• No results found

Influence of electrochemical cycling on the rheo-impedance of anolytes for Li-based Semi Solid Flow Batteries

N/A
N/A
Protected

Academic year: 2021

Share "Influence of electrochemical cycling on the rheo-impedance of anolytes for Li-based Semi Solid Flow Batteries"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Research

Paper

In

fluence

of

electrochemical

cycling

on

the

rheo-impedance

of

anolytes

for

Li-based

Semi

Solid

Flow

Batteries

A.

Narayanan

a,

*

,

D.

Wijnperlé

a

,

F.

Mugele

a

,

D.

Buchholz

b,c

,

C.

Vaalma

b,c

,

X.

Dou

b,c

,

S.

Passerini

b,c

,

M.H.G.

Duits

a

a

PhysicsofComplexFluidsgroup,UniversityofTwenteandMESA+Institute,POBox217,7500AEEnschede,TheNetherlands

b

Helmholtz-InstituteUlm,Helmholtzstraße,11,89081Ulm,Germany

c

KarlsruheInstituteofTechnology(KIT),P.O.Box3640,76021Karlsruhe,Germany

ARTICLE INFO

Articlehistory: Received15May2017

Receivedinrevisedform3August2017 Accepted5August2017

Availableonline12August2017

Keywords:

SemiSolidFlowBattery SolidElectrolyteInterface CarbonBlack

Rheology

ImpedanceSpectroscopy

ABSTRACT

TherecentlylaunchedconceptofSemi-SolidFlowBatteries(SSFBs)showsastrongpotentialforflexible

energystorage,buttheliquid-dispersedstateoftheelectrodematerialsintroducesseveralaspectsof

whichascientificunderstandingislacking.Westudiedtheeffectofelectrochemicalcyclingonthe

rheologicalandelectricalpropertiesofaSSFBanolytecontainingLi4Ti5O12(LTO)andKetjenBlack(KB)

particles in EC:DMC solvent with 1M LiPF6, using an adapted rheometer that allows in situ

electrochemicalcyclingandelectricalimpedancespectroscopy.Charging(lithiation)causedareduction

intheelectronicconductivity,yieldstressandhighshearviscosityofthefluidelectrode.Formildly

reducingvoltages (1.4V),thesechangeswerepartiallyreversed ondischarging.Formorereducing

voltages thesechangeswerestrongerand persistent.Thefindingof comparabletrendsforafluid

electrodewithouttheLTO,lendssupporttoasimplisticinterpretation,inwhichalltrendsareascribedto

theformationofasurfacelayeraroundtheconductiveKBnanoparticles.ThisSolidElectrolyteInterphase

(SEI)insulatesparticlesandreducesthevanderWaalsattractionsbetweenthem.SEIlayersformedat

less reducing voltages, partially dissolve during thesubsequent discharge. Those formed at more

reducingvoltages,arethickerandpermanent.Astheselayersincreasetheelectronicresistanceofthe

fluidelectrodeby(morethan)anorderofmagnitude,ourfindingshighlightsignificantchallengesdueto

SEIformationthatstillneedtobeovercometorealizeSSFBs.

©2017TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).

1.Introduction

Semi-Solid FlowBatteries (SSFBs),as recentlyintroducedby Dudutaetal.[1],compriseapromisingadditiontothespectrumof rechargeable battery systems. The advantages of SSFBs over conventionalbatteriesliein thedecouplingofpower(cellsize) and energy (tank size), and the potential for adjusting the chemistry of the system during operation. In particular non-aqueousSSFBsystemsareinteresting,sincetheyoffermuchhigher energydensitiesascomparedtomoreconventionalaqueousredox flowsystems[1].Theabilityofnon-aqueousSSFBstoprovideand storeenergyinaflexiblewaymakesthemparticularlypromising forgridapplications.

However,akeyaspectinwhichSSFBsareyetunprovenistheir performanceafterrepeatedelectrochemicalcycling.Whilemany SSFBs usethe samematerials [1,2]as conventional lithium-ion batteries,theymaypotentiallydegradeindifferentwaysduetothe dispersedstateofthesolid matter.InSSFBs (de)lithiationtakes placeinelectrochemicallyactiveparticleswhiletheelectronsare transportedtothecurrentcollectorsviaconductivenanoparticles (CNPs).Theoccurrenceofboth particlesinthe(sub)micronsize rangehasseveralconsequences:i)thesurface-to-volumeratiois relatively large, and ii) Brownian motion and interparticle interactions nowplay a role.Electrochemistry inducedchanges can therefore manifest themselves in different ways. They can directly affect individual particles (e.g. electronic conductivity, lithium uptake)but alsocollective effects arepossible,because colloidal particles show a tendency for self-assembly into a microstructure. The colloidal interactions, which drive this assembly,arelikelytobeaffectedbytheelectrochemicalcycling, and since the structure is kept dynamic by Brownian motion

*Correspondingauthor.

E-mailaddress:a.narayanan@utwente.nl(A. Narayanan).

http://dx.doi.org/10.1016/j.electacta.2017.08.022

0013-4686/©2017TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

ContentslistsavailableatScienceDirect

Electrochimica

Acta

(2)

and/orshearflow,themicrostructuremayadaptto electrochemi-calchanges.

While theprecisemicrostructureofSSFBfluidsis still tobe ascertained, the generally accepted view [1–3] is that in the absenceofflow,theCNPsassembleintoabranchedpercolating network. This network provides electronic conduction and sustains static forces, thereby resisting the sedimentation of particles.Inflow,thenetworkgetsbrokendownintoagglomerates withasizethatdependsontheshearrate[3–5].Thecontribution ofactiveparticlestothemicrostructureislessunderstood.They areexpectedtobehavelikeadisorderedfluidthatsurroundsthe CNPnetwork.Thislackoforderisinferredfromtheinsignificance of bothattractiveand long-ranged repulsiveforces;theformer sinceotherwisetheviscositywouldbeveryhigh,thelatterfrom thestrongscreeningbythedissolvedsalt[6].

ThesedifferencesbetweenSSFBsandconventionallithium-ion batteriesraisethequestion, howdegradationprocessessuchas volumeandstructuralchangesoftheactivematerialsupon(de-) lithiation[7] ortheformationofsolidelectrolyteinterface(SEI)

[8,9]affectSSFBs.Severalconsequencesofsuchprocessesforfluid electrodesareconceivable.ConsideringtheCNPnetwork,boththe natureoftheinterparticlecontactsandtheirnumberdensitycan change:theformerasaconsequenceofsurfaceprocesses,andthe latterdueto(forflowbatteriesinherent)mechanicalrejuvenation: shear-induced fragmentation of the CNP network creates a possibility for the fragments to re-assemble into a different microstructure when the fluid returns to the quiescent state3.

Macroscopically,theelectronicconductivityandtheyieldstress arelikelyaffectedbythesemicroscopicprocesses.Whilecritically relevanttoSSFBs,theabovephenomenacanpotentiallyalsoaffect othertypesofbatterysystemsthatuseself-assemblingcolloidal particles, such as polysulphide [10] and carbon free [11] flow batteries. Recentwork oncarbon slurrybased iron redoxflow batterieshasshownelectronicconductivityenhancementthrough changesintheinterparticlecontactsduetoironplating[12].

The objective of the present work is twofold: to quantify changesinrheologicalandelectricalperformanceduetorepeated electrochemicalcycling,andtogainamechanisticunderstanding ofthesemacroscopicchanges.Toachievethesegoals,a commer-cialrheometerwasextendedtoallowparallelelectricalimpedance measurements, as well as a controlled cycling of the fluid electrodesviathe inclusionof a lithiumcounter electrode.The studiedfluidelectrodeconsistsofamixtureofKetjenBlack(KB) andLi4Ti5O12 (LTO)particlesdispersedinEC:DMC1:1with1M

LiPF6. LTO haspreviously beenidentifiedas a promising active

materialfor SSFBs [13] as lithiationoccurs atabout 1.55V vs Li/Li+, within the safe operating range of the non-aqueous electrolyte[2,14,15].Toexaminetheroleofelectrochemicalstate (andhistory),wecyclethefluidelectrodetoaseriesofincreasingly reducing voltages, measuring the rheological and electrical properties before and after each charge and discharge step. Comparisonsarealsomadebeforeandaftermechanical rejuvena-tion, to probe the changes in self-assembly. To facilitate interpretationofthevariouschangeswealsomakeacomparison betweentheresultsfortheKB-LTOelectrode,andafluidelectrode withouttheLTO.

2.MaterialsandMethods 2.1.FluidElectrodePreparation

Ethylenecarbonate(EC)anddimethylcarbonate(DMC)were obtained from Sigma Aldrich (anhydrous, 99%+ purity). Binary mixturesofECandDMCwere1:1bymass.LP30(EC:DMC1:1with 1MLiPF6)wasobtainedfromBASF.KetjenBlackEC600JDpowder

(KB)wasobtainedfromAkzoNobel.Li4Ti5O12powderwasobtained

from Südchemie. Lithium foil was purchased from Alfa Aesar (99.9%).Allsamplepreparationsandexperimentswerecarriedout inanMBraunArgon-filledglovebox(O2,H2Obelow1ppm).Two

fluidelectrodeswereprepared:amixtureof1wt.%KBand5wt.% LTO,andareferencesampleat1wt.%KB.Thedryparticleswere first wetted by EC-DMC solvent for 8hours to improve their dispersibility; from an earlier study it is known that KB is colloidallyunstableincarbonatesolventwithlargeamountsofsalt

[6].TheKBreferencecontained2.9wt.%KBwhileforthemixtureit was2.6wt.%KBand13.4wt.%LTOatthisstage.Afterwards,LiPF6

salt (Alfa Aesar (98%)) was added via a concentrated solution (LP30+LiPF6)toreacha concentrationof1M(viscosity 4mPas [16]).Afteranadditional8h,thesampleswerehomogenizedby rotor stator mixing (Ultraturrax) at 15000rpm for 2min, and loadedintherheo-impedancesetup.

2.2.Cycling-rheo-impedancesetup

Electrochemical cycling and rheo-impedance measurements wereperformedonastresscontrolledrheo-meter(HaakeRS600) withahome-builtadaptation(Fig.1)comprisinganextensionofa previouslydescribedsystem[3].Briefly,the60mmparallelplate geometryof therheometer wasused asa base.Acopperplate attachedtotheupperrheometerrotorservedasashearingsurface, currentcollectorandelectrodeforelectricalimpedance spectros-copy(EIS).Aperforatedstainlesssteel(316)platewasusedasthe bottomshearingsurface.Duetothesmallsize(1mmradius)and fraction(<40%)oftheholes,rheologicalmeasurementscouldbe performedwithreasonableaccuracy(within 5%;testwith1.231 Pasand0.01Pascalibrationoils).Thisplatealsoservedasasecond electrodeforEIS.ACelgard2500separatorwasusedtoseparate theperforatedplatefromasecondcompartmentwithalithium foil(onatitaniumcurrentcollector).Thisallowedthefoiltobein contacttheelectrolytebutnottheparticles.Inthesolventtrapof therheometer(notshown),mercurywasusedasaworkingfluidto ensurealowfrictionandlow noiseelectricalconnectiontothe rotatinguppergeometry[3].Duringrheologicaltestsallelectrodes weredisconnected.

EIS measurements wereperformed(between theupper and perforatedplate,withS1closedandS2open)inafour-terminal configuration. Theperforated platewas excitedby a sinusoidal voltageof<50mVinthefrequencyrangefrom10MHzto0.01Hz. Amplitude sweeps ontheKB-only fluid had indicated that the responsewaslinear(andhencetheimpedancesthesame)atleast upto100mV(Note:thesevoltageswereappliedattheHF2output. Theactualvoltageacrossthesamplewastypicallymuchsmaller). Currentsweremeasuredbyatransimpedanceamplifier(HF2CA, ZurichInstruments)onthevirtuallygroundedrotor.Abuffer pre-amplifier(HF2TA, ZurichInstruments)wasusedtomeasurethe potentialdifferencebetweentheperforatedplateandtherotor.An impedancespectroscope(HF2IS,Zurichinstruments)wasusedto

Fig.1.Schematicofrheo-impedancesetup.darkgrey:uppergeometry,perforated plate,bottomcurrentcollectortranslucentgray:membrane,beige:lithiumfoilon currentcollector.EitherswitchS1orS2isclosed,toallowEISorelectrochemical cycling.

(3)

extract the complex impedance from the current and voltage signals. The lithium electrode was allowed to float (it was disconnectedfrom the external circuit) during these measure-ments.Frequencydependentparasiticimpedances ofthe setup werecalibratedoutusingthe“openshort”technique[17,18].

Sampleswereelectrochemicallycycled(withS2closed)using thelithiumfoil(>30cm2)asacounterelectrodeandtheCelgard

membraneasanionpermeablemedium.Asthemaximumcurrent waslow(<50

m

Acm2)thetotalpolarizationwasbelow50mV

[19,20]. Currents were measured through a 50

V

resistor. The potential of the perforated plate was allowed to float during cycling.Galvanostaticandpotentiostaticchargingwereperformed usingtheimpedancespectroscope.CustomLabVIEWcodeswere usedtoperformcycling andEIS and tosynchronizethem with rheologicalmeasurements.

2.3.ExperimentalProtocol

Allsurfacesincontactwiththesample(excludingthelithium foilandtheseparator)weresandpaperedandthoroughlycleaned outside the glovebox prior to the experiment. They were subsequentlywettedwithDMCfor15minpriortosampleloading in the glovebox. Cycling-rheo-impedance experiments were performedwithagapof250

m

mbetweenuppercurrentcollector andperforatedplate.Toavoidsamplevariationsduetodifferences inshearhistory[3],wepre-shearedeachsampleat1000s1for 200s, and subsequently allowed them 200s of rest. This ‘mechanical rejuvenation’ was applied before each cycling (charging or discharging) step. Rheo-impedance measurements werecarriedoutbothbeforeandafterthistreatment.Thelithium electrode was disconnected during rheo-impedance measure-ments.AschemeoftheprotocolisgiveninFig.2.

Toindicatetheelectrochemicalhistory,wecodeoursamplesas follows: (Voltage window number). (Cycle number). (Charge (lithiation)/Discharge (delithiation) step). The pristine state is denotedasP.Forexample,code2.3.Crepresentsthestatereached inthe2ndvoltagewindowafterchargingthefluidforthe3rdtime undertheseconditions.Moreover,eachsamplehastwo mechani-calstates:beforeoraftermechanicalrejuvenation.

Sampleswere(dis-)chargedgalvanostaticallyusingacurrentof 1.5mA.AssuminganLTOconcentrationof(5wt.%=)0.121gml1 andaspecificcapacityof175mAhg1,thiscorrespondstoarateof aboutC/10.Oncethecutoffvoltagewasreached,thevoltagewas helduntilthecurrentfellbelow0.5mA.ThereafterEIS measure-mentswereperformed,takingintoaccounttheaforementioned mechanical protocol. Next the yield stress was measured by ramping up the shear stress (62s per stress decade) while measuring the strain. The log(strain) versus log(stress) curve wasfittedwithtwostraightlinesandthestressattheintersection was taken to be the yield stress [21]. The flow curve was subsequentlymeasuredbypre-shearingat1000s1for200sand

then slowly stepping theshear rate downwards from 1000s1 (at20stepspershearratedecade).Afteranequilibrationtimeof 20stheviscositywasaveragedoveronesecond.Sixchargeand dischargehalf-cycleswereperformedforeachvoltagewindow.At theendoftheexperiment,sampleswererecovered,driedat60C andthenanalyzedpostmortemoutsidetheglovebox.

3.ResultsandDiscussion

SSFB fluid electrodes conduct through ionic and electronic pathways[1,4].Asthemetalcurrentcollectors thatenclosethe fluidelectrodeareionicallyblockingbutelectronicallyreversible, these two contributions can (in principle) be separated using impedancespectroscopy [3,22].The electronicresistanceof the fluidelectrode’spercolatedparticlenetwork (withsome contri-butionsfromthecurrentcollectorinterface[3,4])correspondsto the low-frequency limit of the real impedance. Experimental timescalesdonotalwaysallowaccesstothislimit,andtherefore the low frequency realimpedance (LFRIsee Fig.3 panelB) at 0.01Hz wastaken aspracticalmeasure (suitableforidentifying trends) of theelectronicresistance. Furtherjustificationof this approachwillbepresentedinFig.4B,wherewealsofitLFRIvalues usinganequivalentelectricalcircuitmodel.

Fig.3 showstheimpedance,yieldstressandviscosity(from nowontermedtogetherasrheo-impedance)ofafluidelectrode containing1wt.%KBand5wt.%LTO,cycledbetween1.4-2.5Vand 1.0-2.5V. Most measurements (solid symbols) were performed aftermechanicalrejuvenationofthefluid;wewillfocusonthese first.

InregimeI,withalessreducingcut-offof1.4V,boththeLFRI andtheyieldstressshowanalternatingbehavioroncycling,witha higherLFRIandaloweryieldstressat1.4Vascomparedto2.5V. Thedifferencein theLFRIat thetwo statesof chargebecomes progressivelysmalleruponcycling,whilethedifferenceinyield stressremainsroughlythesame.SubsequentcyclinginregimeII, withacutoffof1.0V,leadstostrongchanges.TheLFRItriples,and furtheralternationissuppressed.Theyieldstressroughlyhalves, butherethealternationsremain(Fig.3C).Thelossofalternations inthemeasuredLFRImaybeduetoexperimentallimitations:as shownbytheNyquistplot(Fig.3B),thetimeconstantofthelow frequencyarcshowsalargeincrease,therebycompromisingthe sensitivityoftheLFRItotheelectronicresistance.

Changesintherheologicalpropertiesarereflectedinnotjust theyieldstressbutalsotheflowcurves.Inspectionofthelatter revealsthattheshear-ratedependenceof theviscosityisrather similarforallsamples(insetFig.3D).Thisallowsrepresentationof theeffectsofelectrochemicalcyclingviaaviscosityscale-factor VSF(mainpanelofFig.3D).TheyieldstressandVSFshowasimilar dependenceontheelectrochemicalstate;lithiationlowersboth quantitiesandviceversafordelithiation.ChangingtoregimeII,i.e. the cycling between2.5 V-1.0V, the yield stress and viscosity reduce.AgainthesechangescorrelatewellwiththehigherLFRI, withtheexceptionthatalternationsremainintheyieldstressand VSF.ThismaybeduetotheaforementionedissuewiththeLFRI. Interpretationoftheprogressivechangesinrheo-impedanceof thefluidaftercyclingisnottrivial.Oneaspecthereofisthatthe durationofthechargeanddischargewasnotthesameforeach cycle(seeSIFig.S1,andTableTS1).Forthisreason,onlyrelative changes caused by electrochemical cycling (and mechanical rejuvenation)willbediscussed.Furthermore,themeasurements are performed in a complex system, consisting of several instrumentalpartsandamulticomponentfluidelectrode. Analyz-ingtheelectricalandrheologicaldatainconjunction,thescopeof interpretationcanhoweverbenarroweddown.Importantly,the electricalandmechanicalsignalsoriginatefromthesamesystem,

Fig.2.Schematicofthe(repetitive)measurementprotocol.Pictogramsindicate mechanical rejuvenation andelectro-chemical (dis)charging.The rejuvenation servestocreateareferencestatebybreakingdowntheparticleagglomeratesand lettingthemre-assembleagain.SinceEISdoesnotinvolvemechanicaldeformation, measurementsbeforeandafterrejuvenationcanbecompared.

(4)

comprisingabulkfluidbetweenthesametwometalplates(the uppercurrentcollectorandtheperforatedplate).

Thisstillleavesthequestion,whethercontributionsfromthe metal-fluid interfaces can be neglected or not. A significant interfacialcontributiontotherheologicalsignalwouldrequirea mechanicallyweaklayerneartherheometergeometrywalls(e.g. duetodepletionofparticlesorweakparticle-wallinteractions). Therearehowevernoindicationsforthis. First,theyield stress curves(seeSIFig.S3)indicateaninitialelasticdeformationand finitestrainatyield(alsoforsampleswithaveryhighLFRI).This corresponds well to a gap-spanning network, whereas a weak interfaciallayerwouldalreadyyield(i.e.flow)ataninfinitesimal strain. Secondly, the viscosities (at high shear rates) change appreciably with each cycling step, implying that the forces responsibleforparticleagglomerationshoulddothesame3.Thisis

only possibleif the particlesthemselves undergochanges. The absenceofaparticle-depletedlayeratthemetalplates,asinferred fromtherheology,suggeststhattheLFRIsignalisdominatedby thefluidbulk.Fromadifferentperspective,sincethegap(250

m

m) betweenthemeasuringsurfaces forEIS spansO(1000) particle diameters,thenumberofparticlecontactsinvolvedinanelectron conductionpathhastobeverylarge,ascomparedtothesingle particle-metalcontactpercurrentcollector.Itisthusappropriate toseekanexplanationoftheobservationsinFig.3 intermsof changestotheparticles(andnottheenclosingmetalsurfaces).

Since SSFB electrodes are multi-component mixtures, the effects of electrochemical cycling are not limited to just one component. However, additional observations help identifythe mostdominantchanges.ExaminationoftheLTOparticles(bothin pristine state, and after cycling) revealed that no structural decompositioncouldbedetectedwithXRD(see SIFig.S4).The higherelectronicconductivityofcarbonblackscomparedtoLTO suggests that they will have a dominant influence on the suspensionelectronicconductivity.Moreover,thedifferent rheol-ogiesofsuspensionsofonlyKB(yieldstress,higherviscosity)and onlyLTO(noyieldstress,lowerviscosity)inthesamesolvent(see SIFig.S5)suggeststhatthecarbonblackparticleshaveadominant influence on the rheology. In absence of an all-encompassing model for how electronic conductivity and yield stress are generated in thefluid electrodes,it is thus very reasonable to assumethatthedominantcontributiontobothsignalscomesfrom theKB.

To demonstratethis further,weconsidera similar measure-mentonasamplethatcontainsonlyKBasaparticulatecomponent (Fig.4).Thissamplewascycledinfourvoltageranges,wherethe firsttwocorrespondtothoseoftheKB-LTOfluidelectrode(seeSI Fig.S2andTableTS1).InregimeI(1.4Vcutoff),thebehaviorofthe KBfluidelectrodeissimilartothatoftheKB-LTOfluidelectrode.In the subsequent, more reducing regimes II and III (with cutoff voltagesof1.0and0.8Vrespectively),thedifferencesbetweenthe

Fig.3.Rheo-impedanceof1wt.%KB+5wt.%LTOfluidelectrodesubjecttocyclingindifferentvoltageranges.(X):pristinestate,(D):dischargedto2.5V,(r):chargedto indicatedvoltage.Opensymbols:notmechanicallyrejuvenated,Closedsymbols:mechanicallyrejuvenated.A)LowfrequencyrealimpedancefromEISspectraobtainedat theendofchargeordischarge.B)NyquistplotsofdatapointsmarkedwitharrowsinA.ThedottedlinesconnectthelowestfrequencyimpedancetotheLFRIC)Yieldstress.D) Viscosityscalefactor:thefactorwithwhichtheviscosityat1000s1hastobemultipliedtocoincidewiththatofthepristinestate.Theinsetshowstheflowcurves(viscosity inPasvs.shearrateins1)aftermultiplicationwiththeVSFs.

(5)

‘charged’(reduced)and‘discharged’statesprogressivelybecome larger,spanningalmostanorderofmagnitudeforboththeLFRI andyieldstress.Thealternationofbothpropertiesappearstobe repeatableinregimesIIandIII.However,cyclinginregimeIVwith a cutoff of 0.6V (well outside the stability window of the electrolyte)resultsinamassiveincreaseintheLFRIanddecrease intheyieldstressandVSF.NocleartrendsareobservedintheLFRI orrheologicalpropertiesforsubsequentcycles.

Whilethevoltagerangesappearslightlyshifted,thebehaviorof theKB-onlyfluidelectrodequalitativelyagreeswiththatofthe KB-LTOmixture.Wecanthusattributethebehaviorofbothsystemsto theKBnetwork.Withinthisfocusedinterpretation,theLFRItrends inFigs.3and4canberationalizedbytheformationofaninsulating SEI layer around the KB particles upon exposure to reducing voltages,andapartialdissolutionofthislayerduringdelithiation (2.5V).Recentstudieshavedemonstratedthat thecomposition andpropertiesoftheSEIdependonthepotentialversuslithium whereitisformed[23–25].Athighervoltages,asparseandless insulatingSEIlayercomposedoforganiccompounds(moreprone todissolution)isformed.Atlowerpotentials;athicker,denser,less soluble, and more insulating layer composed of inorganic compoundsgetsformed.

Ourinterpretationthatalayergetsformedonthecarbonduring charginganditpartiallydissolvesduringsubsequentdischarging, isfurthercorroboratedbyanexperimentusingellipsometry.Here a copper substrate coated with a sputtered carbon layer was immersedinEC:DMC1:1+1MLiPF6,andexposedtovoltagesof

1.0 and 2.5V with respect to an immersed lithium foil. Ellipsometric angles

c

and

D

were measured in-situ with a WoollamM2000ellipsometer,asafunctionofwavelength.Fig.5

showstheevolutionofPsi

c

andDelta

D

(foratypicalwavelength of800nm)asafunctionofelectrochemicalhistory.Thepristine sample(intheabsenceofcurrent)showsfairlyconstant

c

and

D

valuesthatareinagreementwitha81nmthickcarbonlayeron bulk copper. Strongand ongoing changesin both ellipsometric anglesareobservedwhenthevoltageissettoa1.0V(‘charging’) whilesettingthevoltageto2.5V(‘discharging’)resultsinapartial recoveryofbothPsiandDeltaangles.SinceCuandcarbondonot dissolveundertheseconditions,thechangesin

c

and

D

during exposureto1.0Vmustbeduetothedepositionofanewmaterial onthesubstrate.Thismakesitlikelythatthepartialreversalof thesechangesonexposureto2.5Vareduetoapartialdissolution ofthislayer.Adetailedquantitativeanalysisofthe(

c

,

D

)databy comparisontoopticalmodelsforthelayerstructureispossible,but thechoiceofanappropriatemodelinconjunctionwiththelimited additionalinformationaboutthelayer’sopticalpropertiespresent challenges.Asimplisticmodelwhichcandescribeourwavelength dependent(

c

,

D

)dataisa5-layerstack:(bulk)Cu-C-an interme-diate layer-SEI-(bulk)electrolyte. The intermediate layer repre-sentsalineartransitioninopticalpropertiesfromthatofcarbonto that of the SEI, accounting for intermixing. Using optical parametersfortheSEIasgiveninMcArthuretal.[26],themodel producesthethicknessesinFig.5(inset).ItcanbeseenthatSEI startstoformwhen thevoltageis switchedto 1.0Vand when

Fig.4.Rheo-impedanceof1wt%KBfluidelectrodesubjecttocycling.SymbolsarethesameasFig.3.A)LFRI.B)NyquistplotsofdatapointsmarkedwitharrowsinAandfits (describedlater)usingtheequivalentcircuitinFig.7C)Yieldstress.D)Viscosityscalefactor,definedsimilarlyasinFig.3.

(6)

switchedbackto2.5Vitpartiallydissolves.Themodelseemsto overestimate theSEIthicknesseshowever (witha maximumof around43nm),whichmaybeduetotheactualrefractiveindices beinghigher.

Consistency with the observed changes in the rheological propertiesimpliesthatthelayermustalsoweakentheattractive forcesthatholdtheKBnetworktogether.Intheelectrostatically screeningenvironment of the1M salt solutionthis is possible through reduced van der Waals attractions. Assuming that the (typical)contactgeometrybetweentwostickingKBunitsremains thesame,thiswouldsuggestaloweredHamakerconstant.

ItmayseemsurprisingthatweobservestrongeffectsofaSEI layerwithinthe‘safe’operatingrangeoftheelectrolyte.Thismay

be due to an uneven current distribution caused by the inhomogeneityof fluid electrodes.Thiscouldleadtovariations inlocalparticlestatesofcharge,triggeringreductiveelectrolyte decompositionandSEIformation[27–29].

Oncyclingthefluidelectrodetolowervoltages,athickerSEI forms,withadrasticeffectontheelectronicresistance.Itshouldbe notedthattheincreaseintheelectronicresistanceduetocharging (lithiation), is larger than indicated by the LFRI. This is easily recognizedfromFigs. 3 Band 4 B, inwhich thelow-frequency semi-circle isfarfromcompleteat0.01Hz,inparticularforthe lithiated state. The large difference (more than one order of magnitude)intheLFRIbetween1.0V-2.5Vand0.8V-2.5Vofthe fluidelectrodeonlycontainingKBindicatesthatthedifferencein

Fig.5.TimedependenceoftheellipsometricanglesofacarbonthinfilmsampleinEC:DMC1:1+1MLiPF6,duringsubsequentexposureto1.0and2.5VversusaLicounter electrode.Psianglesareindicatedinred,whileDeltaanglesareshowninblue.Inset:FittedthicknessofSEI(solidLine)andInterlayer(dottedline).Thefitswereperformedin theCauchyregion(600–1000nm)wheretherewasminimaldepolarization.

Fig.6.Proposedmechanismtoexplaintheobservedcombinedeffectof(dis)chargingtohigherpotentialsandsubsequentmechanicalrejuvenationontheLFRI(i.e.the conductivityoftheKBnetwork).Redcolorindicates(inanexaggeratedway)thepresenceofanSEIlayer,whichgrowsduringcharging,andshrinksduringdischarging. Particlecontactsarelessstronglyaffectedbylayerdepositionordissolution.Note:inrealitytheprimaryKBparticlesarefractal-like,andre-assemblyaftershearleadstoa different(butstatisticallyequivalent)network.

(7)

electronicconductancemustbehuge,evenforvoltages1.0Vvs theLicounterelectrode.Atlower(morereducing)voltages,the effectof theirreversible processonthe electronicresistanceis probablyevenlarger.

Tofurtherexaminetheformationofsurfacelayers,wecompare the LFRI before (open symbols) and after (closed symbols) mechanicalrejuvenationinFigs.3and4.For bothsamplesitis clearthatrestructurationbyshear(followedbyrest),consistently increasestheLFRIaftercharginganddecreasesitafterdischarging. Assumingthatthepre-shearbreaksdownallagglomerates,and that the re-agglomeration process is not impeded by energy barriers(diffusion limitedagglomeration[30]),the micro-struc-tureafterrejuvenationwill(statistically)bethesame.However, theconductivityofinterparticlecontactswillhavechanged.Thisis becausethecontactsbetweensingleparticlesofthenetworkare lesslikelytobeaffectedbytheformationordissolutionofSEI,as theyarelessexposedtotheelectrolytesolution.Consequently,less SEI is formed at the contacts during charging (lithiation) and likewise less is dissolved during discharging (delithiation). Mechanicalrejuvenationleadstorandomizationofthecontacts. Thus, the subsequently formed contacts will contain mainly

maximallygrown(ormaximallydissolved)SEI.Thismechanistic explanation,illustratedinFig.6,thussupportsthattheformation oftheinsulatingSEIispartiallyreversibleathigherpotentials,i.e. lower state of charge. We remark here that the observed reversibility verylikely depends onthe duration that thefluid electrodepotentialisheldoutsideoftheelectrochemicalstability windowoftheelectrolyte.Also,asthereversibilityoftheSEI(and itscomposition)dependsonthepotentialatwhichitisformed, thismechanism isnolongervalidatverylowpotentials(0.6V) wherepermanentSEIisformed.

The identification ofSEI as thecauseof impedancechanges makes it interesting to extract the electronic resistances by modellingtheimpedancespectraoftheKBonlysystemusinga simplifiedequivalentcircuit(Fig.7).Theioniccontributioncanbe modeledasanionicresistanceRioninseriestoaconstantphase

elementQionthatrepresentsthedoublelayercapacitancesofthe

electrolyte interfaces. To model the electronic part, we use a resistor RKB that represents the summed KB intra-particle

resistances in series with a parallel resistor RSEI and capacitor

CSEIthataccountsforthesummedinterparticleimpedances(due

to SEI). A capacitor Cgeo in parallel to the rest of the circuit

represents the geometric capacitance of the system. The fits (Fig.4Binset)showgoodagreementwiththespectra.

WealsonotethatthemeasuredLFRIandthefittedelectronic resistance(thesumoftheKBinterandintraparticleresistances)in

Fig.8Ashowthesametrends,therebyjustifyingourearliergiven interpretationofthechangesinLFRI.Clearly,andasexpected,the measuredLFRIvaluesunderpredicttheelectronicresistancefor mostlithiatedstates.InFig.8BwedecomposethefittedLFRIvalues intothecontributionsRKBandRSEI.Thiscomparisonshowsthatthe

mostimportantchangesinthetotalelectronicresistancecomes fromtheinterparticleresistance.

4.Conclusions

Ourstudyoftheeffectofcyclingontherheo-impedanceofa LTO-basedSSFBanolytehasproducedseveralnewinsights.Two keypropertiesareverysensitivetotheelectrochemicalstateand history: lithiation causes the electronic resistance (LFRI) to increase and the yield stress to decrease, and vice versa for delithiation.Alithiationvoltagebelow1.0VvsaLielectrodecauses a drastic increase in LFRI. A suspension of only KB particles responds ina similarway toelectrochemicalstateand history, indicating that the observed effects of cycling can be largely

Fig.7.EquivalentcircuitusedtofitthedataofFig.4.

Fig.8.ResultsofthefitsofspectraofthemechanicallyrejuvenatedsamplesinFig.4A.A)ComparisonoftotalelectronicresistanceandLFRI.B)ComparisonoffitsummedKB interparticle(RSEI)andintraparticle(RKB)electronicresistances.

(8)

attributedtotheKB. Asimplemechanisticpicturethatcaptures mostfindings,isoneinwhichtheKBparticlesgetcoveredbyaSEI layer during charge (lithiation). For less reducing, i.e. higher voltages,apartofthislayerdissolvesduringdischarge.Thelayer electrically insulates the KB particles and diminishes their attractions. The contact points between the KB units are less affectedbythelayergrowth,similartoconventionalsolidlithium batteries. However, in SSFBs, a mechanical rejuvenation of the structuretakesplaceeverytimethefluidgetspumped,leadingto theincorporationofthethickerlayersintotheKBbackbone.For stronglyreducingvoltagesapermanentSEIlayerisformed.

TheimplicationsofourfindingsforSSFBsaresignificant.Alow electronic resistance is crucial to battery performance, and a sufficientyieldstressisrequiredtosuspendactivematerials.Both thesepropertiesareadverselyaffectedbySEIformationunderthe exploredexperimentalconditions.Ourfindingsshowthatfurther research into chemistries withabsolutely no (insulating) layer formationwouldberequiredtorealizeSSFBs.

Acknowledgements

WeacknowledgeProf.NieckBenesoftheFilmsinFluidsgroup andProf.WiebedeVosoftheMembraneScienceandTechnology Group at the University of Twente for granting access to the ellipsometer.The researchleading totheseresultshasreceived fundingfromtheEuropeanUnionSeventhFrameworkProgramme (FP7/2007-2013)undergrantagreementn608621.

AppendixA.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in the online version, at http://dx.doi.org/10.1016/j. electacta.2017.08.022.

References

[1]M.Duduta,B.Ho,V.C.Wood,P.Limthongkul,V.E.Brunini,W.C.Carter,Y.M. Chiang,Adv.EnergyMater.1(2011)511–516.

[2]K.B.Hatzell,M.Boota,Y.Gogotsi,ChemicalSocietyReviews44(2015)8664– 8687.

[3]A.Narayanan,F.Mugele,M.H.G.Duits,Langmuir33(7)(2017)1629–1638,doi: http://dx.doi.org/10.1021/acs.langmuir.6b04322.

[4]M.Youssry,L.Madec,P.Soudan,M.Cerbelaud,D.Guyomard,B.Lestriez,Phys ChemChemPhys15(2013)14476–14486.

[5]M.Youssry,L.Madec,P.Soudan,M.Cerbelaud,D.Guyomard,B.Lestriez, JournalofPowerSources274(2015)424–431.

[6]Y.Zhang,A.Narayanan,F.Mugele,M.A.C.Stuart,M.H.Duits,Colloidsand surfacesA:Physicochemicalandengineeringaspects489(2016)461–468. [7]C.R.Fell,L.Sun,P.B.Hallac,B.Metz,B.Sisk,JournalofTheElectrochemical

Society162(2015)A1916–A1920.

[8]J.Vetter,P.Novák,M.Wagner,C.Veit,K.-C.Möller,J.Besenhard,M.Winter,M. Wohlfahrt-Mehrens,C.Vogler,A.Hammouche,Journalofpowersources147 (2005)269–281.

[9]X.Han,M.Ouyang,L.Lu,J.Li,Y.Zheng,Z.Li,JournalofPowerSources251 (2014)38–54.

[10]F.Y.Fan,W.H.Woodford,Z.Li,N.Baram,K.C.Smith,A.Helal,G.H.McKinley,W. C.Carter,Y.-M.Chiang,Nanoletters14(2014)2210–2218.

[11]Z.Qi,G.M.Koenig,JournalofPowerSources323(2016)97–106.

[12]T.J.Petek,N.C.Hoyt,R.F.Savinell,J.S.Wainright,JournalofPowerSources294 (2015)620–626.

[13]T.Ohzuku,A.Ueda,N.Yamamoto,JournaloftheElectrochemicalSociety142 (1995)1431–1435.

[14]E.Ventosa,G.Zampardi,C.Flox,F.LaMantia,W.Schuhmann,J.Morante, ChemicalCommunications51(2015)14973–14976.

[15]L.Lombardo,S.Brutti,M.A.Navarra,S.Panero,P.Reale,JournalofPower Sources227(2013)8–14.

[16]Y.R.Dougassa,J.Jacquemin,L.ElOuatani,C.c.Tessier,M.r.m.Anouti,The JournalofPhysicalChemistryB118(2014)3973–3980.

[17]E.Barsoukov,J.R.Macdonald,Impedancespectroscopy:theory,experiment, andapplications,JohnWiley&Sons,2005.

[18]L.Callegaro,Electricalimpedance:principles,measurement,andapplications, CRCPress,2012.

[19]B.Burrows,R.Jasinski,JournaloftheElectrochemicalSociety115(1968)365– 367.

[20]F. La Mantia, C. Wessells, H. Deshazer, Y. Cui, Electrochemistry Communications31(2013)141–144.

[21]G. Schramm, A practical approach to rheology and rheometry, Haake Karlsruhe,1994.

[22]J.Jamnik,J.Maier,JournalofTheElectrochemicalSociety146(1999)4183– 4188.

[23]P.Lu,C.Li,E.W.Schneider,S.J.Harris,TheJournalofPhysicalChemistryC118 (2014)896–903.

[24]S.J.An,J.Li,C.Daniel,D.Mohanty,S.Nagpure,D.L.Wood,Carbon105(2016) 52–76.

[25]J.Collins,G.Gourdin,M.Foster,D.Qu,Carbon92(2015)193–244. [26]M.McArthur,S.Trussler,J.Dahn,JournaloftheElectrochemicalSociety159

(2012)A198–A207.

[27]T.Nishi,H.Nakai,A.Kita,JournalofTheElectrochemicalSociety160(2013) A1785–A1788.

[28]J.Nanda,J.Remillard,A.O’Neill,D.Bernardi,T.Ro,K.E.Nietering,J.Y.Go,T.J. Miller,AdvancedFunctionalMaterials21(2011)3282–3290.

[29]W.C.Chueh,F.ElGabaly,J.D.Sugar,N.C.Bartelt,A.H.McDaniel,K.R.Fenton,K.R. Zavadil,T.Tyliszczak,W.Lai,K.F.McCarty,Nanoletters13(2013)866–872. [30]M.Cerbelaud,B.Lestriez,R.Ferrando,A.Videcoq,M.Richard-Plouet,M.T.

Referenties

GERELATEERDE DOCUMENTEN

Uniek binnen een sector waar de middelen beperkt zijn en die van buitenaf nauwelijks erkenning krijgt voor zijn bewuste keuze voor duurzaamheid.. Verbazend omdat ze er op korte

Er is sprake van een mogelijk (hoofd)gebouw met zware, dakdragende staanders en een gedeelte van een kleiner bijgebouw, mogelijk een spijker. Gezien de gelijkaardige axialiteit

They, too, found no significant relation between continuance commitment to change and active behavioral support for a change, suggesting no positive

However, upon induction of oxidative stress by application of H 2 O 2 , the R439C patient fibroblasts showed signifi- cantly higher levels of ROS compared to healthy control NHDF-

Figure 9 shows in more detail the development of the Li-ion concentration profile in the LiCoO 2 electrode upon discharging at a high 51.2 C-rate. Starting at t = 0, the system is

Italië en Marokko zijn zowel op de Britse als op de Duitse markt nauwelijks serieuze concurrenten voor de vrucht- groenten uit

The purpose of this study was to explore the experiences of health care staff with regard to delayed transfer of critically ill patients from an emergency centre in the Western

Results suggest that there are significant gender differences in both perspective taking and empathic concern; females showed higher levels of empathic concern