• No results found

Characterisation and improvement of the quality of mixing of recycled thermoplastic composites

N/A
N/A
Protected

Academic year: 2021

Share "Characterisation and improvement of the quality of mixing of recycled thermoplastic composites"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Composites

Part

C:

Open

Access

journalhomepage:www.elsevier.com/locate/jcomc

Characterisation

and

improvement

of

the

quality

of

mixing

of

recycled

thermoplastic

composites

Guillaume

A.

Vincent

a,b

,

Thomas

A.

de

Bruijn

c

,

Sebastiaan

Wijskamp

b

,

Mohammed

Iqbal

Abdul

Rasheed

a

,

Martin

van

Drongelen

a,∗

,

Remko

Akkerman

a a Chair of Production Technology, University of Twente, Enschede 7522 NB, the Netherlands

b ThermoPlastic composites Research Center, Palatijn 15, Enschede 7521 PN, the Netherlands

c ThermoPlastic composites Application Center, Saxion University of Applied Sciences, M.H. Tromplaan 28, Enschede 7513 AB, the Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: Long fibre Thermoplastic composites Mixing Spatial statistics Image analysis

a

b

s

t

r

a

c

t

Alow-shearmixerwasusedtoblendthermoplasticcompositescrapmaterialintoamoltenmixeddough,which wasthencompressionmoulded.Thisprocessisakeystepinanovelrecyclingsolutionforthermoplastic com-posites.Astudywascarriedouttocharacterisethequalityofmixing(QoM)oftheblendeddoughstounderstand howtoimprovetheQoMofmixeddoughstowardsfurtherimprovementandimplementationoftherecycling solution.Inordertoachievethis,theeffectofmixingparametersandfibrelengthontheQoMwerestudied.This studyusedshreddedC/PPSflakes,originatingfromconsolidatedlaminatescrap.Theseflakesareabout20mm insize,andcontainwovenfabricreinforcement,makingthemfardifferentfromregularpellets,andtherefore moredifficulttomix.TheQoMwascharacterisedbymeansofimageanalysisofalargesetofcross-sectional microscopyimages,basedonwhichthescaleandintensityofsegregationofthefibreclusterswereevaluated. BundlesizedistributionwasdeterminedbyapplyingDelaunaytriangulationstoclusterthefibrecentres.These methodswerefoundtobesuitableforcharacterisingtheQoMofsuchdoughs.Increasingthemixingtimeand mixingspeedwereidentifiedaskeywaystoimprovethemixingprocess.Withthecurrentmixingmachine,it isalsosuggestednottousefibreslongerthan15mmonaverageinordertolimitintra-doughvariability.For doughsmadeoffibreslongerthan15mm,improvementsonthemixingdevicecouldsufficientlyincreasethe QoM.

1. Introduction

Theapplicationoflongfibrethermoplastics(LFTs)attracted consid-erableinterestinthepastdecades[1,2].Ononehand,theyofferand allowforanincreasedgeometricalcomplexity,fromadesignpointof view,comparedtocontinuousfibrecomposites.Ontheotherhand,they exhibitmechanicalpropertiesintermediatetoshortandcontinuous fi-brecomposites.SeveralcategoriesofLFTshavebeenbroughttomarket includingthermoplasticbulkmouldingcompounds[3,4],glassmat ther-moplasticsandLFTpellets[2,5,6].Duringthesameperiod,the produc-tionanddemandforcontinuousfibrethermoplasticcomposites(TPCs) hasincreasedconsiderably,leadingtoariseinTPCproductionscrap. Theeconomicbenefitsofrecyclingthisscrap,inconjunctionwith envi-ronmentalandlegislativeincentives,haveencouragedthedevelopment ofrecyclingsolutionsforTPCs.Recently,bothDeBruijnetal.[7,8]and Janneyetal.[9]separatelydevelopedarecyclingrouteforTPCscrap inspiredbytheprocessingofLFTpellets.Aschematicviewofthe recy-clingsolutionimplementedbyDeBruijnisshowninFig.1.Production

Correspondingauthor.

E-mailaddress:m.vandrongelen@utwente.nl(M.vanDrongelen).

offcuts,suchastrimsandnestingscrap,arefirstcollectedandshredded intoflakes.Mostoften,theseflakesaremulti-layeredmaterialandmay consistofwovenfabric,asin[8,10]andasshowninFig.1.Flakesare thenprocessedinablendertoformamoltenmixeddoughthatis trans-ferreddirectlytoapressforcompressionmoulding.Themixingphase usedinthisstudyissimilartothemixingofLFTpellets.Thepelletsor flakesareprocessedinadevicethatmeltsthepolymeranddisperses thefibres.However,mixingofflakesdescribedhere canbe substan-tiallymoredifficultthanmixingLFTpelletsthathavebeendesignedto disperseeasily[5].

Thesubsequentprocessingstep,aftermixing,involvessqueezingthe mixeddoughintoamould.Itsflowbehaviourdependsontheamount offibres,fibrelength,theinteractionoffibrebundlesinthedough,and thusthedispersionofbundles.Onceacomponenthasbeenmoulded,its mechanicalpropertiesarealsolinkedtofibrelength,orientationandthe dispersionoffibrebundles.ApreviousstudybyDeBruijn[7]showed thatmixingthemulti-layeredTPCflakessignificantlyimprovesthe me-chanicalproperties ofthemouldedpanels, comparedtocompression

https://doi.org/10.1016/j.jcomc.2021.100108

Received16October2020;Receivedinrevisedform18December2020;Accepted15January2021

(2)

Fig.1. Schematicflowchartofthechosen recycling solution.Thetoprow illustrates thevariousprocessingstepswhilethe bot-tomrowshowsthematerialstatebetween eachstep.

mouldingofnon-mixedflakes.Thisimprovementismainlydrivenbythe micro-structuralchange:fromstacked,thickflakestohomogeneously entangledfibrebundles.Additionally,therecyclingsolutionpresented herepreventsfibreattritionduringmixingbyusingalow-shearmixer,in ordertolimitthereductioninmechanicalproperties,whichdependon thefibrelength.Themixingofflakes,andtheresultingmicro-structure, isthereforecrucialfortherecyclingprocess.Consequently,aproper un-derstandingofthemixingstepisrequired,aswellasagooddefinitionof thequalityofmixing(QoM)ofmixedflakes.Asuitablecharacterisation methodforQoMmustbedevelopedandimplemented.

Thepresentarticlewilldealwiththemixingstepintherecycling solutiondevelopedbyDeBruijnetal.andcharacterisetheQoMofthe mixedmaterial, withtheobjectiveof understandinghowtoimprove theQoMofmixeddoughs.Inordertoachievethis,severalaspectsof theQoMthatcanbeappliedtofibrereinforcedcompositeswillbe se-lectedfromliterature,improvedandimplemented.Finally,theeffects ofmixingsettingsandfibrelengthonQoMwillbestudied.

2. Literaturereview

Thestudyof mixingandsegregationis afieldof spatialstatistics that,overthepastdecades,hasbeenwidelyappliedtovariousfields ofscience,rangingfromecologytothematerialblending[11–13].A firstcomprehensivedefinitionofQoMwasproposedbyDanckwertsin 1952[14]byintroducingtwoaspects:theintensityofsegregation(IoS) andthescaleofsegregation(SoS).TheIoScorrespondstothe coeffi-cientofvariation(CoV)oftheconcentrationofspeciesinthesystem, alsoknownasevenness[15].Withregardtoblendingfibre compos-ites,itreferstotheCoVofthelocalfibrefraction.TheSoSrepresents acharacteristiclengthofsegregation,orclustering,inthesystem.SoS represents,forinstancethemaximumstriationthicknessformixed flu-ids,orthesizeoffibreclustersforfibrecomposites.Fig.2showsavisual representationofgoodandpoorIoSandSoS,witheachsub-figure rep-resentingacross-sectionalmicrographoffibrecomposites.Thestudies thatfollowedDanckwertsextendedhisinitialworkanddefinedother aspectsofsegregation[15].Exposurecorrespondstotherateofchange insegregation,whichhassomeimportancealongthelengthofscrew extruders,forinstance.Densityisameasureofthemassorvolumeof oneof theconstituentsperunit volumeorarea.Lastly, centralisation correspondstotheaggregationofaconstituentawayfromitscentre.

Thefirsttwoaspectsofsegregationwerecontinuouslymeasuredin variousfieldsrelatedtospatialstatistics[11–13]byadaptingthe mea-surementmethodsforIoSandSoStospecificsituations.IoSandSoSare particularlywell-suitedforthemixingofdiscontinuous-fibrecomposites andhavebeenstudiedbyvariousauthors[13,16–29].Thelatterthree aspectsofsegregation– namelyexposure,densityandcentralisation– havebeenscarcelyusedforfibrecompositesandpolymerblends.

Theproblempresentedinthispaperissimilar,inaway,toother mixingproblemsfordiscontinuous-fibrecompositesorpolymerblends, andcanbesummarisedasfollows.Twoimmisciblespecies,fibresand

polymer,areinitiallyhighlysegregatedintheformoflargeclustersof flakes(largemulti-layeredflakes)andpolymergranulates.During mix-ing,theflakestructuredelaminatesanddisentanglesintoloosebundles, eventuallyleadingtoamoreevendistributionoffibresinthedough. MeasuringIoSandSoSonlyrequiresasnapshotofthefinalstateofthe doughtobemeasured,whiletheexposurecanbedifficulttodetermine formixeddiscontinuous-fibrecompositesbecauseitisusuallyonly pos-sibletocapturethefinalstate.Regardingthecentralisation,Kukukova etal.[15]statethat‘itdoesnotaddinformationaboutthemixing prob-lembeyondthescaleandintensityofsegregation’.However,poor mix-ingoffibrebundlescanleadtoasituationinwhichtheyarelocallywell dispersed(goodIoSandSoS),butaccumulateinsomeareas.

Thecharacterisationof theQoMoffibre-reinforcedplastics is di-verse.Mostresearchisbasedonimageanalysisofcross-sectional mi-croscopy. Severalmethodshavebeen implementedandcan be cate-gorisedasfollows.

Analysesbasedonquadrats

Several authors worked with cross-sectional microscopy of fibre composites dividedintosquaregridsof varioussizes.Thefibre frac-tion orthepresence of fibrein eachcellis measuredandrecorded. Fig.2(a)to2(d)representquadratsfilledwithfibresatvariousdegrees ofevennessandclustering.Inoueetal.[16]andSpowartetal.[17] mea-suredQoMbydeterminingabox-countingdimensionofthepresenceof fibresinthecells.ThisisindirectlyrelatedtotheSoSofthefibre clus-ters.Lietal.[18]alsoworkedoncross-sectionalmicrographsof fibre-reinforcedconcreteandmeasuredtheCoVofthelocalfibrefractionin thecells.UsingtheCoVoflocalfibrefractionisfoundtoleadtothe closestestimationoftheIoSforsuchasystem,sufficiently characteris-ingthedispersionoffibresinthesystem.NormalisingittotheCoVof thenon-mixedmaterialallowsforthemeasurementoftheimprovement ofevennessduetomixing.ThisisabettermeasurethanjusttheCoV forcomparingmixersorforidentifyinghowvariousmaterialsbehave inamixer.Besides,thevariationinCoVpercellsizehasscarcelybeen studied,andmayleadtonovelresults.

Analysesbasedonmicrostructuralfeatures

Le Baillif et al. [19] compounded cellulose fibre reinforced polypropyleneusingatwinscrewextruderandcharacterisedthe dis-persionoffibresusingcross-sectionalmicroscopy.Theymeasuredthe distributionofthesizeofthefibreclusters,whichisanestimationof theSoS.Yazdanbakhshetal.[13]formulatedanewdefinitionof par-ticledispersion,dispersivework,astheminimumamountof workper domaintomoveallparticlestoauniformstateofequallydistant par-ticles.Itisthereforebasedonthedistributionoftheparticlelocations inthedomain.Wangetal.[20]mixedcarbonfibrereinforcedcement andmeasuredthedispersionoffibreswiththeaidof3Dtomographic images.AdispersioncoefficientwasdefinedastheCoVofthesizeof fibreclusters.

Variousresearchersdeterminedfibredispersionbyeither consider-ingthesizeofagglomeratesortheirCoV.Theformerseemstobeagood measureoftheSoS,whereasthelattercharacterisesthepoly-dispersity

(3)

Fig.2.Schematiccross-sectionsoffibrereinforcedcompositeswithvariousdegreesofevenness(IoS)andclustering(SoS).Fig.2(a)to2(d)showscross-sections overlaidwithsquarequadratsthataresubdividedinto4× 4cells.Fig.2(e)to2(h)showsthesamecross-sectionsandtheirVoronoidiagrams,generatedfromthe centreofthefibres.ThedualgraphoftheVoronoidiagram,theDelaunaytessellation,isonlyshowninFig.2(e)forclarity.

offibreclustersinablendbuthardlyindicatestheSoS,oranyaspect ofQoMdefined in[15].Dispersivework,asdefinedbyYazdanbakhsh etal.,maybeagoodmeasureofeitherclustering,evennessor centrali-sationinsomesituations.Nonetheless,itisnotcapableofdistinguishing systemsmadeupoflargeclustersfromthosewithpoorcentralisation.

AnalysesbasedonDelaunaytriangulation

Severalresearchers characterised the QoM of discontinuous-fibre compositesbasedonphotographs(madebyopticalorelectron micro-scopes)usingtheDelaunaytriangulationoritsdualgraph,theVoronoi diagram[21–26].Voronoidiagrams areconstructedon thecentroids oftheparticles,fromwhichseveralstatisticalquantitiesaremeasured. Fig.2(e)to2(h)showstheVoronoidiagramsoffourschematic cross-sectionsoffibrecomposites,withvariouslevelsof IoSandSoS.The figureshighlightthedifferencesinVoronoicellsizesandcell distribu-tionsforthesefoursituations.Inmostcases,thedistributionoftheareas oftheVoronoicellswasused.Additionally,thedistributionofthemean near-neighbourdistance,whichcanbeoutputfromtheDelaunay trian-gulation(seeFig.2(c)),wascomputed.ItwasfoundthattheCoVofthe meannear-neighbourdistanceortheCoVoftheVoronoicellsizesarea powerfultooltocharacterisethehomogeneityofthesamples.However, suchameasurehardlydifferentiatesbetweentheevennessofparticle dispersion(IoS)andtheirclustering(SoS).Consideringtwosystems,one withpoorevennessandasecondhighlyclustered,onecanfindmany fibreswithbothcloseanddistantneighbours,leadingtoasimilar mea-sure(seeFig.2(g)and2(f)).Additionally,inallaforementionedstudies themeannear-neighbourdistancewasmeasuredastheEuclidean dis-tancebetweenfibrecentroidsin2Dmicroscopicimages.Discontinuous cylindricalfibrescanorientthemselvesinanydirectioninacomposite specimen,whichmeansthatacross-sectionalmicrographofsucha spec-imenshowsfibresasellipsesofvariouseccentricitiesandorientations. Theactualdistance betweenfibres,however,isthedistancebetween theircentrelines,whichdependsontheellipseparameterswhencutin a2Dplane.Therefore,theEuclideandistancebetweenfibrecentroids leadstointerpretationerrorsiftheellipses’eccentricitiesand orienta-tionsarenottakenintoaccount.

Analysesbasedonphysicalmeasurements

Severalstudiesondiscontinuous-fibrereinforcedcomposites char-acterised QoM by performing global physical measurements. Yang etal.[27]andOzyurtetal.[28]workedwithcarbon-fibre-reinforced cementandmeasuredtheelectricalresistanceoftheirspecimensto de-termine fibredispersion. Similarly,Yenjaichon etal.[29]used elec-tricalresistancetomographytodeterminetheQoMofkraftpulp sus-pensions.Althoughthesemeasurementmethodscanbenon-destructive, theystruggletodistinguishthevariousaspectsofsegregation,in partic-ularIoSandSoS.

Outcome

The previous studieshave sought totacklethe problemof char-acterising the QoM of fibre reinforced plastics with various meth-ods[13,16–29],mainlybasedonimageanalysisofmicroscopyimages. Mostofthesemethodswereinspiredbyalargecorpusonspatial statis-tics[12,14,15,30,31],butthemethodsimplementedforfibre compos-itesoftenlackthemathematicalrigourofthelatter.Especially,mostfail todistinguishtheevennessofparticledispersionfromfibreclustering. ItiscrucialtostudybothIoSandSoS.

Cross-sectionalmicroscopyappearstobearelevantmethodof char-acterisingtheQoMofdiscontinuousfibrecomposites.Thestochastic na-tureofthesematerialsrequiresaconsiderablenumberofmicroscopic photographstoprovidestatisticallysatisfactoryresults.TheCoVofthe localfibrefractionisfoundtobeapertinentmeasureofIoS,which rep-resentstheevennessofasample.However,theCoVcharacterisesthe material, notthemixingtechnology,whichis whyitshouldbe nor-malisedtotheCoVofthelocalFVFsintheinitiallynon-mixedmaterial tomeasuretheimprovementinevennessthankstothemixingstep.This measurementmethodwasintroducedbyDanckwerts[14]andlaterused forvariousmixingproblems[15].ThenormalisedCoVappearstobea bettermeasuretocomparedifferentmaterialsaftermixing,ordifferent mixingsystems,anditwillthereforebeexaminedinthisstudy.Close attentionwillalsobepaidtotheeffectofcellsizeonIoS,since,tothe knowledgeoftheauthors,ithasnotbeenreportedinrelevantliterature. NopreviouslyinvestigatedmeasureofSoSseemedadequatefor fibre-reinforcedcomposites,whichiswhyoneclosetothegeneraldefinition mentionedinKukukovaetal.[15]willbeimplemented.

(4)

Fig.3.Insideviewofafour-shaftshredder(imagecourtesyofUNTHAGmbH).

Fig.4.FLDsofthevarioustypesofflakesusedinthisarticle.

Themeasurementof fibreclusteringusingDelaunaytriangulation appearstobevaluablefordiscontinuous-fibrecomposites.Theexact de-terminationofthefibreclustersmightnotbetheprimeobjectivewhen characterisingQoM,butthisdoesdrivethemechanicaland rheologi-calpropertiesoftheLFTs.Asofyet,littleattentionhasbeenpaidto correctingthedistancesandareaswiththeellipses’orientationand ec-centricity.Thiscorrectionisimplementedinthisarticletohelpmeasure thesizeoffibreclustersinamorepreciseway.

3. Materialsandmethods

3.1. Material

Thescrapmaterialusedfor thisstudywascollected atthe form-ingstageofvariousmanufacturingsites.ItconsistsoflaminatedTPC offcuts,madeofTenCateCetex® TC11005HScarbon/PPS(C/PPS)at 50%fibrevolumefraction (FVF),as shownin Fig.1(1.trims).The carbonfabriciswovenwithtowsthatcontain3,000fibreseach.The offcutswereshreddedin-houseusingatwo-shaftshreddermadeby UN-THAshreddingtechnologyGmbh,Austria(seeFig.3).Theoutputflakes oftypically20×20×3mmcan beseen inFig.1(2.shredded flakes). Somebatchesofshreddedflakesweresievedwithamulti-stage vibrat-ingsieve.Thefibrelength distribution(FLD)oftheoutputflakes,as wellastheshreddingandsievingprocess,werepreviouslycharacterised in[10,32].TheFLDsofthecategoriesofflakesusedinthisstudyare showninFig.4.Sieved-16mmandSieved-8mmcorrespondtothe flakesthatfirstpassedthroughthesieveswithanapertureof22.4mm and11.2mm,respectively,beforefailingtopassthroughthesieveswith anapertureof16mmand8mm,respectively.InadditionSieved-2.8mm &4mmconsistsofablendoftheflakesthatfailedtopassthroughthe sieveswithanapertureof2.8mmand4mm.C/PPSLFTpelletswith 3mmfibres wereusedtocomparetheQoMoftherecycledmaterial withcommerciallyavailablepellets.Thesepelletsareknownas

Luvo-com®1301/XCF/30andareproducedat30%fibreweightfraction,or approximately24%FVF.Thisstudyalsousedpolymergranulatesto di-lutetheflakesorpelletsduringthemixingstage,namelyFortron® 0214 PPSgranulatesbyCelanese.Twoothermaterialswereusedfor compar-isonpurposes:

• Shortfibrepelletsthatwereinjectionmouldedat40%fibreweight fraction(oraround32%FVF)withfibresof200𝜇𝑚inlength. • Single-layerwovenfabricprepregsmeasuring10× 10mm2,which

werecompressionmouldedat50%FVF.Notethatthismaterialisnot mixedinanyway.Moreinformationonthematerialandprocesses canbefoundin[33].

3.2. Low-shearmixing

Aftertheoffcutshadbeenshredded,theresultingflakesorpellets werefedintoalow-shearmixertogetherwithPPSgranulatestodilute thefibresuspensionto20%FVF.Thedevicewasdevelopedand man-ufacturedattheCentreofLightweightStructuresintheNetherlandsin 1998[34].Contrarytotypicalscrewextruders,thelow-shearmixer con-sistsofaheatedhollowcylinderwitha70mmdiameter,andfeatures threeeccentrically-locatedheatedrodsrotatinginside.Anillustration ofthisdeviceisshowninFig.5.Thethreerodsareplacedatdifferent distancesfromtheaxialcentreofthecylinder(Fig.5ontheright).The mixerisfedbymeansofahopperlocatedonthecylinder.Afterfeeding, apistonpushesthematerialinsidethecylindricalcavity,whichcloses thefeedopening.Theheatedrodsthenstarttorotatearoundtheaxial centreataspeedvaryingfrom5rotationsperminute(rpm)to15rpm, for5to20min.Duringthis phase,thepolymerstartstomelt, caus-ingtheflakestodelaminate,thewovenstructureofthepliestoloosen, andeventuallythebundlestospreadintoclustersofvarioussizes.Atthe endofthemixingphase,thepistonpushesthematerialoutofthemixer, whichisnowamolten,mixeddough.Duringtheentiremixingprocess, thematerialisnotcompressedandconsequentlyonlyfillspartofthe cavity,rangingfrom20%to50%.Therestisfilledwithairand, possi-bly,volatileby-products.Asaresult,theextrudeddoughisveryporous, andevenswellsasmallamountwhenpushedout,reachingafinal di-ameterof100mmafterejectionfromthecylinderandgate,whichboth haveadiameterof70mm.Inthismixingdevice,therotationspeeds ofthelow-shearmixeraretypically10rpmandthedistancebetween therotatingrodsandthecylindricalcavityisabout10mm.Thisresults inverylowshearrates comparedtothosefoundintypicalscrew ex-truders.Asaconsequence,fibresarelesspronetobreakingduringthe mixingphase[35].Besides,thelow-shearmixerallowsforabatch-type processratherthanthecontinuousprocesstypicalforscrewextruders, asaresultofwhichtheresidencetimeofthematerialisequalforall particles.Thelow-sheardeviceisstillinitsprototypephaseandhasnot beenstudiedextensively.Thereforethemechanismsofmixinginsuch adevicearestillpoorlyknown.

Afractionalfactorialdesignofexperiments(DoE)ofresolutionIV wasperformedbyvaryingthemixingspeed,mixingtime,cavity fill-ingratio andmixingtemperature.Twolevels werechosen forthese fourfactorsinadditiontoacentralpoint.Thedoughsandtheir mix-ingsettingsarelistedinTable1.Theresolution(IV)oftheDoEmakes it possibletoidentify thesignificance andstrength of themain fac-tors.However,thetwo-factorinteractionsforsucharesolutionare con-founded withother two-factorinteractions sothey willnot be anal-ysedin ordertoprevent interpretationerrors. Thereproducibilityof themixingprocesswasinvestigatedbyproducinganextradoughfor threeoftheDoEsettings(seetests#14,#15,#16inTable1).Some doughswerealsoproducedwithvariousFLDs– rows#10 to#13in Table1.

3.3. Microscopy

IntherecyclingprocessdevelopedbyDeBruijnetal.[7],thedough isdirectlytransferredfromthemixertoapressforcompression

(5)

mould-Fig.5. Aschematicofthelow-shearmixingdevice isshownontheleft.Ithighlightsseveralkey ele-mentsthatareexplainedinSection3.2.The cross-sectionA-Aisdrawnontheright-handsideofthe figure.

Table1

Listofthevariousdoughsmanufacturedandtested.

inginamatterofseconds.Forthisstudy,thestateofthematerialright aftermixingwasstudiedusingcross-sectionalmicroscopy.However, di-rectlyaftermixing,thedoughsaretooporoustobepreparedfor mi-croscopy.Therefore,thedoughswerehalf-pressedtoathickness vary-ingbetween15mmand20mm.Itwasfoundthatthecompressionof thesedoughsoccursintwostages.Intheinitial pressingstage,most voidpocketsclose,whilethedoughdoesnotflowoutwards.Duringthe secondstage,thedoughstartstoflowandtheremainingvoidpockets close.Adoughthicknessofabout15–20mmwasfoundtobetheend ofthefirstpressingstage.Note,inaseparatestudyitwasfoundthat, aftercompressionmouldingofadough,theporosityfractionisnullor negligible,exceptinspecificlocationssuchaslargethicknessincreases intheflowdirection.[35]

Itisassumedthatthestructureandarrangementof thefibresare identicalintheextrudeddoughsandthehalf-presseddoughs,except fortheout-of-planeorientationoffibres.Especially,itisassumedhere thatthelocalrelativevariationsinfibrevolumefractionandtheclusters offibresremainthesameasinthenon-presseddoughs.

Thestochasticnatureofthedoughmakesquantitativeanalysesof itsmicrostructurebymicrographydifficult.However,anextensive mi-croscopystudycan providesufficient datatoobtainreliable statisti-calmeasurements.Inthepresentstudy,thefollowingprocedure was adoptedtogatherdataformeasurementsoftheQoM.First,each

half-presseddoughwascuttoproducesectionsofroughly10mmwidth(see Fig.6).Sixsectionswerecutperdough– twofromthefront,themiddle andtherearareas– andwerethenembeddedandpolished.Twolarge cross-sectionalmicrographsweretakenforeachsectionata×700 mag-nificationandwereautomaticallystitchedto20,000×20,000pixels each,representinganareaof6mm×6mm.Hence,twelvelarge micro-scopicimageswereobtainedperdough,representingananalysedarea ofroughly430mm2.PartsofsuchmicrographsareshowninFig.7(a)

and7(e).Microscopicimagesofthenon-mixedmaterial,i.e.theflakes andLFTpellets,werealsocapturedforthecalculationoftheIoS(see fol-lowingsection).Microscopicphotographsoftheothertwomaterials,the injectionmouldedshortfibrecompositesandthecompressionmoulded flakes(seeSection3.1),werealsomadetocomparetheirQoMtothose ofthedoughs.Sampleswerewatercutusingadiamondcoatedsawand driedat90◦Cfor12h.beforetheywereembeddedusinganepoxyresin (EpoFix,Struers)andpolishedusingasequenceof600-1200-2000-4000 sandingpapersandfinalyasilicaoxidesuspension.AKeyenceVHX dig-italmicroscopewasusedinalloccasions,stitchingwasperformedusing thebuilt-inautomaticstitchingfunction.

Imagesegmentationwasexecutedautomaticallyoneachpicture us-ingMatlabsoftware,usingthepeaklocationsofeachimagehistogram todeterminethefibre,matrixandporosityfraction.Detailsonthis op-erationcanbefoundinAppendixAppendixB.

(6)

Fig.6. Photographsof adoughaftermixingand af-terbeinghalf-pressed.Thelocationsofthemicroscopy specimensinthedougharehighlightedinwhiteonthe half-presseddough.

Fig.7.VisualisationoftheimageprocessinganalysisthatcomputesthelocalFVFs.Theexampleislimitedtotwosectionsof2.4mm×2.4mmtakenfromthelarge microscopicimages.Fig.7(b)to7(d)are‘blurred’representationsofthemicrographin7(a),i.e.theyrepresentthedistributionofFVFs,forthreedifferentcellsizes, whereeachcelldisplaysitslocalFVFingrey.Thegrayscalerepresentsthefibrevolumefraction,rangingfrom0%inwhiteto100%inblack.Similarly,Fig.7(f)to

7(h)representtheFVFinthemicroscopicimagein7(e)forvariouscellsizes.

Atfirst,alarge-scalemeasurementoftheevennessofthedoughswas determined.Foreachdough,theFVFsofthetwelvemicroscopicimages werefirstcalculatedandthengroupedbytheirlocationinthedough: front,middleorrear(seeFig.6).Thisresultedin anestimateofthe globalvariationsinFVF,whichwillbeanalysedinSection4.

3.3.1. Intensityandscaleofsegregation

The segmented cross-sectional micrographs are divided into a grid of various cell sizes (from 18.75 𝜇𝑚 to 600 𝜇𝑚). The FVF of each celliscomputed, excludingthefraction of porosity,i.e.FVF= Area𝑓𝑖𝑏𝑟𝑒𝑠∕(Area𝑡𝑜𝑡𝑎𝑙𝑐𝑒𝑙𝑙−Area𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦).Note thatiftheporosity fraction inany cellis largerthan30%,this cellisdiscardedfromthe analy-sis.TheCoVofthelocalFVFsisrecordedperimageforeachgridsize. Thesamecalculationwasperformedfortheinitiallynon-mixed materi-als,i.e.blendsofflakesandpolymerorpelletsandpolymer.TheIoSis definedastheratiooftheCoVbetweentwomicroscopicpictures:the half-presseddoughsovertheinitiallynon-mixedflakes-polymer com-bination(seeFig.8foranillustrationofthemethod).Fig.7(a)and7(e) displaytwomicrographswithacleardifferenceinQoM.Thetoppicture presentslarge clustersoffibres withmoderateevenness.Thebottom pictureshowstheopposite:smallclustersandconsiderableevenness.

Fig.7(b)to7(f)and7(h)showsthegridsofFVFsforvariouscellsizes (75𝜇𝑚,150𝜇𝑚and300𝜇𝑚)wherethegreyscalerepresentstheFVF, rangingfrom0%inwhiteto100%inblack.Itisclearfromthegrids thattheCoVofthelocalFVFswillgivedifferentresultsforboth micro-graphs,thusresultingindifferentdegreesofIoS.

ThecalculationofSoSstartswiththegridoflocalfibrefractionwith cellsof18.75𝜇𝑚,computedfromthemicroscopyimages.Image segmen-tationisperformedonthegridintotwophaseswiththeFVFrespectively belowandabovethemedianFVF(seeFig.9).Consideringthenewly seg-mentedimageasamatrix,themaximumstriationthicknessofthehigh FVFclusters,i.e.themaximumheightofthewhiteregionsinFig.9(e), is measuredforeachcolumn.Theaverageofthemaximumstriation thicknessesofallcolumnsiscalculated,whichgivesthemeasureofthe SoS.Fig.9showsthegridofFVFsfromthetwomicrographsinFig.7(a) and7(e),aswellasthesegmentationbyFVF.Fig.9(b)hasmuchlarger clustersthanFig.9(d),whicharedetectedbythemeasureoftheSoS, 400𝜇𝑚and175𝜇𝑚respectively.Thismethodissensitivetothe orien-tationofthemicrographsinthecross-sectionalspecimen.However,all micrographsweretakenwiththesameorientationtopreventthisissue. Inaddition,anartificialrandomdistributionoffibreswascreated torepresenttheQoMofanalmostperfectlyevendough.Forthat,a2D

(7)

Fig.8. RepresentationofthecalculationoftheIoSofmixeddoughs.Inthecross-sectionalmicrographs,thefibresareinwhite,thepolymeringreyandporosities areinblack.ThesameprocedureisappliedforthedoughmadeofLFTpellets,forwhichtheCoVbeforemixingiscalculatedfrommicroscopicimagesoftheinitial LFTpellets.

Fig.9. Fig.9(a)and9(c)showthelocalFVFsofthemicroscopicimagesofFig.7.Fig.9(b)and9(d)arethesegmentedimagesof9(a)and9(c)respectively,where theareasofhigherfibrefractionareshowninwhite.TheSoSistheaverageofestriationthicknessesofthewhiteregions.Thebottomfigure,(e),illustratesthe calculationofSoSfromthesegmentedimages.

spacewasrandomlyfilledwithnon-overlappingellipsesat20% cover-age,fromwhichtheIoSandSoSweremeasured.Thisrandomfill rep-resentsamixingsituationthatisdifficulttoachieveinreality,butitis stillfarmoresegregatedthanaperfectlyuniformdistributionoffibres. Thisartificialrandomdistributionhelpstovisualisethetheoreticallimit ofevennessandclusteringachievableformixedC/PPSdough.

3.3.2. Bundlesizedistribution

Anadditionalmethodwasimplementedtodeterminethesizeofthe fibreclustersineachimage,whichcanrangefromasingleloosefibre to3000clusteredfibres.

Imagesofthesegmentedfibreswereusedforthispurpose.Inthe segmentedmicrographspresentedhere,adjacentfibresmayappearto

(8)

Fig.10. Visualisationoftheintermediatesteps ofthealgorithmimplementedtodeterminethe BSDofcross-sectionalmicrographs.Fig.10(a) shows the input cross-sectional micrograph while10(b)displaysthesegmentedfibresafter thefibresweredisjointedusingawatershed.

Fig.10(c)and10(d)showtheDelaunay trian-gulationbeforeandaftertherefinement tech-nique(Section3.3.2).Therefinedtriangulation wasusedtocomputetheBSDineach micro-graph.

bejointbecauseofthesegmentationstep.However,anaccurate descrip-tionoftheclustersoffibresrequiresfullydisjointfibres.Awatershed algorithmwasappliedtothesegmentedimagestoovercomethisissue. Fig.10(b)showsthesegmentedimageafterapplyingawatershed anal-ysis.Mostfibresaredisjointedfromoneanother.However,flatellipses, whichcorrespondtofibresparalleltothemicroscopicplane,maybecut bythewatershedalgorithm,therebyoutputtingmultipledomainsofa singlefibre.Thesenumericalartefactsseemedlimitedcomparedtothe benefitsofapplyingawatershedalgorithm.

ADelaunaytriangulationwasthenperformedonallfibrecentreson eachimage(Fig.10(c)).Arefinementtechniquewasneededtocluster thefibresthatareclosetoeachother.Fig.10(d)illustratestheresult oftherefinementtechnique.Theclustersoffibresareclearlydisjointed fromoneanother,althoughsomefibresarewronglyattributedto an-othercluster.Thisissueartificiallyincreasesorreducesthenumberof fibrespercluster,buttheoveralleffectwasfoundtobelimited.The numberoffibresperclusteriscalculatedfromthelistofconnected com-ponentsintherefinedDelaunaygraph,whichisthenconvertedtothe bundlesizedistribution(BSD).

Inthe aforementioned refinementtechnique, all segmentslonger thanthreefibrediameters,correspondingtoaregularhexagonal con-figurationat10%FVF,arediscarded.Acorrectedfibre-to-fibredistance wascalculatedtotakeintoaccountellipseeccentricitiesand orienta-tions.A detaileddescriptionof thecalculationscan be foundin Ap-pendixAppendixC.

Toprovideadditionaloverviewonthevariousstepsperformedto obtaintheBSD, IoSandSoS (previoussection)from themicroscopy images,aschematicflowchartisincludedinAppendixAppendixD.

4. Results

The half-presseddoughs listedin Table 1 wereprepared for mi-croscopyandanalysedaccordingtothemethodspresentedinSection3. Initially,theDoEwasanalysedtodeterminetheeffectofmixing set-tingson QoM.Theresults ofthereproducibilitystudyarepresented next.Then,theeffectsofthevariousFLDsonQoMareanalysedand discussed.

4.1. Designofexperiments

Fig.11(a)showstheIoSforallcellsizes,ofthedistincttwelve mi-crographsmadefromdough#5.TheIoSisalwayssmallerthanone, whichindicatesamixedstatethatis,asexpected,lesssegregatedthan theinitialnon-mixedmaterial.Besides,theIoSoftherandomlyfilled 2Dspaceisplottedunderrandomfillwithadottedline(Fig.11).Itis mostprobablethattheIoSofalldoughsareboundedbyoneandtheIoS ofrandomfill.Ahatchedregionwasaddedtothefiguretorepresenta domainoftheIoSthatcannotbereachedforthedoughsinthisstudy. Onemaynotethelargescatterbetweenthesetwelvelines,whichiswhy agreyboundingregiondepictingthemaximumandminimumvaluesof

(9)

Fig.11. TheIoSofvariousdoughsanalysedfortheDoE.Fig.11(a)and11(b)showstheIoSofdough#5.In11(a),thetwelvesolidlinesaretheIoSofallmicrographs forthisdough,whilein11(b)theyarerepresentedasameanvalueandagreybandboundingtheextrema.Fig.11(c)highlightsthemeanIoSofseveraldoughs processedwithvariousmixingsettings.Fig.11(d)showstheIoSofanotherdoughwithitsmeanvalueandextremahighlightingthevariationsofIoSinadough.

theIoSareshownaroundthemeanvaluesplottedwithalineasshown inFig.11(b).Thisgraphillustratesthatthreemeasuresareimportant:

• themeanIoS:itrepresentstheevennessofthelocalFVF,asdefined inSection3.3.1.Inordertomaketheanalysissimpler,onlytheIoS foracellsizeof150𝜇𝑚isconsideredindetailfortheDoE.Thisvalue waschosenduetoitssimilaritytotheinitialbundlesize, approxi-mately150𝜇𝑚inthicknessatnormalFVF.Thissizeisassumedto bearelevantscaletodeterminetheevennessofthismaterial.Lower IoSvaluesequalabetterevennessofthefibresinthesample. • ThebandwidthoftheIoS(heightofthegreyband),which

corre-spondstotheintra-samplevariabilityofevenness.Theanalysisof theDoEwasperformedonlyforthebandwidthat150𝜇𝑚,similarly tothemeanofIoS.Asmallbandwidthindicateslimitedvariability ofevennessbetweenthetwelvemicrographs.

• TheeffectofcellsizeontheIoSisdescribedbytheslopeoftheIoS asafunctionof cellsize.Itexpressestherateof changeof even-nesswithinthestudiedscalerange.Steepslopesindicatethatfibre bundlesbecomeevenlyspacedatalargescale.Gradualslopesshow thatthelocalvariationsinFVFhardlydecreasewhenincreasingthe scale.

AnanalysisofvarianceofthethreemeasuresoftheDoEwas per-formed.Forallcases,alevelofsignificanceof0.05wasselected,asitis

commonpractice,todistinguishtheeffectsthatsignificantlyinfluence themeasuresoftheQoM.

TheeffectsofthemixingsettingsonthemeanIoS,thebandwidth andtheslopeareillustratedinFig.11.ThemeanIoSofseveraldoughs isdisplayedinFig.11(c)wheredoughs#1and#5wereprocessedata lowmixingspeedandforashortamountoftime,whereasdoughs#8 and#7wereprocessedatahighmixingspeedandforvaryingamounts oftime.

Afirstconsiderationshowedthatincreasingthemixingspeed de-creasedthebandwidth.Boththemixingspeedandmixingtimewere foundtodecreasethemeanIoS.Themixingspeed,mixingtemperature andmixingtimewereallfoundtodecreasetheslopeofthemeanIoS.

Further,Fig.11(a)showstheintra-samplevariability,whichcanbe ofasimilarmagnitudeasthevariationsbetweentheIoSofdoughsmade withvarioussettings(Fig.11(c)).Thisurgedustoreconsiderthe relia-bilityofconsideringthemeanIoSandbandwidthseparately.Therefore, theanalysisoftheDoEwascarriedoutforsixrepetitions, correspond-ingtothesixsectionsineachdough.Theresultsshowagainthatmixing speedandmixingtimeinfluencetheIoS;withamoresignificanteffect (p-value5to10timeslower)ascomparedtotheanalysisofthemean IoS.Thestrengthofthesignificantfactorsissimilarforbothstudies, withmixingspeedhaving strongerinfluencethanmixingtime.Asa conclusion,althoughintra-samplevariabilityishigh,themixingspeed andmixingtimehaveastrongandsignificanteffectontheIoS. Fur-thermore,theanalysisofvarianceshowedthattheeffectsofthefilling

(10)

Fig.12. LargescalevariationsoftheFVFfortheninedoughsanalysedintheDoE(leftblock,orderedaccordingtotheDoEinTable1),andthethreerepetitions (rightblock)forthereproducibilitystudy.Theblacklinesandthegreybandsshowthemeanandtheextremarespectively.

fractionandmixingtemperaturearenotsignificant.Asaconsequence, theireffectisnotdetailed.Theeffectofinteractionsbetweenmultiple parameterscouldnotbedeterminedwiththeDoEcarriedout(resolution IV).

Next,theSoSs ofthe doughswereanalysed.The averageSoS of theninedoughswasfoundtovarybetween260𝜇𝑚and420𝜇𝑚(see TableA.3intheAppendix),whichisasmallrange,whencomparedto theSoSoftherandomfill(101𝜇𝑚)andindicatesthatfibre-dense re-gionsareof comparablesize.However,theintra-sample variationof SoSvariesconsiderably,from150𝜇𝑚to430𝜇𝑚.Again,mixingtime andmixingspeedwerefoundtoreducetheSoS.

Thestudyof theeffectofthemixingsettings ontheIoSandSoS showedthatboththetotalamountofshear(mixingtimeandmixing speed)andtheshearrate(mixingspeed)significantlyimproveQoMon multiplelevels:theyreducetheIoS,SoSandtheintra-samplevariability. However,thelow-shearmixerdoeshavesomelimitations.Acomparison oftheIoSandSoSobtainedforthebestmixeddoughswiththoseofthe randomfillconfirmsthattheevennessandclusteringofthedoughscan stillbeimproved,atleastfromatheoreticalpointofview.

Studyingthemicroscopic imagesalsorevealedthatfibres arefar fromevenlydistributedoraggregatedinsmallclusters,evenafterlong mixingtimesandhighmixingspeeds,althoughitisalsoclearthatlonger mixingtimeandhigherspeedimproveevennessandclustering.This phenomenonishighlightedinFig.12whichalsoshowsthevariations ofFVFatalargescale,wheretheFVFofeachmicrographiscalculated andgroupedaccordingtoitsdoughanditslocationinthisdough.The solidlineandthegreyband representthemeanandextremaofthe FVFsforeachlocationrespectively.Thedoughsprocessedat5rpmfor 10minand20min– #1&#5,and#2&#6respectively– allshow verylargevariationsinFVF,whereas FVFvariationsaremuchlower forthedoughsprocessedat15rpm(#3,#4,#7and#8).Thisseems toindicatethatmixingspeedhasamorepronouncedeffectthan mix-ingtime.Theresultsoftheanalysisofvariancealsoconfirmedthisfor theIoSandtheSoS.Additionally,themicrographsshowthata combi-nationoflargeandsmallfibreclustersarefoundindoughsmixedat 5rpm.Fewerlargeclustersarefoundindoughprocessedat15rpm. ThisresultisvisualisedinFig.13(b),whichplotstheBSDofseveral doughs.ThisfigureistheoutputoftherefinedDelaunaytriangulation andshowsthevolumefractionofbundlesofeverygivensize.The frac-tionsoflargebundles(⩾ 1,000fibres)andsmallbundles(⩽ 100fibres)

indicatewhethertheinitialtowsof3,000fibreswerewelldispersed. Thefigureshowsthatdoughs#1and#6(5rpm)hadverysimilarBSDs withmorethan30%oftheirvolumeconsistingoflargebundles,while theBSDof#8(20min,15rpm)resultsinamuchlowerfractionoflarge bundles.

In conclusion, the analysis of variance shows that mixing time andspeedimproveallmeasuresofQoM,withmixingspeedhavinga strongereffectthanmixingtime.Thisobservationwasconfirmedby analysingtheBSD,thelarge-scalevariationsofFVFandthemicrographs ofdoughs.

4.2. Reproducibility

Thepreviousresultsshowedthatintra-samplevariabilityisofgreat importance,andthesamemightapplytointer-samplevariability.Three doughsmadewithvariousmixingsettings(#1,#6and#8)were repli-cated(#15,#16and#14,respectively)toinvestigatethe reproducibil-ityofthemixingprocess.ThemeanIoSofthesixdoughsisplottedin Fig.13(a).Theirlarge-scalevariationsinFVFaredisplayedinFig.12. Thefindings fromtheprevious sectionindicatethatdough#1hasa moderateQoMforallmeasures.Dough#6showedsomeimprovement duetoalongermixingtime.Dough#8demonstratesthatitisamong thedoughswiththehighestQoMinthestudyduetoalongmixingtime andahighmixingspeed.

Limitedinter-samplevariabilitywouldleadtoacleargroupingofIoS bymixingsettings:#1&#15,#6&#16,and#8&#14.However,the measurementsinFig.13(a)shownon-groupablelinesforalldoughs.The situationisdifferent,however,whenlookingatthelarge-scalevariation ofFVF(Fig.12).Clearly,doughs#1and#15haveveryhighvariations ofFVF.Doughs#6&#16showreducedvariability,whereas#8&#14 exhibitverylimitedvariationsofFVF.Additionally,theBSDwasalso analysedforthesesixdoughs(Fig.13(b)).Twoseparategroupscan eas-ilybeidentified.TheBSDsofdoughs#8&#14areclearlydistinctfrom theotherfour:theyhaveahigherfractionofsmallbundles(smallerthan sixteenfibres)andasmallfractionoflargebundles(largerthan1000 fibres).Theotherfourdoughscannot,however,begroupedbymixing settings,aswasthecaseforthemeanIoS.Thefractionoflargebundles inthesedoughsisnonethelessconsiderable,rangingfrom20%to40%. Dough#16isparticularlystriking,asithasthesecondworstIoSand

(11)

(a)

(b)

Fig.13. TheIoSandtheBSDofthedoughsanalysedforthereproducibilitystudy.

(a)

(b)

(c)

Fig.14. (a)TheIoS,(b)theBSDand(c)thelargescalevariationsofFVFofthedoughsprocessedwithvariousFLDs.

thelargestfractionoflargebundles,butasmalllarge-scalevariationof FVF(Fig.12).Nevertheless,itsSoSandtheslopeofthemeanIoSare average(seeTableA.3intheAppendixsection).

4.3. EffectofFLDs

Thelastsetofexperiments concernstheeffectof theFLDonthe QoM.SievedflakesandLFTpelletswereusedasdescribedinSection3. Fig.14aggregatestheIoS,theBSDandthevariationsofFVFforthefour

doughs#10,#11,#12and#13.Table2summarisesthemeasuresof theQoMforthefourdoughs.Italsoshowsthestandarddeviationofthe localFVFforthetwocomparisonmaterialsandtherandomlyfilled2D space.Asareminder,theIoSisdefinedastheimprovementinevenness ofthelocalFVFduetomixing.Theresultsshowthattheevennessof LFTpelletsimproveslessthanfortheotherthreedoughs.However,its standarddeviationofFVFislowerthanforthedoughs,showingamore evendistributionoffibres.ThestandarddeviationsinTable2also high-lights thedifferencesbetween thecompressionmouldedflakes

(12)

(non-Table2

SummaryofthemeasuresoftheQoMforthedoughsprocessedwithvariousFLDs.ThestandarddeviationsoflocalFVFarealsolistedfortwocomparisonmaterials andtherandomlyfilledspace.

dough material mean SoS at

18.75 𝜇𝑚 [ 𝜇𝑚 ] mean IoS at 150 𝜇𝑚 [ ×10 −1 ]

bandwidth at 150 𝜇𝑚 [ ×10 −1 ]

slope of the IoS [-] standard deviation of the FVFs at 150 𝜇𝑚 [ ×10 −1 ] #10 LFT pellets 177 2.0 0.64 − 0.67 0.30 #11 sieved 16 mm 310 1.6 0.54 − 0.53 0.79 #12 sieved 8 mm 224 0.94 0.35 − 0.72 0.52 #13 sieved 2.8 & 4 mm 207 0.67 0.13 − 0.80 0.42

compression moulded non-mixed flakes 1.49

injection moulded short fibre composites 0.35

artificial random fill 0.17

mixed), the moulded LFT and short fibre pellets (see Section 3.1), andthedoughsmadefrom sievedflakes: theevennessof the small-est flakes is almost as good as the moulded short and long fibre composites.

TheeffectofflakesizeandFLDonQoMisevidentforall measure-ments.ShorterfibresreduceIoSandSoS,andleadtoasteeperslopeof theIoS.Theintra-samplevariationsforIoSandSoSsteadilydecrease withthereductioninFLD(seeTable2).Additionally,inthedough pro-cessedwiththesmallestflakes,only2%ofbundleswerelargerthan 1,000fibres,whichis farlowerthanthe20%-40%rangeobtained forlargeflakes(Figs.14(b)and13(b)).However,thereisstillalarge differencebetweentheBSDsofthedoughmadefromLFTpelletsand fromthesmallestflakes,butthiswasexpectedduetothecompletely differentnatureoftheinputmaterial.Inaddition,thelarge-scale vari-ations of FVF mainlyreduce from large tomedium-size flakes. The doughs#10,#12 and#13all show similarlarge-scale variationsof FVF,forwhichnoimprovementisnoticeablewithareductioninfibre length.Thismaybealimitfortheprototypemixerusedinthisstudy (Fig.14(c)).

5. Discussion

Whenconsidering the wholerecycling route studiedin this arti-cle, theQoMobtained during themixingphase affectsthe flow be-haviourofthematerialinthemouldanditsmechanicalproperties after-wards.Theindustrialapplicationofthisrecyclingtechnologyrequires thatmouldedcomponentshaveconsistentmechanicalproperties,and hencelowintra-partvariabilityandgoodreproducibility.Additionally, theflowbehaviourofthedoughispartiallydeterminedbythenumber ofbundle–bundleinteractions,whichtranslatestothebundleaspect ra-tioamongothers[36,37].Thehomogeneityandreproducibilityofthe flowbehaviourofthedoughsarealsoimportantfactors,whichcanbe improvedbyreducingintra-andinter-samplescatter.Theconditions necessarytoaddresstheseissuescanbederivedfromdifferentaspects oftheQoM.ThisleadstoseveralmeasuresofQoMthataretobeeither minimisedorbeoptimised.

• LimitedlargescalevariationsofFVFarerequired.Figs.12and14(c) demonstratethatvariationsofjustafewpercentcanbeachieved. • TheIoSandtheintra-samplevariabilityofIoSareotherproperties

tobe minimised.Alocally evendistributionofFVFhelpsreduce variabilitybothintermsofrheologyandpartperformance. • AhighreproducibilityofQoM,allaspectscombined,isalsoakeyto

thesuccessfulapplicationofsuchatechnology.

• BSDhasamajoreffectonbothflowbehaviourandmechanical per-formance.Onone hand,aconsiderablefraction ofsmall bundles drasticallyincreasesthenumberoffibre–fibreinteractions,which increasestheapparentviscosity[36],wheretheupperlimitissetby theflowdistanceinthemouldandthesizeoftheintricatefeatures tofill.Ontheotherhand,a substantialfraction oflarge bundles reducestheaveragebundleaspectratio,whichtends tolimitthe theoreticalmechanicalpropertiesofthemouldedcomponent[38].

Nonetheless,itisratherdifficulttodrawaconclusiononthe opti-mumBSDwithoutaproperstudyofitseffectontheflowbehaviour ofdoughsaswellasonthemechanicalpropertiesofmouldedparts. Regardingthelistofcriteriaabove,wellmixeddoughs(long mix-ingtime,highmixingspeed)doshowimprovementofIoS,intra-sample variabilityofIoS,andlarge-scalevariationsofFVF.Itwas,however, foundthatthereproducibilityofdoughsismoderateforallmeasured aspectsofQoM,althoughonlytwodoughswereanalysedpersetting. Thislackofreproducibilitycanalsobecausedbythelimitationsin sam-plesize:twelvemicroscopicimagesof6× 6mm2perdough.Interms

oftheprocesswindow,theoxidationofthepolymerismoreseverefor longmixingtimesinthepresenceofoxygen,whichshouldbeprevented inordertolimitthedegradationofthepolymer.Theresultsalsopointed outthatincreasingthemixingspeedisamoreeffectivewaytoimprove QoMthan increasingmixingtime.Thus,theauthorsrecommend in-creasingthemixingspeedtolimitpolymerdegradation,althoughhigh shearratesmaybreakfibresduringmixing.Thishasnotbeenaproblem yetwiththecurrentmixingprototype,whichhastechnicallimitations thatpreventitsuseathigherrpm.Inaddition,itwasfoundthattheSoS ofallthedoughswereclose,andofthesameorderofmagnitude;in com-parison tootherfinely-clusteredmaterials, i.e.theinjection-moulded short-fibrecompositesandtheartificialrandomdistributionoffibres. Onthecontrary,theBSDvarieddrasticallywithrespecttomixing set-tingsandFLDs.Hence,itissupposedthatBSDandSoSdonotexactly characterisethesameaspectsofQoM,ordonotcharacterisethemwith thesamestrength.BSDisanimportantmaterialproperty,asexplained inthepreviousbulletlist.Thismayindicatethatthemethodchosento measureSoSisnotthemostsuitableforthistypeofmaterialormixing technology.

ConcerningtheeffectofFLDontheQoMofdoughs,large improve-mentsarenoticedbetweendoughs#11/sieved16mmand#12/sieved8 mmforallmeasuresofQoM.Theseimprovementsseemtosaturate be-tween#12/sieved8mmand#13/sieved2.8&4mm;andthelarge-scale variationsofFVF,inparticular,arecomparable(Fig.14(c)).Therefore, theauthorsrecommend using smallflakesinthis process,especially withameanfibrelengthsmallerthan15mm.

6. Conclusions

Anexperimental studywas carriedouttounderstandhowto im-provetheQoMofmixed doughs,madeoflong-fibre-reinforced poly-mers.ContrarytootherLFTprocessesandmaterials,theflake mate-rial andthemixer used inthis studyareunconventional.The mate-rialconsistedofmulti-layered,woven-fibrereinforcedcompositesplus polymergranulates.Themixerhadaverylowrotationspeedto pre-vent fibrebreakage,thereby limitingblendingefficiency. Several as-pectsofQoMwereselectedfromliterature,namelyevennessand clus-tering,andimplementedforthisstudy.Theexperimentalmethods in-volvedimageanalysisofalargesetofcross-sectionalmicrographs.The analysis wasbased on quadratstomeasureIoS andSoS,andon re-finedDelaunaytriangulationtomeasureBSD.Choicesweremadeto

(13)

measurethefollowingaspectsfromtheextensivesetofcross-sectional micrographs:

• IoS,orevennessofthelocalFVFs.

• SoS,representingameasureoftheclusteringoffibres. • Intra-samplevariationsofIoS,SoSandFVFs.

• BSD,describingthesizedistributionoffibreclusters.

Themethodsdevelopedandimplementedinthispaperwerefound adequateforthematerialinthisarticle,aswellastocharacterisethe QoMof otherLFTs.Therefinementtechniqueperformedon the De-launaytriangulation is definitely beneficial, as itquantifies a mate-rialpropertyofLFTs:bundlesizes.Thispropertycanalsobeusedfor themicro-mechanicalmodellingof LFTs.TheIoSis agood measure tocompareothermixingdevicestotheoneusedinthisstudy,orto comparethedoughswithothermaterials.Furtherdevelopmentsofthis recyclingtechnologyorofLFTmaterialshouldconsiderthe measure-mentoftheIoSasabenchmark,similartothecurrentpracticefor poly-merblends[39].Finally,itisnotsurewhetherthecurrent implemen-tationof SoSmeasurementprovidesinformationbeyondtheIoSand BSD.

Theeffectsofmixingtime,mixingspeed,temperatureandfilling ra-tioonQoMwereanalysedbyperformingafractionalfactorialDoE.It wasfoundthatthemixingtimeandmixingspeedarethemaindrivers toimproveQoMforallmeasures.ThereproducibilityoftheQoMin doughswasinspectedandwasfoundtobemarginal.Ontheotherhand, theeffectoftheFLDsonQoMwasclearforallmeasures:smallerflakes significantlyimprovetheQoM.Therecommendationsforbetter mix-ingforthisparticularmixingsetuparefirsttoshredscraptoasmaller size,yieldingameanfibrelengthunder15mm.Inaddition,further im-provementscanbemadetothemixingmachinebyblendingathigher shearrates.Thiscanbeachievedbymodifyingthemixerdesign,but specialcareshouldbetakentominimisefibrebreakage.Itisstill un-clearwhetherthebestQoMobtainedinthisstudyissufficient.Further workisrequiredtounderstandtheeffectofQoMontheflowbehaviour of doughs and, subsequently, on mechanical properties of moulded parts.

DeclarationofCompetingInterests

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Acknowledgments

ThisprojectwasfinancedbytheDutchOrganisationofApplied Re-searchSIA,throughtheprojectgrantSIA-RAAK2014-01-72PRO.The authorsaregratefultotheprojectpartners:TorayAdvancedComposites, GKNFokker,CatoCompositeInnovations,DutchThermoplastic Compo-nentsandNidoRecyclingTechniek.TheauthorsarethankfultoSotiris KoussiosandWaqasAliforinternalreviewofthemanuscript.

AppendixA. ListoftheQoMmeasurements

AppendixB. Imagesegmentationandcorrection

Theimagesegmentationofallcross-sectionalmicrographswas au-tomaticallyperformedbythepeaklocationsoftheimagehistogram.A sectionofamicrographisshowninFig.B.15(a);itshistogramisshown inFig.B.15(b).Thehistogramcontainsagreylevelpeakfortheepoxy (mountingresinforpolishing),thePPSmatrixandthefibres.The av-eragegreylevelbetweenepoxy&matrix,andbetweenmatrix&fibres

ischosentosegmenttheimagesinthethreephases(seetheimage seg-mentationaxisinFig.B.15(a)).

Themagnifiedfibreatthebottom-leftcornerofFig.B.15(a) empha-sizesablackcontouraroundthefibre,beinganopticalartefactcaptured bythemicroscope.Suchadefectsystematicallylowersthemeasured FVFoftheimage.Therefore,aglobalcorrectionwasperformedforthe FVFofeachimage.Itwasassumedthatalargenumberofmicrographs wasenoughtorepresentthecorrectFVFofthesamples,20%on aver-age.TheglobalaverageFVFofthesixteendoughs×twelvemicrographs wassetto20%.TheresultsofthiscorrectionareshowninFigs.12and 14(c).

AppendixC. Centre-to-centredistancecorrection

Themicrographsstudiedinthisarticlearecross-sectionsof discon-tinuousfibrecomposites.Thecross-sectionsofcylindricalfibreswiththe micrographyplaneareellipseswithvariouseccentricitiesand orienta-tions.InSection3.3.2,theDelaunaytriangulationoftheellipsecentres isrefinedbydiscardingcentre-to-centresegmentslongerthana thresh-olddistance.Thisrefinementtechniqueisrequiredtoclusterthevarious fibrebundles.However,theEuclideancentre-to-centredistanceinthe planeofobservationdoesnotrigorouslymeasurethedistancebetween thefibres.

Considerthefollowingsituation;twoellipsesincontactalongtheir majoraxesinthemicroscopyplanehavealongerEuclidean centre-to-centredistancethantwotouchingfibreswhosecross-sectionsarecircles. (seeFig.C.16(a)).Yet,thetruedistance betweenthecentresisone fibrediameterinbothcases.Therelationwiththeobserveddistance dependsontheorientationsandeccentricitiesofthetwoellipses.Thus,a correctedcentre-to-centredistanceisrequiredtoaccuratelydistinguish thevariousclusters. Theobjectiveofthis sectionis todefinesucha correcteddistance.

Thestrategyimplementedhereis toconsiderasleeveof polymer growingradiallyaroundtwofibresuntilthesleevestouch.Whenthe fibresarecutinthemicrographyplane,thecross-sectionsofthesleeves arealsoellipticalwiththesameorientationandeccentricityastheir parentfibre(seeFig.C.16(b)to(d)).Inthemicrographyplane,a non-normalorthogonalbasiscanbeassociatedwitheachfibreanditssleeve (seeFig.C.17).Theellipticalsleevesgrowradiallyandisotropicallyin theirrespectivebases.

Atthejunctionpointofthetwosleeves(Fig.C.16(b)to(d)),the sleeveshavegrownbythesameamountintheirrespectivebases.The correctedcentre-to-centredistance,noted𝑑𝑐,correspondstothesizeof

thesesleevesofpolymerandisinallcases≤𝑑0.Thisdistanceisrelated

tothechange-of-basismatricesofeachellipse’sbasisandthedirection of𝑃⃖⃖⃖⃖⃖⃗𝑃,aselaboratedmathematicallyinthefollowingparagraphs.

FigureC.17illustratesthecross-sectionoftwofibres𝐹𝑃 and𝐹𝑃,in theplaneofobservation.Thefibresareorienteddifferentlyfromeach other,leadingtodifferentellipseorientationsandeccentricitiesinthe cross-sectionalplane,whosecentresarenoted𝑃and𝑃.Eachellipseis

determinedbyitsmajoraxis,minoraxisandorientationinthereference orthonormalbasisofthecross-sectionalplane,0:(a,b,𝜃)and(a’,b’,𝜃’)

respectivelyfor𝐹𝑃 and𝐹𝑃′.Forallfibresanalysedinthispaper,𝑏′= 𝑏=fibrediameter.Let⃖⃖⃗Ωbetheunitvectorin0collinearto⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑃′.

Additionally,consideranorthogonalbasisforeachellipse,and′,

whoseunitvectorscorrespondtotheaxesoftheellipses.The change-of-basismatrixfromto0is:

𝐓= (𝑎 𝑏cos(𝜃) 𝑎𝑏sin(𝜃) −sin(𝜃) cos(𝜃) ) (1) Therefore,𝐓−1⃖⃖⃗ΩistheunitvectorΩ⃖⃖⃗expressedin,and||⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑃|| ×

||𝐓−1Ω⃖⃖⃗|| representsthelength||⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑃|| expressedinbasis.Similarly,

||⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑃|| × ||𝐓′−1Ω⃖⃖⃗|| iscomputedforthebasis.

Asstatedabove,theellipticalsleevesgrowradiallyandisotropically intheirrespectivebases.Ifoneoftheellipseswereacircle,thesleeve

(14)

TableA1

SummaryofthemeasurementresultsoftheQoMforthesamplesstudiedinthisarticle.

(a)

(b)

Fig.B1. Sectionofacross-sectionalmicrographontheleft,showingthatfibres,matrixandfilledporositieshaveadifferentgreylevel.Aclose-upofafibreshows itsspuriousblackenvelopeThethreegreylevelsarehighlightedinthehistogramoftheimageontheright.Automaticsegmentationisperformedbasedonthepeak locationsofthehistogram.

wouldgrowproportionallyto||⃖⃖⃗Ω|| (with||⃖⃖⃗Ω|| =1).However,forthe ellipsecentredin𝑃,theradiusalongΩ⃖⃖⃗grows||𝐓−1Ω⃖⃖⃗||−1faster(this

expressionis≥1).Thustheaveragegrowthfactorsofthetwosleeves’ radiiareproportionalto:

𝑟=||𝐓

−1Ω⃖⃖⃗||−1+||𝐓′−1⃖⃖⃗Ω||−1

2 (2)

with𝑟≥1.Fromthis,itisstraightforwardthattheratio𝑑0∕𝑑𝑐istheratio

of𝑟over||⃖⃖⃗Ω||.Here𝑑0=||⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑃||,i.e.themeasureddistancebetween𝑃

and𝑃intheorthonormalbasis

0ofthemicrographyplane.𝑑𝑐isthe

correctedcentre-to-centredistancementionedearlier.Hencethisratio is:

𝑑0

𝑑𝑐 =

||𝐓−1Ω⃖⃗||−1+||𝐓′ −1⃖⃗Ω||−1

(15)

Fig.C1. Schematicsofcross-sectionsofcylindricalfibresinamicrographyplane.ThefewdrawncaseshighlightthedifferencesbetweentheEuclidean centre-to-centredistance𝑑0andthetruedistancebetweenthefibres𝑑𝑐incomparisontothefibrediameter𝑑𝑓.

Fig.C2. Illustrationoftwofibresofdifferentorientationsandeccentricities.Theircentrepointsare𝑃and𝑃,andtheirrelatedfibreparametersareusedforthe

calculationofthecorrectedcentre-to-centredistance.Notethatand′areorthogonalnon-normalbases,becausetheirunitvectorscorrespondtothelengthof

theellipseaxes.

andtheexpressionof𝑑𝑐is:

𝑑𝑐 = 2||𝑃⃖⃖⃖⃖⃖⃗𝑃

||

||𝐓−1Ω||⃖⃗−1+||𝐓′ −1⃖⃗Ω||−1 (4) Notethatthisexpressionof𝑑𝑐isalsotheharmonicmeanof||⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑃|| ×

||𝐓−1⃖⃖⃗Ω|| and ||⃖⃖⃖⃖⃖⃖⃖⃗𝑃𝑃|| × ||𝐓′−1Ω⃖⃖⃗||. This corrected centre-to-centre

dis-tancewascalculatedforallsegmentsoftheDelaunaytriangulationand usedfortherefinement.

(16)

Fig.D1. SchematicoverviewofthevariousstepsinvolvedtowardsobtainingtheBSD,IoSandSoSfromthemicroscopyfigures.

References

[1] CompositesWorld, Evolution of tailored D-LFT, 2013, https://www.compositesworld.com/articles/evolution-of-tailored-d-lft , [Online; accessed 21-August-2018].

[2] M. Schemme, LFT - development status and perspectives, Reinforc. Plast. 52 (1) (2008), doi: 10.1016/S0034-3617(08)70036-5 .

[3] G. Tweed, Xycomp® DLF high-performance thermoplastic composite. www.gtweed.com , [Online; accessed 07-November-2018].

[4] T.A. Composites, Compression molded structural components. www.tencatecomposites.com/products/parts-and-services/compression-molded-parts , [Online; accessed 07-November-2018].

[5] W. Schijve, High performance at medium fibre length in long glass fibre polypropylene, Plast., Addit. Compd. 2 (12) (2000) 14–21, doi: 10.1016/S1464-391X(00)80121-X .

[6] F.W.J. Van Hattum, S. Van Breugel, LFT: The future of reinforced thermoplastics? Reinforc. Plast. 45 (6) (2001) 42–44, doi: 10.1016/S0034-3617(01)80208-3 . [7] T.A. De Bruijn , G.A. Vincent , F.W.J. Van Hattum , Recycling of long fibre thermo-

plastic composites by low shear mixing, SAMPE Europe, 2016 .

[8] T.A. De Bruijn , G. Vincent , F.W.J. Van Hattum , Recycling C/PPS laminates into long fibre thermoplastic composites by low shear mixing, in: 21st International Confer- ence in Composite Materials, 2017 .

[9] M. Janney , J. Ledger , U. Vaidya , Long fiber thermoplastic composites from recycled carbon fiber, 44th ISTC, 2012 .

[10] G. Vincent , T. de Bruijn , S. Wijskamp , M. Adbul Rasheed , R. Akkerman , Shredding and sieving thermoplastic composite scrap: method development analyses of the fibre length distributions, Compos. Part B: Eng. (2019) .

[11] L. Mertes, D. Daniel, J. Melack, B. Nelson, L. Martinelli, B. Forsberg, Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the amazon river in brazil from a remote sensing perspective, Geomorphology 13 (1995) 215–232, doi: 10.1016/0169-555X(95)00038-7 .

[12] A. Kukukova, B. Noel, S.M. Kresta, J. Aubin, Impact of sampling method and scale on the measurement of mixing and the coefficient of variance, AIChE J. 54 (504) (2008), doi: 10.1002/aic .

[13] A. Yazdanbakhsh, Z. Grasley, B. Tyson, R.K. Abu Al-Rub, Dispersion quantification of inclusions in composites, Compos. Part A: Appl. Sci. Manuf. 42 (1) (2011) 75–83, doi: 10.1016/j.compositesa.2010.10.005 .

[14] P.V. Danckwerts, The definition and measurement of some characteristics of mix- tures, Appl. Sci. Res. Sect. A 3 (4) (1952) 279–296, doi: 10.1007/BF03184936 . [15] A. Kukukova, J. Aubin, S.M. Kresta, A new definition of mixing and segregation:

Three dimensions of a key process variable, Chem. Eng. Res. Des. 87 (4) (2009) 633–647, doi: 10.1016/j.cherd.2009.01.001 .

[16] A. Inoue, K. Morita, T. Tanaka, Y. Arao, Y. Sawada, Effect of screw design on fiber breakage and dispersion in injection-molded long glass-fiber-reinforced polypropy- lene, J. Compos. Mater. 49 (1) (2015) 75–84, doi: 10.1177/0021998313514872 . [17] J.E. Spowart, B. Maruyama, D.B. Miracle, Multi-scale characterization of spa-

tially heterogeneous systems: implications for discontinuously reinforced metal- matrix composite microstructures, Mater. Sci. Eng. A 307 (1-2) (2001) 51–66, doi: 10.1016/S0921-5093(00)01962-6 .

[18] M. Li, V.C. Li, Rheology, fiber dispersion, and robust properties of engineered cemen- titious composites, Mater. Struct. (2012) 405–420, doi: 10.1617/s11527-012-9909-z . [19] M. Le Baillif, K. Oksman, The effect of processing on fiber dispersion, fiber length, and thermal degradation of bleached sulfite cellulose fiber polypropylene composites, J. Thermoplast. Compos. Mater. 22 (2009) 115–133, doi: 10.1177/0892705708091608 .

(17)

[20] Z. Wang, J. Gao, T. Ai, W. Jiang, P. Zhao, Quantitative evaluation of carbon fiber dispersion in cement based composites, Constr. Build. Mater. 68 (2014) 26–30, doi: 10.1016/j.conbuildmat.2014.06.035 .

[21] N. Yang, J. Boselli, I. Sinclair, Simulation and quantitative assessment of homoge- neous and inhomogeneous particle distributions in particulate metal matrix compos- ites, J. Microsc. 201 (2) (2001) 189–200, doi: 10.1046/j.1365-2818.2001.00766.x . [22] J. Summerscales, F.J. Guild, N.R.L. Pearce, P.M. Russell, Voronoi cells, frac-

tal dimensions and fibre composites, J. Microsc. 201 (2) (2001) 153–162, doi: 10.1046/j.1365-2818.2001.00841.x .

[23] M. Bertram , H. Wendrock , Characterization of planar local arrangement by means of the Delaunay neighbourhood, J. Microsc. 181 (1996) 45–53 .

[24] D.J. Bray, S.G. Gilmour, F.J. Guild, T.H. Hsieh, K. Masania, A.C. Taylor, Quan- tifying nanoparticle dispersion: application of the Delaunay network for objec- tive analysis of sample micrographs, J. Mater. Sci. 46 (19) (2011) 6437–6452, doi: 10.1007/s10853-011-5615-4 .

[25] D.J. Bray, S.G. Gilmour, F.J. Guild, A.C. Taylor, The effects of particle morphology on the analysis of discrete particle dispersion using Delaunay tessellation, Compos. Part A: Appl. Sci. Manuf. 54 (2013) 37–45, doi: 10.1016/j.compositesa.2013.07.003 . [26] B. Bertoncelj, K. Vojisavljevi ć, J. Rihtar š i č, G. Trefalt, M. Huski ć, E. Ž agar, B. Mali č, A Voronoi-diagram analysis of the microstructures in bulk-molding compounds and its correlation with the mechanical properties, Express Polym. Lett. 10 (6) (2016) 493–505, doi: 10.3144/expresspolymlett.2016.47 .

[27] Y. Yang, Methods study on dispersion of fibers in CFRC, Cement Concr. Res. 32 (5) (2002) 747–750, doi: 10.1016/S0008-8846(01)00759-1 .

[28] N. Ozyurt, T.O. Mason, S.P. Shah, Correlation of fiber dispersion, rheology and mechanical performance of FRCs, Cement Concr. Compos. 29 (2) (2007) 70–79, doi: 10.1016/j.cemconcomp.2006.08.006 .

[29] W. Yenjaichon, J.R. Grace, C. Jim Lim, C.P. Bennington, Characterisation of gas mixing in water and pulp-suspension flow based on electrical resistance tomography, Chem. Eng. J. 214 (2013) 285–297, doi: 10.1016/j.cej.2012.10.057 .

[30] T. Mattfeldt , Explorative statistical analysis of planar point processes, J. Microsc. 220 (2005) 131–139 .

[31] L. Pernenkil, C.L. Cooney, A review on the continuous blending of powders, Chem. Eng. Sci. 61 (2) (2006) 720–742, doi: 10.1016/j.ces.2005.06.016 .

[32] G. Vincent , T. de Bruijn , M.I. Abdul Rasheed , S. Wijskamp , R. Akkerman , Fibre length distribution of shredded thermoplastic composite scrap, in: 21th International Con- ference on Composite Materials, 2017 .

[33] M.I. Abdul Rasheed , Compression molding of chopped woven thermoplastic com- posite flakes: a study on processing and performance, University of Twente, 2016 Ph.D. thesis .

[34] A. Beukers, F. Wiltink, J. Van Breugel, Device and method for the preparation of a mixture comprisong fibre-reinforced thermoplastics plastics pellets, 2000. Patent: WO 000002718.

[35] G. Vincent, T. de Bruijn, S. Wijskamp, M. Van Drongelen, R. Akkerman, Process- and material-induced heterogeneities in recycled thermoplastic composites, J. Thermo- plast. Comp. Mater. (2020), doi: 10.1177/0892705720979347 .

[36] C. Servais, A. Luciani, J.-A.E. Månson, Fiberfiber interaction in concentrated suspen- sions: dispersed fiber bundles, J. Rheol. 43 (4) (1999), doi: 10.1122/1.551014 . [37] C. Servais, J.-A.E. Månson, S. Toll, Fiberfiber interaction in concentrated suspen-

sions: dispersed fiber, J. Rheol. 43 (4) (1999), doi: 10.1122/1.551014 .

[38] J.L. Thomason, The influence of fibre length and concentration on the prop- erties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP, Comp. Part A: Appl. Sci. Manuf. 33 (12) (2002) 1641–1652, doi: 10.1016/S1359-835X(02)00179-3 .

[39] H. Meijer, M. Singh, P. Anderson, On the performance of static mixers: a quantitative comparison, Progr. Polym. Sci. 37 (10) (2012) 1333–1349, doi: 10.1016/j.progpolymsci.2011.12.004 .

Referenties

GERELATEERDE DOCUMENTEN

Much research and development focuses on an increas'tlg van ' ety of ADAS to be introduced in road trafft, These systems l ' n\Olve the assistance and/or a Ltomation of various

It is indicated that, by changing the electronic switching mode of the rotor current of an induction machine, it is possible to operate the machine at improved (capacitive)

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

De oudste kuil had een vulling bestaande uit zeer heterogene grijsbruine zandleem met grote verspreide brokken verspitte moederbodem en vrij veel houtskool- en

Moreover, because electrical network infrastructure will vary with regions, matching renewable energy with Eskom’s electricity network is necessary to ensure that not only is

Within ecclesiology and missiology, the homelessness and displacement of refugees question the validity of the traditional understanding of the power of God (pantokrator

met honderden kinderen en volwassenen, giganti sche hopen natuursteen (vaak blokken van vele kilo's), z.and, leern en kiezel om te vorrnen tot een heuvelachtig,

Dit verschil is minder groot dan bij het inkomen mede doordat zich onder de laagste inkomens ook zelfstandigen bevinden met een incidenteel laag inkomen die hun bestedingen