   3   670   1965.5   4  4   6   MP2RAGE   0.7mm   234   13:00   6000   3   670   1965.5   4  4   7   MP2RAGEME   0.7mm   234   14:35   6700   3/8.9/14.8/20.7   670   3749   4  4   8   MP4SLAB   0.6mm   128   9:04   6700   2.3/8.2/14.1/20   670   3749   4  4   9   MP2RAGEME   0.7mm   234   20:42   6868   3/11.5/19/27.5   670   3674   4  4   TR Time of Repetition, TE Time of Echo, Inv1 Inversion 1, Inv2 Inversion 2, flip Flip Angle

   

Signal-­to-­noise  ratio  (SNR)  

 

We  define  signal-­to-­noise  ratio  as  “the  relative  strength  of  a  signal  compared  with   other  sources  of  variability  in  the  data”  (Huettel,  Song  &  McCarthy,  2015,  p.  273).       Meanroi SDroi     Contrast-­to-­noise  ratio  (CNR)    

We  define  contrast-­to-­noise  ratio  as  “the  magnitude  of  the  intensity  difference   between  different  quantities  divided  by  the  variability  in  their  measurements”   (Huettel,  Song  &  McCarthy,  2015,  p.  273).  Since  our  interest  lay  in  segmenting   subcortical  nuclei,  our  equation  focused  on  gray  to  white  matter  contrast  

differences.      

Meanroi+ MeanWM

SDWM

 

 

Regions  of  interest  (ROI)  for  SNR/CNR  calculations  

 

Spheres  were  built  in  individual  space  using  command  line  code  of  fslmaths  and   fslstats  (FSL  5.0.9).  When  comparing  different  sequences  within  the  same  

(11)

Tool  (FLIRT)  with  six  degrees  of  freedom.  The  initial  goal  was  to  have  an  equal   number  of  voxels  in  each  sphere  across  resolutions,  yet  this  is  not  possible  due   to  the  mathematical  properties  of  a  perfect  sphere.  Appendix  A  lists  the  amount   of  voxels  and  volume  for  each  sphere  in  differing  resolutions  along  with  their   respective  radii.  The  regions  of  interest  were  White  Matter  (WM)  in  the  Corpus   Callosum  (cc),  Putamen  (Pu),  Caudate  (Cd),  Cerebral  Spinal  Fluid  (CSF)  in  the   Lateral  ventricle  and  the  medial  dorsal  thalamic  nucleus  (MD).  To  dampen  the   inhomogeneity  effects  inherent  to  7T  each  ROI  had  two  spheres  placed  

equidistant  on  both  hemispheres.  The  size  of  the  sphere  was  limited  by  two   contingent  factors:  the  structure  with  a  limiting  dimension  in  space  (cc)  in  the   largest  voxel  size  (1mm).    

 

Segmentation  of  the  striatum  

 

Two  independent  raters  (Katja  Höhne  &  Nicholas  Judd)  segmented  six  scans  (1,   2,  5-­8),  strictly  following  the  guidelines  above,  using  FSL  (5.0.9).  This  resulted  in   24  masks,  which  were  then  checked  and  converted  into  binary  masks.  

 

Inter-­rater  Reliability  (IRR)  

 

The  goal  of  measuring  inter-­rater  reliability  is  to  determine  if  there  is  consistency   across  raters.  As  aforementioned,  this  project  is  unconventional  by  using  the  IRR   to  indirectly  measuring  the  quality  of  both  the  MR  sequence’s  and  the  

segmentation  guidelines.  MATLAB  (version  2015b,  The  MathWorks,  Natick,  MA)   on  Mac  Yosemite  (10.10.5)  was  used  to  compute  the  two  statistical  comparison   methods  used;;  Dice  coefficient  and  the  modified  Hausdorff  distance  (MHD)   (Beauchemin,  Thomson,  &  Edwards,  1998;;  Dice,  1945).  The  Dice  coefficient   tends  to  be  biased  when  comparing  masks  with  larger  surface  areas,  since   naturally  they  will  have  more  matching  surface  space  than  a  smaller  mask.  This   limitation  of  Dice  coefficient  is  precisely  why  we  decided  to  also  report  the  MHD;;   since  its  “value  increases  monotonically  as  the  amount  of  difference  between  the   two  sets  of  edge  points  increase”  (Dubuisson  &  Jain,  1994,  p.  568).  Dubuisson   and  Jain  (1994)  empirically  show  the  MHD  to  be  more  robust  to  outlier  points   then  the  Hausdorff  distance,  leading  us  to  use  the  MHD.  Scripts  will  be  provided   upon  request.  

 

MIST  comparison  

 

MIST  has  yet  to  be  released  by  FSL,  therefore  the  MIST  comparison  part  of  this   project  was  not  possible.  

(12)

   

Results  

 

The  results  section  will  firstly  focus  on  the  MR  sequences  as  a  whole  before   moving  on  to  the  results  surrounding  the  development  of  the  segmentation   protocol  and  the  inter-­rater  reliability  scores.    

 

Magnetization-­Prepared  2  Rapid  Gradient  Echo  with  Multiple  Echoes   (MP2RAGEME;;  MP4)  

 

One  of  the  more  promising  results  of  this  project  was  the  invention  of  the   MP2RAGEME  sequence.  The  sequence  is  an  extension  of  an  MP2RAGE,  in   which  there  is  a  first  inversion  followed  by  four  echoes.  The  first  echo  acts  as  the   second  inversion  for  field  inhomogeneity  correction.  One  of  the  benefits  of  this   sequence  is  the  ability  to  also  derive  QSM  maps  from  the  same  sequence.        

Scan  Quality  

 

1)   What  is  the  ideal  resolution  (0.7  isotropic  vs.  0.5  isotropic)  for  visualization   of  subcortical  structures?  

2)   Does  a  change  in  the  first  inversion  to  match  Tourdias  et  al.  (2014)  paper   affect  CNR?  

 

Table  2  Contrast  to  Noise  Ratio  

comparing  differing  first  inversions    

  Scan  1   (0.5mm)   Scan  2   Scan  5   (Tour)   Cd   -­4.5   -­10.7   -­10.8   Pu   -­5.6   -­9.7   -­10.1   Cd Caudate, Pu Putamen, Tour Tourdias et al. (2014)  

As  seen  in  Table  2,  a  0.5mm  whole  brain  MP2RAGE  contains  too  much  noise  to   be  useful.  Figure  3  shows  the  comparison  between  scan  1  and  scan  2.  The  scan   with  the  first  inversion  to  match  Tourdias  and  colleagues  (2014)  paper  (scan  5)  

(13)

shows  slightly  better  CNR  than  the  scan  with  a  10ms  longer  first  inversion.  This   result  should  be  interpreted  with  caution  due  to  the  limited  amount  of  sequences   acquired  (1  sequence  directly  comparable)  and  the  minimal  contrast  difference   calculated  (Cd  =  -­0.01,  Pu  =  -­0.04).  SNR  calculations  of  these  scans  are  in   Appendix  B.    

 

 

Figure 3: Resolution differences  

3)   What  is  the  impact  of  Sense?  

 

Table  3  Contrast  to  Noise  Ratio  

  Scan  3   No  sense   Scan  4   Sense   Cd   22   12.6   Pu   14.7   10.6   Cd Caudate, Pu Putamen  

As  expected  sense  lowers  the  CNR,  yet  if  we  look  at  the  acquisition  time  

differences  (No  sense  =  16  mins,  sense  =  6  mins)  it  quickly  becomes  evident  that   sense  drastically  reduces  the  scan  time.  When  looking  at  the  CNR  to  time  

tradeoff  we  may  want  our  sequence  to  include  sense  to  limit  acquisition  time,   regardless  of  the  CNR  loss.  SNR  calculations  of  these  scans  are  in  Appendix  B.                  

(14)

     

4)   What  is  the  impact  of  field  inhomogeneity  (MPRAGE/MP2RAGE)?  

   

Table  4  SNR  of  Left  and  Right  Sphere  

(scan  3)  

  Left   Right  

Cd   8.1   9  

Pu   6.6   13.5  

WM   3.8   3.7  

Cd Caudate, Pu Putamen, WM White Matter

 

Briefly  reiterating  an  MP2RAGE  sequence  is  a  T1-­weighted  scan,  which  is  almost  

identical  to  an  MPRAGE,  yet  uses  two  images  at  different  inversion  time  points  to   correct  for  field  inhomogeneities  (Marques  et  al.,  2010).  There  is  no  direct  scan   comparison  that  can  equivocally  answer  this  question  –  What  is  the  impact  of  

field  inhomogeneity?  –  in  our  data,  yet  two  pieces  of  evidence  can  help  elucidate  

an  answer.  Firstly,  examining  the  SNR  values  of  equidistant  left  and  right   sphere’s  in  a  MPRAGE  can  indicate  scan  inhomogeneities.  This  rests  on  the   premise  that  if  there  is  no  inhomogeneity,  equidistant  spheres  of  the  same  

structure  in  different  hemispheres  should  have  the  same  SNR.  Table  4  shows  the   SNR  values  of  left  and  right  ROI’s  in  a  MPRAGE  (scan  3).  Examining  the  results   we  can  see  there  is  not  a  large  difference  in  signal  when  the  spheres  are  

positioned  close  to  each  other  (WM),  yet  as  they  are  further  apart  (Pu)  the   inhomogeneity  effects  become  apparent.  The  second  piece  of  evidence  adds   explanation  to  why  the  further  apart  spheres  have  more  variation  in  SNR.  The   image  below  (Figure  4)  shows  the  consistent  signal  drop  out  in  the  right  anterior   part  of  the  cerebellum  on  our  MP2RAGE  sequence.  This  signal  drop  out  

becomes  much  more  pronounced  in  a  standard  uncorrected  MPRAGE  

sequence.  Since  this  signal  dropout  bleeds  throughout  the  brain,  it  makes  sense   why  a  sphere  in  a  ROI  nearer  to  this  dropout  has  less  signal-­to-­noise  than  a   further  away  sphere.    

(15)

 

Figure 4: MP2RAGE cerebellum drop out  

5)   Are  there  differences  between  the  MP2RAGE  &  MP2RAGME?  (multiple   echo’s)  ?  

   

Table  5  Contrast  to  Noise  Ratio  

  Scan  6   MP2  0.7   Scan  7   MP4  0.7   Scan  8   Slab  0.6   Cd   -­10.14   -­10.88   -­6.60   Pu   -­9.04   -­9.79   -­5.50   MD   -­7.36   -­6.22   -­4.15  

Table 5: MP2 0.7 MP2RAGE at 0.7mm isotropic, MP4 0.7 MP2RAGEME at 0.7mm isotropic, Slab 0.6 Partial slab scan using MP4RAGEME at 0.6mm isotropic.

 

As  seen  in  Table  5,  the  only  notable  difference  in  contrast  between  the  

MP2RAGE  and  the  MP2RAGEME  is  within  the  thalamus,  specifically  the  medial   dorsal  nucleus  of  the  thalamus  (MD).    

 

We  added  a  MP4RAGEME  slab  to  get  a  higher  resolution  (0.6mm)  in  a  similar   scan  time;;  this  is  compared  in  table  5  to  other  sequences  within  the  same   individual  to  determine  if  the  CNR  is  acceptable.  This  attempt  to  increase  voxel   resolution  (0.6),  while  minimizing  acquisition  time  resulted  in  a  too  noisy  scan,  as   seen  by  the  CNR  calculations.  SNR  calculations  of  these  scans  are  in  Appendix   B.    

 

(16)

coronal  fashion  with  an  anterior  –  posterior  direction,  therefore  when  discussing   the  striatum  this  directionality  in  space  will  be  used.  The  boundaries  of  the   striatum  are  generally  clear  due  to  contrast  changes  on  MPRAGE  based   sequences  (MPRAGE,  MP2RAGE  &  MP4RAGEME).  Yet  three  main  issues  in   defineing  boundaries  were  identified  pre-­segmentation;;  the  Nucleus  Accumbens   (Ac)  problem,  Striatal  cell  bridges  and  the  Islands  or  noise  problem.    A  panel  of   researchers  experienced  in  segmentation  and  anatomy  discussed  and  reached   the  conclusions  outlined  in  the  guideline  (Appendix  C).    

 

The  Accumbens  Nucleus  (Ac)  problem  

 

The  first  issue,  the  ‘Ac  problem’,  involved  how  to  define  the  borders  of  the  Ac.   Current  in-­vivo  structural  techniques  are  unable  to  distinguish  the  Ac  from  nearby   structures,  such  as  the  bed  nucleus  (see  Figure  5).  A  panel  discussion  resulted   in  the  liberal  approach  of  preferring  to  include  the  bed  nucleus  rather  then   exclude  parts  of  the  Ac.  Therefore  the  segmentation  cutoff  was  the  lower  tip  of   the  lateral  ventricle,  as  seen  on  Figure  5  of  the  MAI  Atlas  (Mai,  Paxinos  &  Voss,   2008).  

 

 

Figure 5: Lower tip of the lateral ventricle cut-off (Mai, Paxinos & Voss, 2008)

 

     

(17)

Striatal  cell  bridges  problem    

The  ‘striatal  cell  bridges  problem’  is  located  around  the  midpoint  of  the  structure   as  the  Cd  and  Pu  split  apart  (as  seen  in  Figure  6).  This  splitting  process  gives   rise  to  multiple  striatal  cell  bridges  of  varying  sizes,  the  smaller  bridges  are   undetectable  on  7T  MRI  using  MPRAGE,  MP2RAGE  and  MP4RAGEME.  This   leads  to  the  question,  how  to  determine  if  a  small  cluster  of  pixels  is  noise  or  grey   matter?  The  solution,  agreed  upon  by  a  panel  of  experts,  was  to  commence   segmentation  if  the  structure  is  a  minimum  of  two  pixels  (voxel  size  =  0.7mm),   with  consideration  to  pervious  slices  and  location.  This  cutoff  was  chosen  in  an   attempt  to  include  as  much  of  the  structure  as  possible.  A  more  detailed  report  of   these  issues  can  be  viewed  in  Appendix  D.  

     

(18)

small  cluster  of  pixels  is  noise  or  grey  matter?  When  segmenting  in  a  coronal   fashion,  near  the  end  of  structure  it  will  seem  as  if  there  are  multiple  Pu  islands   (Figure  7).  A  more  accurate  description  would  be  to  call  them  Pu  peninsulas,  as   they  are  contacted  to  the  structure  as  a  whole.  These  structures  vary  in  size  and   location  through  slices.  The  agreed  upon  solution,  identical  to  the  ‘striatal  cell   bridges  problem’,  was  to  segment  if  the  structure  is  a  minimum  of  two  pixels   (voxel  size  =  0.7mm),  with  consideration  to  pervious  slices  and  location.  This   cutoff  was  chosen  in  an  attempt  to  include  as  much  of  the  peninsulas/islands  as   possible.      

 

Figure 7: Putamen peninsulas (Mai, Paxinos & Voss, 2008)

Inter-­rater  Reliability  (IRR)    

(19)

The  inter-­rater  reliability  (IRR)  was  calculated  via  DICE  and  MHD,  

aforementioned  in  the  methods  section.  IRR  calculations  were  necessary  for  two   reasons.  First  and  foremost,  to  determine  segmentation  similarity  between  the   two  independent  segmenters.  This  IRR  score  could  justify  or  invalidate  the   segmentation  guideline.  The  second  reason  for  calculating  IRR  was  to  use  it  as   an  indirect  measure  of  sequence  quality.  This  indirect  measure  would  only  work   in  the  case  of  one  type  of  sequence  having  systemically  lower  IRR  scores.      

Table  6  Inter-­rater  Reliability  Measures  

  Dice   MHD  

MP2  Left  0.5mm  (scan  1)   0.91   3.12*  

MP2  Right  0.5mm  (scan  1)   0.30   6.52*  

MP2  Left  (scan  2)   0.93   2.16  

MP2  Right  (scan  2)   0.94   1.84  

TourMP2  Left  (scan  5I)   0.93   1.72  

TourMP2  Right  (scan  5I)   0.94   1.62  

TourMP2  Left  (scan  6I)   0.94   1.76  

TourMP2  Right  (scan  6I)   0.93   1.86  

MP4  Left  (scan  7)   0.93   1.89  

MP4  Right  (scan  7)   0.92   1.93  

MP4  Left  (scan  9)   0.92   2.19  

MP4  Right  (scan  9)   0.93   2.09  

MP2 MP2RAGE, TourMP2 MP2RAGE with a first inversion matched to Tourdias et al. 2014, MP4 synonymous

for a MP2RAGEME sequence

I  these  scans  are  identical  yet  with  different  subjects  

*  due  to  differing  voxel  sizes  the  MHD  cannot  be  compared  to  the  0.7mm  scans  (all  other  scans   listed)  

 

The  right  mask  of  scan  1  was  improperly  saved  by  one  of  the  segmenters,   leading  to  a  very  low  DICE  score  and  a  very  high  MHD  (MHD=6.52).  The  DICE   (range  =  0.93-­0.94)  and  MHD  (range  =  1.62-­1.86)  scores  from  scan’s  5  &  6  are   very  consistent,  which  is  a  promising  result  since  they  are  identical  sequences.   This  result  seems  to  validate  the  segmentation  guideline  since  the  reliability   across  raters  on  the  same  sequence,  yet  with  differing  participants,  is  very   consistent.  The  segmentation  guidelines  were  developed  with  the  purpose  of   facilitating  consistency  across  segmenters;;  therefore  the  across  board  high  Dice   scores  and  low  MHD  scores  justify  the  use  of  the  segmentation  guidelines.      

   

(20)

atlases,  by  eventually  developing  our  own.  This  project  was  started  via  this  report   in  a  two-­pronged  manner.  Firstly  in  when  we  develop  an  MR  sequence  with  the   ability  to  visualize  multiple  subcortical  nuclei  in  differing  modalities  and  secondly   with  the  successful  segmentation  of  the  striatum.  The  first  part,  development  of   an  MR  sequence,  was  assisted  through  SNR/CNR  calculations.  Yet  before   segmenting  the  stratum  guidelines  had  to  be  developed,  only  then  could  IRR   calculations  be  completed.  These  IRR  calculations  offer  a  second  utility  to   possibly  identify  sequences  with  consistently  low  scores,  yet  this  result  did  not   come  to  fruition.  The  discussion  section  follows  the  path  of  the  project  by  firstly   examining  sequence  development  and  then  briefly  discussing  the  segmentation   of  the  striatum.    

 

Sequence  Development  

 

The  results  from  the  SNR/CNR  calculations  helped  confirm  our  conclusions   derived  by  simply  examining  the  scans.  One  particularly  puzzling  result  is  the   inability  to  replicate  Tourdias’  and  colleagues  (2014)  MPRAGE  sequence.  This  is   especially  odd  since  we  also  replicated  their  scan  without  sense,  which  resulted   in  higher  CNR  values,  yet  the  intra-­thalamic  divisions  were  still  not  visible.  Our   finding  is  in  stark  contrast  with  their  article.  A  myriad  of  factors  could  explain  this   failed  replication  such  as,  differing  head  coils,  differing  scanner  manufactures   and  differing  subjects.  Following  this  lack  of  replication  we  determined  three   necessities  for  our  MR  sequence:  1)  MP2RAGE  2)  Resolution  3)  Sense.    

1)   MP2RAGE  

As  seen  on  table  4,  the  inherent  inhomogeneity  effects  from  the  7T   scanner  were  too  large  for  the  successful  utilization  of  a  MPRAGE   sequence.  

 

2)   Resolution  

Since  increasing  the  voxel  size  did  not  yield  any  clear  intra-­thalamic   divisions,  we  decided  to  revert  back  to  0.7mm  isotropic.  The  two  

sequences  (scan  1  &  8)  with  voxel  sizes  bellow  0.7mm  produced  far  too   noisy  scans  for  our  purposes;;  ergo  we  settled  upon  0.7mm.    

   

(21)

 

3)   Sense  

Not  using  sense  increased  the  acquisition  time  almost  threefold  (from  6:30   to  16  mins)  on  a  MPRAGE  sequence  at  a  relatively  large  voxel  size  

(1mm).  We  had  already  determined  that  correcting  for  field  

inhomogeneities  via  an  MP2RAGE  sequence  was  necessary,  along  with   preferring  a  smaller  voxel  size.  Both  of  these  factors  lengthen  acquisition   time;;  therefore  we  determined  the  use  of  sense  was  critical  to  keep  the   acquisition  time  reasonable.    

 

The  outcome  of  these  decisions  led  to  scans  5  &  6  (Table  1),  which  are  standard   MP2RAGE  sequences  at  0.7mm  isotropic  utilizing  a  first  inversion  (670ms)  to   match  Tourdias  and  colleagues  (2014).  Since  these  scans  were  still  unable  to   visualize  intra-­thalamic  divisions  our  attention  shifted  towards  QSM.    

     

MP2RAGEME  (MP4)  

 

The  most  promising  outcome  of  this  project  is  the  MP2RAGEME  sequence,   which  is  essentially  a  MPRAGE  followed  by  four  echoes.  The  first  echo  can  be   used  as  a  second  inversion,  leading  to  the  ability  to  compute  a  unified  MP2RAGE   scan.  With  the  MP2RAGEME  sequence  it  is  also  possible  to  compute  a  QSM   map  from  the  echoes.  As  aforementioned  the  QSM  modality  allows  the  

visualization  of  nuclei  unattainable  using  MP2RAGE,  such  as  the  Gpi/e,  RN,  SN,   STN  (Keuken  et  al.,  2014).  Having  the  ability  to  derive  both  of  these  modalities   from  the  same  sequence  allows  multimodal  segmentation  without  the  need  for   registration.  Scan  7  was  the  first  implementation  of  the  MP2RAGEME  sequence.   The  CNR  results  (Table  5)  confirmed  that  no  contrast  was  lost  in  the  striatum  in   comparison  to  the  earlier  MP2RAGE’s  (scans  5  &  6).    

 

Two  conclusions  resulted  from  this  scanning  session.  Firstly,  that  we  would  stay   at  0.7mm  isotropic,  rather  then  repeatedly  attempting  finer  resolutions  (scan  8).   The  second  and  more  significant  conclusion  was  to  extend  the  last  echo.  We   hypothesized  that  a  later  last  echo  would  lead  to  increased  T2*  values,  which  in   turn  would  benefit  our  QSM’s.  Scan  9  was  an  attempt  to  match  Keuken  and   colleagues  (2014)  last  echo  (29.57  ms).  The  last  echo  was  heavily  extended  from   20.7  (scan  7)  to  27.5  (scan  9),  which  in  turn  added  six  minutes  more  on  the   acquisition  time.  By  chance  this  led  to  intra-­thalamic  divisions  appearing.  When   attempting  to  lengthen  the  last  echo,  we  had  to  slightly  shorten  the  second  

(22)

multiple  modalities  without  the  need  for  registration.      

 

Figure 8: Intra-Thalamic Divisions (scan 9)  

Segmentation  of  the  Striatum    

During  segmentation  no  serious  issues  presented  themselves.  Only  following   segmentation  was  the  improperly  saved  mask  discovered.  It  is  the  

recommendation  of  the  author  to  save  the  mask  multiple  times  throughout  the   segmentation  process  and  following  completion  reload  the  mask.  One  limitation   of  the  design  used  was  the  lack  of  counterbalancing  the  order  of  scans  between   segmenters.  This  limitation  is  slightly  mitigated  by  using  trained  segmenters  on  a   limited  amount  of  scans.    

 

Inter-­rater  Reliability  

 

Regardless  of  the  sequence  the  DICE  and  MHD  scores  were  fairly  invariable.   This  consistency  between  segmenters  can  be  interpreted  as  a  success  for  the   segmentation  guideline.  Yet  on  the  flip  slide  it  cannot  offer  any  conclusions   towards  which  scans  are  preferable  to  segment  the  Striatum.  The  MP2RAGEME   sequence  with  a  long  last  echo  (scan  9)  seems  to  have  slightly  larger  MHD’s.   This  may  be  due  to  the  border  between  the  Cd  and  lateral  ventricle  being  difficult   to  distinguish  (Figure  8).  Another  possibility  is  time  pressure  upon  the  raters,   since  this  scan  was  the  last  one  to  segment.    

(23)

        Conclusion    

One  of  the  more  promising  results  from  this  project  is  the  development  of  a   MP2RAGEME  sequence.  This  sequence  has  the  potential  for  utility  in  the  

segmentation  of  the  striatum,  intra-­thalamic  nuclei  and  a  host  of  other  subcortical   nuclei.  Further  piloting  will  show  if  this  result  is  replicable.  The  completed  striatal   segmentation  guidelines  (Appendix  C)  were  successful  in  facilitating  consistent   segmenting.  The  one  overarching  limitation  of  this  project  is  the  lack  of  power   behind  the  conclusions  drawn  in  this  report.  Yet,  this  is  an  inherent  limitation  to   the  process  of  piloting  as  a  whole.  Further  segmentation  is  needed  to  build  a   multimodal  MR  atlas  of  the  subcortex  from  the  MP2RAGEME  sequence.                                                      

(24)

in  neuroanatomy,  7,  40.  Chicago  

Beauchemin,  M.,  Thomson,  K.  P.  B.,  &  Edwards,  G.  (1998).  On  the  Hausdorff   distance  used  for  the  evaluation  of  segmentation  results.  Canadian  Journal  

of  Remote  Sensing,  24(1),  3–8.  

http://doi.org/10.1080/07038992.1998.10874685  

Darki,  F.,  Nemmi,  F.,  Möller,  A.,  Sitnikov,  R.,  &  Klingberg,  T.  (2016).  Quantitative   susceptibility  mapping  of  striatum  in  children  and  adults,  and  its  association   with  working  memory  performance.  NeuroImage,  136,  208–214.  

http://doi.org/10.1016/j.neuroimage.2016.04.065  

de  Hollander,  G.,  Keuken,  M.  C.,  Bazin,  P.  L.,  Weiss,  M.,  Neumann,  J.,  Reimann,   K.,  …  Schäfer,  A.  (2014).  A  gradual  increase  of  iron  toward  the  medial-­ inferior  tip  of  the  subthalamic  nucleus.  Human  Brain  Mapping,  35(9),  4440– 4449.  http://doi.org/10.1002/hbm.22485  

Dice,  L.  R.  (1945).  Measures  of  the  Amount  of  Ecologic  Association  Between   Species  Author  (  s  ):  Lee  R  .  Dice  Published  by  :  Wiley  Stable  URL  :   http://www.jstor.org/stable/1932409  Accessed  :  08-­04-­2016  13  :  33  UTC   Your  use  of  the  JSTOR  archive  indicates  your  acceptance  of  th.  Ecology,  

26(3),  297–302.  

Dietrich,  O.,  Raya,  J.  G.,  Reeder,  S.  B.,  Reiser,  M.  F.,  Schoenberg,  S.  O.,  Raya,   G.,  …  Schoenberg,  S.  O.  (2007).  Measurement  of  Signal-­to-­Noise  Ratios  in   MR  Images  :  Influence  of  Multichannel  Coils,  Parallel  Imaging,  and  

Reconstruction  Filters.  Journal  of  Magnetic  Resonance  Imaging,  385(2),   375–385.  http://doi.org/10.1002/jmri.20969  

Hariz,  M.,  Blomstedt,  P.,  &  Zrinzo,  L.  (2013).  Future  of  brain  stimulation:  New   targets,  new  indications,  new  technology.  Movement  Disorders,  28(13),   1784–1792.  http://doi.org/10.1002/mds.25665  

Huettel,  SA.,  Song,  AW.,  &  McCarthy,  G.  Functional  Magnetic  Resonance  

Imaging.  2nd  ed.  Sinauer  associates  Inc.,  Sunderland,  MA:  USA.  

Keuken,  M.  C.,  Bazin,  P.  L.,  Crown,  L.,  Hootsmans,  J.,  Laufer,  A.,  Müller-­Axt,  C.,   …  Forstmann,  B.  U.  (2014).  Quantifying  inter-­individual  anatomical  variability   in  the  subcortex  using  7T  structural  MRI.  NeuroImage,  94,  40–46.  

http://doi.org/10.1016/j.neuroimage.2014.03.032  

Kopell,  B.  H.,  &  Greenberg,  B.  D.  (2008).  Anatomy  and  physiology  of  the  basal   ganglia:  Implications  for  DBS  in  psychiatry.  Neuroscience  and  Biobehavioral  

Reviews,  32(3),  408–422.  http://doi.org/10.1016/j.neubiorev.2007.07.004  

Mai,  J.  K.,  Paxinos,  G.,  &  Voss,  T.  (2008)  Atlas  of  the  Human  Brain  (3rd  ed.)  New   York,  NY:  Academic  Press  is  an  imprint  of  Elsevier.  

Malone,  D.  A.,  Dougherty,  D.  D.,  Rezai,  A.  R.,  Carpenter,  L.  L.,  Friehs,  G.  M.,   Eskandar,  E.  N.,  …  Greenberg,  B.  D.  (2009).  Deep  Brain  Stimulation  of  the   Ventral  Capsule/Ventral  Striatum  for  Treatment-­Resistant  Depression.  

Biological  Psychiatry,  65(4),  267–275.  

(25)

Marques,  J.  P.,  &  Gruetter,  R.  (2013).  New  Developments  and  Applications  of  the   MP2RAGE  Sequence  -­  Focusing  the  Contrast  and  High  Spatial  Resolution   R1  Mapping.  PLoS  ONE,  8(7).  http://doi.org/10.1371/journal.pone.0069294   Marques,  J.  P.,  Kober,  T.,  Krueger,  G.,  van  der  Zwaag,  W.,  Van  de  Moortele,  P.-­

F.,  &  Gruetter,  R.  (2010).  MP2RAGE,  a  self  bias-­field  corrected  sequence  for   improved  segmentation  and  T1-­mapping  at  high  field.  NeuroImage,  49(2),   1271–1281.  http://doi.org/10.1016/j.neuroimage.2009.10.002  

Pruessmann,  K.  P.,  Weiger,  M.,  Scheidegger,  M.  B.,  &  Boesiger,  P.  (1999).   SENSE:  Sensitivity  encoding  for  fast  MRI.  Magnetic  Resonance  in  Medicine,  

42(5),  952–962.  http://doi.org/10.1002/(SICI)1522-­

2594(199911)42:5<952::AID-­MRM16>3.0.CO;;2-­S  

Saranathan,  M.,  Tourdias,  T.,  Bayram,  E.,  Ghanouni,  P.,  &  Rutt,  B.  K.  (2015).   Optimization  of  white-­matter-­nulled  magnetization  prepared  rapid  gradient   echo  (MP-­RAGE)  imaging.  Magnetic  Resonance  in  Medicine,  73(5),  1786– 1794.  http://doi.org/10.1002/mrm.25298  

Schweser,  F.,  Deistung,  A.,  Sommer,  K.,  &  Reichenbach,  J.  R.  (2013).  Toward   online  reconstruction  of  quantitative  susceptibility  maps:  Superfast  dipole   inversion.  Magnetic  Resonance  in  Medicine,  69(6),  1582–1594.  

http://doi.org/10.1002/mrm.24405  

Tourdias,  T.,  Saranathan,  M.,  Levesque,  I.  R.,  Su,  J.,  &  Rutt,  B.  K.  (2014).   Visualization  of  intra-­thalamic  nuclei  with  optimized  white-­matter-­nulled   MPRAGE  at  7T.  NeuroImage,  84,  534–545.  

http://doi.org/10.1016/j.neuroimage.2013.08.069  

Trépanier,  L.  L.,  Kumar,  R.,  Lozano,    a  M.,  Lang,    a  E.,  &  Saint-­Cyr,  J.  a.  (2000).   Neuropsychological  outcome  of  GPi  pallidotomy  and  GPi  or  STN  deep  brain   stimulation  in  Parkinson’s  disease.  Brain  and  Cognition,  42(3),  324–347.   http://doi.org/10.1006/brcg.1999.1108  

Udupa,  K.,  &  Chen,  R.  (2015).  The  mechanisms  of  action  of  deep  brain  

stimulation  and  ideas  for  the  future  development.  Progress  in  Neurobiology,  

133,  27–49.  http://doi.org/10.1016/j.pneurobio.2015.08.001  

Visser,  E.,  Keuken,  M.  C.,  Douaud,  G.,  Gaura,  V.,  Bachoud-­Levi,  A.  C.,  Remy,   P.,  …  Jenkinson,  M.  (2016).  Automatic  segmentation  of  the  striatum  and   globus  pallidus  using  MIST:  Multimodal  Image  Segmentation  Tool.  

NeuroImage,  125,  479–497.  

http://doi.org/10.1016/j.neuroimage.2015.10.013  

Webb,  A.  G.,  &  Van  de  Moortele,  P.  F.  (2015).  The  technological  future  of  7  T   MRI  hardware.  NMR  in  Biomedicine,  (October  2014),  n/a–n/a.  

http://doi.org/10.1002/nbm.3315              

(26)

 

Appendix  Table  of  Contents  

 

     

Appendix  A  

 

Sphere  and  true  voxel  sizes    

p.  21  

 

 

Appendix  B  

SNR  results    

p.  22  

 

 

Appendix  C  

Striatum  Guideline  

p.  23  -­  26  

 

 

Appendix  D    

Three  main  guideline  issues  report  

p.  27  -­  34  

 

             

(27)

   

Appendix  A:  

Sphere  and  true  voxel  sizes  

   

Voxel  size     Num  Voxels   Volume     Radius    

0.92x1x0.92   139   116.42   3  

0.64x0.7x0.64   137   39.35   2.1  

0.58x0.58x0.6   147   29.92   1.9  

0.47x0.5x0.47   123   13.85   1.5  

All  sizes  are  displayed  in  millimeter    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(28)

  Q1-­2  

Title:  MP2RAGE  SNR  

  Scan  1   Scan  2   Scan  5    

Cd   5.1   5   3.5   Pu   3.9   6.2   3.7   WM   10.5   16.7   14       Q3   Title:  MPRAGE  SNR     SNR   No  sense   (scan  3)   SNR   Sense   (scan  4)   Cd   8.6   8.7   Pu   9.4   10.7   WM   3.8   2.2       Q5   Title:  SNR  MP2  v  mp4  v  MP4_slab     Table  4:  SNR     Scan  6   MP2  0.7   Scan  7   MP4  0.7   Scan  8   Slab  0.6   Cd   3.5   13.4   6.9   Pu   5   15.8   7.8   WM   13.1   22   13.5   MD   5.5   19.5   9.5                

(29)

 

Appendix  C:  

Striatum  Guideline    

 

Segmentation guidelines for MP2RAGE

Striatum:

The first segmentation includes the entire striatum outlined in continuous coronal slices with an anterior – posterior direction. Therefore segmentation commenced with the most anterior part of the caudate, inferiorly neighboring the lateral ventricle (when larger of 2x2 pixels). When segmenting use the Uni image along with the T1 to distinguish boundaries especially those neighboring the ventricles; this strategy is useful due to contrast changes.

It is important to 1) take into consideration pixel that go into noise or have strict boarders between slices and 2) when in doubt, utilize other dimensions.

Once the caudate and putamen are distinct, yet still connected structures, striatal cell bridges will connect the two. (As seen in image bellow)

(30)

To delineate the inferior boarder (Green arrows) extrapolate from the external capsule as it wraps around the putamen. End this boarder at the lower tip of the lateral ventricle, if difficult to discern switch between modalities and examine other fields of view. The motivation for this guideline is to be certain to include the Nucleus Accumbens, yet inevitably parts of the bed nucleus will also be included.

Secondly, for the superior boarder (Blue arrows) it is critical to exclude the Globus Pallidus (GP).

Lastly for the capsule internal boarder (Yellow arrow) end when the cell bridges have under a width of two pixels.

(31)

Start disconnecting when width is less than 2 pixels. (Taking contrast changes into consideration & previous slices)

Posterior Guidelines:

Unless clearly distinguishable ignore the tail of the caudate (TCd). Eventually the putamen forms islands, ignore these unless larger then 2x2 pixels. Take into consideration the pre & post slice and the location of the island when segmenting.

(32)

                                           

(33)

Appendix  D:  

Three  main  guideline  issues  report    

 

Three main guideline issues & corresponding

decisions

1) Nucleus Accumbens (Ac)

Issue: Identifying the Nucleus Accumbens from other nearby subcortical structures (i.e.

Bed Nucleus)

Sequential, in intervals of two, coronal slices starting at the coordinates (207,192,217) and ending at (207,182,217) are displayed below (Image 1). The slices are displayed in an anterior to posterior direction; the changing axis, y, is listed on the slice.

Image 1 Coronal view of the Striatum

GP Globus Pallidus

This spatial series of slices highlight one of the critical aspects in the segmentation of the striatum, that is; where to place the cut-off of for the inclusion of the Nucleus Accumbens while excluding non-striatal related subcortical nuclei? Image two (207,186,217) shows potential cut-off lines for segmentation in a unified MP2RAGE modality.

(34)

To determine the optimal striatal cut-off line we consulted the Mai Atlas (2008) (Image 3). This resulted two distinct strategies regarding the Nucleus Accumbens (NAcc); (1) a

conservative approach (excluding large portions of the NAcc to ensure NAcc purity) or (2) a liberal approach (making sure to fully include the NAcc). Both of these approaches

have advantages and disadvantages.

Image 3 MAI Atlas

(Mai, Paxinos & Voss, 2008, p. 131,133)

The panel decided to have a cut-off at the lower tip of the lateral ventricle. This cut-off line can be viewed in the MAI atlas (Image 4) and in the previously foreseen unified MP2RAGE slice (207,186,217) (Image 5). A decision for the (2) liberal approach was chosen since we wanted our atlas to include the entirety of the NAcc. This approach will

(35)

inevitably include parts of the Bed Nucleus (BS), yet this was a necessary concession for the entire inclusion of the NAcc in our atlas.

Image 4 Striatal cut-off line on the MAI atlas

(Mai, Paxinos & Voss, 2008, p. 131,133)

(36)

which the Caudate and Putamen seem to split apart. In this process striatal cell bridges appear in varying sizes, as seen in the histological slice bellow of the MAI atlas (Image 6)

Image 6 Histological slice from the MAI atlas showing striatal cell bridges

(Mai, Paxinos & Voss, 2008, p. 128)

Below (Image 7) is presented a coronal anterior-posterior slice sequence on a MP2RAGE from Keuken et al. (2014) with an overlaid inter-rater segmentation mask. An inter-rater mask only displays the sections in which both segmenters agree upon.

(37)

Image 7 Inter-rater masks displayed on a T1-map MP2RAGE

Since it is very difficult to determine the difference between random noise and sub-millimetre cell bridges. Two methodological solutions were proposed; (1) ignore the cell

bridges or (2) to include them depending on their size.

The first proposal was initially contrived due to the lack of inter-rater consistency when segmenting striatal cell bridges. The images below show in coronal view the overlap of the strategy to ignore against the inter-rater masks; firstly side by side (Image 8) and then overlaid (Image 9).

(38)

Yellow mask (left) Inter-rater mask Red mask (right) An example of a mask ignoring striatal cell bridges

Image 9 Overlaid segmentation masks

Yellow mask Inter-rater mask Red mask overlaid An example of a mask ignoring striatal cell bridges

While this strategy seemed plausible in select slices, it quickly became evident this methodological strategy would not work for two reasons. Firstly, within subject’s larger striatal cell bridges show a consistent pattern through slices (as seen in image 10), secondly these large striatal cell bridges that show consistency across subjects also.

(39)

Image 10 Within subject consistency of striatal cell bridges

Red arrows highlighting large cell bridges show consistency through slices x(201) y(184-186) z(217)

For these reasons the panel decided to include a cell bridge with the minimum requirement of a width of two pixels. This criterion is valid only for segmentation in sequences with an isotropic voxel size of 0.7mm.

3) Islands or noise?

Issue: How to distinguish sub-millimetre Putamen islands from random noise.

The final guideline issue is that of the Putamen ‘islands’ which, in a coronal view, are located at the caudal part of the Striatum. As shown on the Mai atlas (Image 11) these ‘islands’ are of varying size, leading to a similar detection issue as evident in the striatal

cell bridges problem. These ‘islands’ have more peninsular characteristics, as they are

connected to the structure as a whole.

(40)

Image 12

(109,140,217)

Initially it may seem easy to identify the Striatal islands, as seen in Image 12 highlighted by red arrows. Yet upon closer inspection (Image 13) there are smaller clusters of pixels that cannot be easily identified as independent from noise (Yellow arrows).

(41)

Image 13 Islands or Noise?

(109,140,217)

Due to its location the two-pixel structure that arrow one is pointing towards on Image 13 could be assumed to be part of the Putamen. Yet not all cases are this easy, arrow two is much more difficult to identify as part of the Putamen due to its location.

The panel decided upon the same guidelines as with Striatal cell bridges; that is a Putamen island must have a minimum required width of two pixels with taking into consideration location and neighbouring slices. The rational behind taking neighbouring slices into consideration is due to the fact that these islands are essentially peninsulas, therefore should show across slice consistency.

Referenties

GERELATEERDE DOCUMENTEN

freedom to change his religion or belief, and freedom, either alone or in community with others and in public or private, to manifest his religion or belief in teaching,

In terms of the biofuels industrial strategy of the Republic of South Africa, some seed crops have been identified in the initial phase of the development of the biofuel industry,

Een voordeel voor ons was dat de natuur- speelplaats precies was wat nog ont- brak aan het speelplekkenplan - een vernieuwend idee voor de juiste doel- groep en met een geschikte

Legal interpretation questions concerning these species and the Directive include the protection status of large carnivores expanding their populations into countries from which

grammes as they contain detailed indicators and meas- ures of results agreed with partner countries; implement a country evaluation of General Budget Support programmes before

The percentage of individuals with a maximal HGS above the gender-speci fic cut-off value at attempt 3 com- pared with attempts 1 and 2 ranged from 0 to 50% with higher values

“An analysis of employee characteristics” 23 H3c: When employees have high levels of knowledge and share this knowledge with the customer, it will have a positive influence