• No results found

3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System

N/A
N/A
Protected

Academic year: 2021

Share "3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

International

Journal

of

Applied

Earth

Observation

and

Geoinformation

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e /j a g

3D

object-oriented

image

analysis

in

3D

geophysical

modelling:

Analysing

the

central

part

of

the

East

African

Rift

System

I.

Fadel

a,b,∗

,

M.

van

der

Meijde

a

,

N.

Kerle

a

,

N.

Lauritsen

c

aUniversityofTwente,FacultyofGeo-informationScienceandEarthObservation(ITC),P.O.Box6,7500AAEnschede,TheNetherlands bGeologyDepartment,FacultyofScience,HelwanUniversity,AinHelwan,Egypt

cDTUSpace,NationalSpaceInstitute,Elektrovej,Building327+328andØrstedsPlads,Building348,DK-2800Kgs.Lyngby,Denmark

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15August2013 Accepted8November2013 Availableonline8December2013 Keywords:

Satellitegravity 3Dgravitymodel

Object-orientedimageanalysis Inversion

TanzaniaCraton Seismictomography

a

b

s

t

r

a

c

t

Non-uniquenessofsatellitegravityinterpretationhastraditionallybeenreducedbyusingapriori infor-mationfromseismictomographymodels.Thisreductioninthenon-uniquenesshasbeenbasedon velocity–densityconversionformulasoruserinterpretationofthe3Dsubsurfacestructures(objects) basedontheseismictomographymodelsandthenforwardmodellingtheseobjects.However,thisform ofobject-basedapproachhasbeendonewithoutastandardizedmethodologyonhowtoextractthe sub-surfacestructuresfromthe3Dmodels.Inthisresearch,a3Dobject-orientedimageanalysis(3DOOA) approachwasimplementedtoextractthe3Dsubsurfacestructuresfromgeophysicaldata.Theapproach wasappliedona3DshearwaveseismictomographymodelofthecentralpartoftheEastAfricanRift System.Subsequently,theextracted3Dobjectsfromthetomographymodelwerereconstructedinthe 3DinteractivemodellingenvironmentIGMAS+,andtheirdensitycontrastvalueswerecalculatedusing anobject-basedinversiontechniquetocalculatetheforwardsignaloftheobjectsandcompareitwiththe measuredsatellitegravity.Thus,anewobject-basedapproachwasimplementedtointerpretandextract the3Dsubsurfaceobjectsfrom3Dgeophysicaldata.Wealsointroduceanewapproachtoconstrainthe interpretationofthesatellitegravitymeasurementsthatcanbeappliedusingany3Dgeophysicalmodel. ©2013ElsevierB.V.Allrightsreserved.

1. Introduction

Invertinggravitydatahastraditionallybeenoneofthemain

geophysicalchallenges.Becauseofitsmonopolepotentialfield,and

resultingmeasuredbulkproperty,retrievingaccurateobject

infor-mationis oftena matteroftrade-offsand bestguesses.Usinga

priorigeologicaland/orseismologicaldataisawayofreducingthis

non-uniquenessofgravityinversions.

Therearetwomaingenericapproacheshavebeenfollowedin

thepast.Thefirstistheconversionoftheseismicvelocitiesinto

densitiesusingempiricalstandardvelocity–densityrelationships

(Birch,1961;Gardneretal.,1974;ChristensenandMooney,1995; Godfreyetal.,1997;Brocher,2005)orincludingtemperature,

pres-sure,andmineralcompositioneffects(Ravatetal.,1999;Korenaga

etal.,2001;Cammaranoetal.,2011).Calculateddensitieswerethen

usedtoproducetheestimatedgravitysignalandcompareitwith

themeasuredgravity,ortoconstrainanyfurtherinversion

pro-cess(BezadaandZelt,2011).Thisapproachusuallyhastodealwith

∗ Correspondingauthor.

E-mailaddresses:i.e.a.m.fadel@utwente.nl,islam.geophysics@gmail.com

(I.Fadel),m.vandermeijde@utwente.nl(M.vanderMeijde),n.kerle@utwente.nl

(N.Kerle),nlbla@space.dtu.dk(N.Lauritsen).

uncertaintyintheseismicdataandthevelocity–densityconversion

relationshipsthatresultfromthedependencyonanduncertainty

inphysicalparameterssuchastemperature,pressureand

petro-logy(BezadaandZelt,2011;Cammaranoetal.,2011).Thesecond

approachisbasedontheinterpretationoftheseismicmodelsto

deriveobjects(GötzeandLahmeyer,1988)suchaslayers,plate

boundaries,subductionzones,anddomes.Subsequentlythe

densi-tiesoftheseobjectsarecalculatedusingoneofthevelocity–density

relationshipsorthroughatrialanderrorapproach.Afterthat,the

forwardsignalassociatedwiththeseobjectsiscomparedwiththe

measuredgravity(e.g.,Sanchezetal.,2011).Afollowingstepcan

beapplyinginversionapproachestoreducethemisfitbetweenthe

calculatedandthemeasuredgravity(e.g.,Ebbingetal.,2001).This

gravitymodellingobject-basedapproachhasbeendonewithouta

standardizedmethodologyonhowtoextractthesubsurface

struc-turesfrom3Dsubsurfacedata,andhastraditionallymainlybeen

basedontheuserexperienceorpre-existingdata(e.g.,Ebbingetal.,

2001;Sanchezetal.,2011).

Inthisresearchwereportonacasestudyfromthecentralpart

oftheEastAfricanRiftSystemandhowanadvanced3D

object-orientedImage Analysis (3DOOA) approach can provide more

objectivedefinitionsofobjectboundariesforgravitymodellingand

inversion.3DOOAwillbeusedtoextract3Dobjectsfroma

tomo-graphyvoxelmodel.Then,theywillbereconstructedinthe3D

0303-2434/$–seefrontmatter©2013ElsevierB.V.Allrightsreserved.

(2)

I.Fadeletal./InternationalJournalofAppliedEarthObservationandGeoinformation35(2015)44–53 45

object-basedinteractivegravitymodellingenvironmentIGMAS+.

Subsequentlytheirdensitycontrastvalueswillbecalculatedusing

anobject-basedinversion.Finally,thegravityresponseofthefinal

modelwillbecomparedwiththesatellitegravitysignal.

2. Dataset

2.1. 3Dtomographymodel

ThestudyareaisthecentralpartoftheEastAfricanRiftSystem.

Adamsetal.(2012)developeda3Dshearwaveseismic

tomogra-phymodelofthearea,whichisvoxel-basedandcanbedividedinto

twomainsections.Thefirstisthecrustalpartofthemodel,which

extendsfrom0to40kmwith1kmincrements.Itrepresentsthe

crustalstructureofthemodeldowntoaflatMohoat40kmdepth.

Thesecondistheuppermantlepartofthemodelrangesfroma

depthof40kmdownto400kmat10kmincrements.Thispartof

themodelcanbedividedintotwomainzones,shallowanddeep,

basedontheirrelativepositioninthemodel.Theshallowzoneof

theuppermantlepart(from40kmdownto∼200km)is

charac-terizedbyhighvelocitiesoftheTanzanianCratonandUgandan

basementcomplex,andlowvelocitiesofthesurroundingtectonic

settingssuchasriftbranches, theProterozoic mobilebeltsand

Cenozoicvolcanism.Thedeepzoneoftheuppermantlepart(from

∼200kmdownto400km)ischaracterizedbydominantlow

veloc-itiesrelatedtoaheadplumeorpartofthedeepmantlesuperplume

inwesternAfrica(Adamsetal.,2012).

2.2. Satellitegravitydata

ThegravitydatausedinthisstudyareGOCEonlymodels(see

vanderMeijdeetal.(2013)fordetails)andthehighresolution

EIGEN-6C(Förste et al., 2011), a combinedgravity field model

of LAGEOS/GRACE,GOCE and DTU10 upto a maximumdegree

andorderof1420.Thefreeairgravitydatawereobtainedfrom

the InternationalCentre for Global Earth Models (ICGEM) web

site(http://icgem.gfz-potsdam.de/ICGEM/)witharesolutionof0.1

degree(Fig.1A).Theeffectsofthenearbyterrainwereremoved

usingETOPO1topographydata(Fig.1B),alsodownloadedthrough

theICGEMwebsitewithsimilarresolution(0.1degree)tothe

mod-els.The effect of the terrain correctionon the satellitegravity

measurementswassmallwithamaximumvalueof3.16×10−5

m/s2(Fig.1C),inlinewithfindingsbyMishraetal.(2012).Then,

thedatawereBouguercorrected,removingtheeffectduetothe

massexcessordeficiencyasaresultofhighorlowelevation

rela-tivetothemeansealevel.TheBouguercorrectionalsousedETOPO1

topographydatawiththesamespatialresolution(0.1degree)asthe

satellitegravitydataandareferencedensityof2.67t/m3(Fig.1D).

3. 3DOOA

Objectorientedimageanalysis(OOA),alsodefined asobject

basedimageanalysis(OBIA)orgeographicobjectbasedimage

anal-ysis(GEOBIA),isanimageanalysistechniquethatisbasedonthe

analysisofsegments,orobjects,insteadofpixels.Ingeneral,OOA

isa2-stepprocedurestartingwithimagesegmentationthatis

fol-lowedbytheclassificationofthesesegments.Thesegmentation

stepcomprisesofdividingimagepixelsintocontiguoussegments

orobjects,basedonpre-definedknowledgebasedorhomogeneity

criteria,suchascolourorintensity.Thesubsequentclassification

stepusesthesegmentsassociatedattributeswhichcanbespectral,

geometric,textural,contextual,andalsogeologicalandphysical,to

differentiatebetweenthedifferentobjectspresentintheimages.

Consequently,OOAmimicscognitivevisualimageanalysis

tech-niquesthroughaformofknowledge-drivenanalysis(Marthaetal.,

2011).Recently,3DOOAwasdevelopedinthebiomedicalfieldto

extract3Dobjectsfromimagestacks(Schoenmeyeretal.,2006).

Thefirstapplicationto3Dsyntheticandseismologicalmodelswas

recently carried out (Fadel et al., 2013).Thatstudy specifically

appliedtheapproachineCognitionsoftwareforderivingobjects

ina3Dseismictomographymodel.

eCognitionwasthefirstOOAtoolwhenintroducedin2000and

sincethen about50–55%of allOOApublishedscientific studies

haveusedit(Blaschke,2010).Thenthenamewaschangedinto

Definiensin2007.Afterthatthepackagewassplitintotwo

soft-warepackages;Definienssoftwarethat isrelatedtobiomedical

applications,andeCognitionthatismainlyappliedforgeospatial

applications.eCognition isbuiltonthe conceptof rulesetsthat

definetheobjectextractionprocessinwhichacomplexprocessing

schemeof segmentation/classificationalgorithmscanbe

imple-mented(Fadeletal.,2013).Therulesetisasemiautomaticsince

itisbuiltonsegmentationandclassificationalgorithms,whichare

originallydevelopedintheeCognitionpackage,thatareusedto

seg-mentortoclassifythe3Dobjectsfromtheimagestack.Theuser

onlyneedstodefinethethresholdsthataresuitabletodefinethe

targetsegmentationschemeorthetargetobjecttobeextracted.

3DOOAwasappliedonthe3Dtomographicmodelin2stages.

First,therulesetofFadeletal.(2013)wasusedtoextracttheobjects

fortheuppermantlepartofthemodelbetween>40–400km(Fig.2

UpperMantlePart).Theuppermantleobjectscanbeseparatedin

twozonesbasedontheirrelativedepthintheuppermantlepart

ofthemodel:

(1)The shallow zone (>40-∼200km) consists of high velocity

objects (craton (C)and shallowhighvelocity object (SHV)),

lowvelocityobject(rifts(R)),andboundaryzones

surround-ingbothhighandlowvelocityobjects(boundaryshallowhigh

velocity(BSHV)andaboundaryshallowlowvelocity(BSLV),

respectively).

(2)Thedeepzone(∼200–400km)isdominatedbyalowvelocity

object(LV)withitsinnerpart(ILV)followedbyahigh

veloc-ityobjectatthedeepestpartofthemodel(deephighvelocity

(DHV))withaboundarybetweenitandtheupperlowvelocity

object(boundarydeeplowvelocity(BDLV)).

Second,anewrulesetwasdevelopedforthecrustalpartofthe

modelfromthesurfacedowntoadepthof40km.Thenewcrustal

partofthemodel(AubreyaAdams,personalcommunication,April

29,2013)wasvoxelbasedwith1kmdepthinterval.

Thenewrulesetforthispartwasbasedonvisualinterpretation

andanalysisofthe3Dhistogram,summarizingthe3Ddistribution

ofdensityvalueswithdepth(Fig.3B),similartoFadeletal.(2013).

Thetomographicmodelhadahardboundaryof2discrete1km

layersaboveandbelowtheMoho(Adamsetal.,2012),withamajor

velocityjumpoverthesetwolayers.Therulesetmadeuseofthis

hardboundarytodistinguishthecrustalpartfromtheuppermantle

part.Thenewrulesetconsistedof2mainsteps(seesupplementary

dataformoredetails).

Inthefirststepmulti-thresholdsegmentationwasusedto

sep-aratethecrustalfromtheuppermantle partofthemodel.This

algorithmsplitstheimageintosegmentsandclassifiesthembased

onpre-definedthresholds.40kmdepthwasusedasathresholdto

separatethecrustalfromtheuppermantlepart(Fig.3A).The

subse-quentfocuswasonthecrustalpartofthemodel(0–40km).Aseries

ofassignclassalgorithmswasappliedtosplititintofiveobjects

usingthresholdsthatweredefinedbasedonthevisual

interpreta-tionsupportedbytheanalysisofthe3Dhistogram(Fig.3B).These

5units(Fig.2CrustalPart)donotnecessarilyhaveageo/physical

meaningintermsoftheirvelocities,due tothesharpboundary

withlargevelocitycontrastatthefixedlayerat40kmdepthinthe

tomographymodel.However,theyhighlighttherelativevelocity

(3)

Fig.1. Thecorrectionofthesatellitegravitysignal.(A)ThefreeairEIGEN-6cdata.(B)ETOPO1topographymap.(C)TheterraincorrectionmapusingETOPO1topography andreferencedensity2.67t/m3.(D)TheBougueranomalymapaftertheBouguerandterraincorrections.

valuesupto3.2km/s,andwassurroundedbyunit2which

repre-sentstheboundaryforunit1andhasavelocityrangefrom3.2km/s

up to3.4km/s. Unit 3, with a velocity range of 3.4–3.55km/s,

wascharacterizedbylowvariationinthedensitydistributionas

canbeseeninthe3Dhistogram.Unit4,withavelocityrangeof

3.55–4.1km/s,surroundedthefinalunit5thatwascharacterized

byvelocitieshigherthan4.1km/stherebyrepresentingthehighest

velocityinthecrustalpart.3DOOAbehavedasanysimple

isosur-faceduetothelackofaprioriinformationaboutthecrustalpart;in

additiontothelimitedabilityofseismictomographytechniquesin

suchshallowdepthswhereotherapproachesaremorepreferable

suchasreceiverfunctions(LiuandGu,2012).

4. Forwardmodelling

4.1. Objectsreconstruction

The objects extracted in the OOA part were re-constructed

in IGMAS+ (3D Interactive Gravity and Magnetic Application

System;GötzeandLahmeyer,1988;Schmidtetal.,2010),which

facilitatesinteractiveforwardmodellingof thesubsurface inan

object-orientedenvironment.TheresultsfromOOAwereexported

asclassifiedcrosssectionsthatwereusedtoconstraintheshape

oftheobjectsthroughthereconstructionprocess.27sectionswere

createdinIGMAS+with50kmaveragedistancebetweenthemto

fittheoriginal3Dtomographymodelthathadahorizontal

resolu-tionof0.5degree.Then,OOAclassifiedsectionswereimportedin

IGMAS+andco-locatedwiththecreatedIGMAS+sectionstostart

re-constructingtheobjects.Theuppermantlepartofthemodel

(>40–400kmdepth)wasconstructedfirst(seeFig.4UpperMantle

PartandFadeletal.(2013)fordetails).Adamsetal.(2012)used

a1kmthicklayeraboveandbelowthe40kmdepthtoconstrain

Mohodepthsandallowforlargevariationsinthevelocitybetween

thecrustalandtheuppermantlepartofthemodel.Hence,a1km

horizontallayeraboveandbelowadepthof40km(2kmthicklayer

betweendepths39–41km)wasconstructedtorepresenttheMoho

asintheoriginalmodel.Thisisinlinewithactualobservationson

theMohowhichoftenindicateitisalayerwithacertainthickness

andnotadiscreteboundary.Subsequently,thecrustalpartofthe

modelwasconstructedabove(Fig.4CrustalPart).

ThetomographicmodeldidnothavearealisticMoho

(4)

I.Fadeletal./InternationalJournalofAppliedEarthObservationandGeoinformation35(2015)44–53 47

Fig.2.3DOOAresultsofthemodel.Thecrustalpart(0–40km)showstheOOAresultsofthefiveunits(U1–5).Theuppermantlepart(>40–400)showstheOOAresultsofthe differentuppermantleobjects:craton(C),shallowhighvelocity(SHV),rift(R),boundaryshallowhighvelocity(BSHV),boundaryshallowlowvelocity(BSLV),lowvelocity (LV),innerlowvelocity(ILV),boundarydeeplowvelocity(BDLV),anddeephighvelocity(DHV).Thereadershouldbeawarethattheobjectshaveareverseorientationin theEast-Westdirection(comparethemwithFig.4)whichisavisualizationdefectof3DOOAresults.

AdaptedfromFadeletal.(2015).

crustalandtheuppermantlepartsremainedthesame;however,

thefixedMohowasreplacedwithagravitybasedcrustal

thick-nessmapofAfrica(Tugumeetal.,2013).The2kmthickflatlayer

representing top and bottom of theMoho transitionzone was

modifiedtodescribetheundulationofthenewMoho.Nowa

real-isticMohotopographywasincluded,representingspatialdensity

variationsduetoMohoundulations.TheembeddedMohomodel

showedalargevariationincrustalthicknessesthatrangedfrom

∼28kmatcoastalregionsto∼42kminthecentralpartofthestudy

area(Fig.5).Thealternativeoptiontousecrustalthicknessfrom

CRUST2.0,acrustalthicknessmapthat wascreatedby

interpo-latingthecrustalvelocityestimatesfromactive-sourceprofiling

techniquesandgeologicallyestimatedterrainages(Bassinetal.,

2000),wasnotconsideredbecauseofthedebateofusingCRUST2.0

indatapoorenvironments(seediscussioninvanderMeijdeetal.,

2013).

4.2. Object-basedinversion

Afterthedefinitionofthetwoscenariomodelsbasedonthe

resultsofthe3DOOA,densityvaluesforeachobjectwereneeded

tocalculatethegravitysignalandcompareitwiththemeasured

satellitesignal.Schmidtetal.(2011)introducedalinear

object-basedinversionapproachinIGMAS+,basedontheminimummean

squareerror(MMSE)algorithmintroducedbyHaase(2008)based

ontheworkofSaether(1997).Theinteractiveobject-based

mod-ellingapproachaimstominimizethemisfitbetweenthecalculated

andthemeasuredgravitysignaluptoapproximationerror:

Calculated=measured−error=

n



i=1

iPi (1)

wherenisthetotalnumberofbodies,iistheconstantdensityof

bodyi,andPirepresentsthepolyhedrongravityeffectofbodyi(for

density1).

Eq.(1)simplifiesthesubsurfacestructureintoasmallnumber

ofobjects.Eachobjecthasaconstantdensityvalue(i)thatisthe

commonvalueofallvoxelswithinthisobjecti.Thecalculated

grav-ityeffectofobjectiwillbetheproductofitsdensityimultiplied

bythepolyhedrongravityeffectincaseofaunitdensityvalue(e.g.,

1t/m3or1kg/m3oranyotherunit).Thetotalcalculatedgravity

sig-nalwillbethesummationoftheresultingpolyhedroneffectsfor

thetotalnumberofobjectsn.Theobject-basedinversionapproach

(5)

Fig.3.3Dhistogramsofthemodel.(A)Thehistogramisthefull3Dhistogramofthemodelfrom0to400kmdepth.Theblackarrowat40kmdepthindicatesthesharp discontinuityinthemodelbecauseoftheMoho.(B)Thehistogramshowsthecrustalpart(0–40km)ofthemodel,whiletheblack-whitelinesindicatethethresholdvelocities forthedifferentunits.

insteadofthetraditionalinteractivetrialand errorapproaches.

Theestimatedoptimizeddensityvaluesi,directlyrelatedtothe

definedobjectsproduceacalculatedgravitysignalwithaminimum

misfit(error)tothemeasuredsignal.Itisalsopossibletoadd

con-straintstotheinversionprocessincaseofthepresenceofapriori

knowledgeaboutthedensityvaluesofsomeobjectsinthemodel.

Inthatcase, theobjectswithaprioriknowndensityvalues are

providedintheinversionalgorithmasconstantswhilethe

inver-sionalgorithmisonlyappliedtotheobjectswithunknowndensity

values,asshowninEqs.(2)and(3).

Calculated=



ip ipPip+



np npPnp (2)

HencebysubstitutionusingEq.(1),

Measured−error−



np npPnp=



ip ipPip (3)

whereindexipindicatestheobjectsthatwillbeinverted,andnp

indicatestheobjectsthatwillnot.Apointofattentionisthe

set-tingofthebackgrounddensityvalue.TheBougueranomalyisthe

resultofthedensitycontrastbetweenthebackgrounddensitiesof

theEarthandtheexistingdensitiesofthedifferentobjectsinthe

subsurface.IGMAS+allowsonedensitybackgroundvalueto

cal-culatedensityanomaliesand,hence,gravityanomaliesrelativeto

it.However,formodelswithlargeverticalandspatialdensity

con-trastsdownto400kmthebackgrounddensityvalueschangeswith

depth.Therefore,theuseofonevalueasadensitybackgroundis

notideal.Inordertodealwiththislimitation,relativeobject

den-sitycontrastswereusedwithrespecttoabackgrounddensityof

0.Theresultsfromtheinversionprocessarethusdensitycontrast

valuesbetweenobjectsinthemodelandthebackground

densi-tiesattheirequivalentdepths.Forexample,ifweassumedthatthe

densitybackgroundfor0–10kmis2.67t/m3,theabsolutedensity

valueofunit1is2.453t/m3(U1liesinadepthrange0–10kmwith

adensitycontrastof−0.217,asshowninTable2).Themeasured

gravitysignalwasfilteredtoremoveshortwavelengthsinorderto

fittheresolutionoftheinputdata(i.e.,theseismologicalmodel).

Thesmallestobjectinthemodelis approximately100km.This

requiredtheapplicationofalow-passcosineroll-offfilteronthe

measuredgravitysignal(Fig.6D).Thisremovedthehighfrequency

content,neededtobecomparablewiththecalculatedgravity

sig-nalbasedontheseismologicalmodel.Thefilteredgravitysignal

wasusedtoestimatetheoptimizeddensitycontrastvaluesofthe

differentobjects,andtoevaluatethedegreeofcorrelationwiththe

(6)

I.Fadeletal./InternationalJournalofAppliedEarthObservationandGeoinformation35(2015)44–53 49

Fig.4. ThereconstructionprocessoftheextractedobjectsinIGMAS+.(FM)ThefullmodelimageshowstheimportedsectionsresultedfromOOAandthemeasuredgravity onthetopofthem.Theotherimagesshowthereconstructionprocessofeachobject:thefiveunitsofthecrustalpart(U1–5),craton(C),shallowhighvelocity(SHV),rift(R), boundaryshallowhighvelocity(BSHV),boundaryshallowlowvelocity(BSLV),lowvelocity(LV),innerlowvelocity(ILV),boundarydeeplowvelocity(BDLV),anddeephigh velocity(DHV).

Table1showstheresultsoftheinversionprocessforthe

differ-entpartsofthetwomodels,withboththeflatandtheundulated

Moho,comparedtoEIGEN-6c.Inbothcases,thecalculatedgravity

signalfromtheuppermantlepartshowed69%correlationwiththe

measuredsatellitegravity.IncaseoftheflatMohomodel,theadded

Mohodiscontinuitylayerandthecrustalpartonlyhadaslighteffect

onimprovingtheresults(maximumof3%improvement).Incase

ofthecompletemodel,however,usingtherealisticMohosurface

basedonthecrustalthicknessmapofAfrica(Tugumeetal.,2013),

theresultsshowedamajorimprovementuptoa95%fit.The

undu-latingMohodiscontinuityclearlyhasastronginfluenceonthefinal

fit,whichistobeexpectedforalarge-scalestronganomalythatalso

hasasignificantcontributiontothegravitysignalamongall

mod-elledobjects.Anotherreasonfortheincreasedfitisthattheapplied

Mohotopographyisalsoderivedfromgravitydata.Therefore,it

isexpectedtogiveahighcorrelationandconsequentlycontribute

strongly.Thisstrongcontributionisreflectedinthe,unrealistically,

highrelativedensitycontrastvalue5.157t/m3oftheMoholayer

thatresultsfromtheinversion,asshowninTable2.Thisisalso

partlybecausetheMohoismodelledasathinlayer(2kmthick)

andthatalltheuncertaintiesinthestrongnegativecrustal

den-sityvalues(U1−0.217t/m3,U2−0.244t/m3,U3−0.278t/m3,U4

−0.312t/m3,andU5−0.373t/m3,Table2)seemtoaccumulatein

thehighpositivedensitycontrastvalueoftheMoho.

Table2(secondcolumn)showsthedensitycontrastvaluesfor

eachindividualobjectinthemodelresultingfromtheobject-based

inversionusingEIGEN-6c.Thevaluesforthecrustalpart(U1–U5)

ofthemodel,rifts(R),thelowvelocityzone (LV),and itsinner

part(ILV)showednegativedensitycontrast.Fortherifts(R),the

lowvelocityzone(LV),andtheinnerlowvelocityzone(ILV),the

valuesarematchingwiththelowvelocityvaluesfromthe

tomo-graphymodel.However,theinnerlowvelocity(ILV)objectshowed

Fig.5.ThecrustalthicknessmapofthestudyareaadaptedfromTugumeetal. (2013).

(7)

Fig.6.Thecalculatedgravitysignalbasedontheinversionprocess.(A)The100kmfilteredgravitysignal.(B)Thecalculatedsignalfromtheuppermantlepartofthemodel (>40–400km)with69%correlationwith(A).(C)Thecalculatedgravitysignalusingthefullmodelwith95%correlationwith(A,B,andC).(D)Thedifferencebetweenthe measured(A)andthecalculated(C)signal.(E)Thehistogramofdifferencemap(D).

lessnegativedensitycontrastthanthelowvelocity(LV)object,

whichcontradictstheseismictomographymodel,sincetheinner

lowvelocity(ILV)hadthelowestvelocity.Thecraton(C),the

shal-lowhighvelocity(SHV),andthedeephighvelocityzone(DHV)

objects,showedpositivedensitycontrastvaluesthatagreedwith

thehighvelocityinthetomographicmodel.However,thecraton

(C)hadahighervelocityinthetomographicmodelthanthe

shal-lowhighvelocity(SHV)object.Thiswascontrarytothedensity

Table1

Theinversionresultsforthedifferentpartsofthetwomodels.

Parameters Uppermantlepart UppermantlepartwithMoho Completemodel CompletemodelwithoutMoho FlatMohomodel

Correlation 0.69 0.71 0.72 0.70

Standarddeviation×10−5m/s−2 25 24 14 25

UndulatedMohomodel

Correlation 0.69 0.71 0.95 0.89

(8)

I.Fadeletal./InternationalJournalofAppliedEarthObservationandGeoinformation35(2015)44–53 51

Table2

Thedensitycontrast(t/m3)estimatedfromtheinversionofthecompletemodelwiththeundulatedMohousingdifferentgravitymodels.

Object Eigen-6c(t/m3) Eigen-6c2(t/m3) GOCO03S(t/m3) GO-CONS-GCF-2-DIR-R4(t/m3) GO-CONS-GCF-2-TIM-R4(t/m3)

Unit1(U1) −0.217 −0.215 −0.211 −0.211 −0.211 Unit2(U2) −0.244 −0.243 −0.24 −0.241 −0.241 Unit3(U3) −0.278 −0.277 −0.275 −0.275 −0.275 Unit4(U4) −0.312 −0.312 −0.308 −0.309 −0.308 Unit5(U5) −0.373 −0.374 −0.371 −0.372 −0.371 Craton(C) 0.008 0.008 0.007 0.007 0.007

ShallowHighVelocity(SHV) 0.011 0.011 0.01 0.01 0.009

BoundaryShallowHighVelocity(BSHV) 0.005 0.005 0.004 0.004 0.004

Rift(R) −0.002 −0.002 −0.003 −0.003 −0.003

BoundaryShallowLowVelocity(BSLV) −0.015 −0.015 −0.014 −0.014 −0.014

LowVelocityZone(LV) −0.052 −0.053 −0.053 −0.053 −0.053

InnerLowVelocity(ILV) −0.002 −0.002 −0.003 −0.003 −0.003

BoundaryDeepLowVelocity(BDLV) −0.067 −0.067 −0.062 −0.06 −0.058

DeepHighVelocity(DHV) 0.172 0.173 0.171 0.172 0.17

MOHO 5.157 5.154 5.132 5.137 5.139

Reference 0 0 0 0 0

Correlation 0.948 0.949 0.948 0.948 0.947

Standarddeviation 11.021 11 11.002 11.062 11.089

contrast,whichwaslowerforthecraton.Thiscontradictioncan beexplainedbythelargeuncertaintyinthevelocityvaluesthatis lessthan0.2km/satdepths<250km,andnotmorethan0.3km/s atgreaterdepths(Adamset al.,2012).Theboundariesbetween

ShallowHighVelocity(BSHV),ShallowLowVelocity(BSLV),and

DeepLowVelocity(BDLV)objectsshowedrealistictransition

val-ues.Thefinalmapsofthecalculatedgravitysignalfortheupper

mantlepartandthecompletemodelwiththeundulatedMohoare

showninFig.6.

4.3. Testingdifferentgravitymodels

Thepreviousmodelling wasdoneusing a combined

EIGEN-6cmodelconstructedfromsatellitedataandothergravitydata

sources.Thisraisedthequestionofhowmuchthedifferent

con-tent,resolutionandqualityofdifferentgravitymodelsinfluence

thefinalmodelparameters.Forthispurpose,differentcombined

andsatellitedataonlymodelswerecompared.EIGEN-6c,

EIGEN-6c2(GOCE,GRACE,LAGEOSandsurfacedata), GOCO03S(GOCE,

GRACE,CHAMP,SLR),GO-CONS-GCF-2-DIR-R4(GOCE,GRACE,and

LAGEOS),andGO-CONS-GCF-2-TIM-R4(GOCEonly)wereusedin

thistest(formoreinformationontheGOCErelatedmodelsseevan

derMeijdeetal.(2015)).Themodelsweredownloadedwiththe

sameresolutionandsubjectedtothesameprocessing(terrain

cor-rection,Bouguercorrectionand100kmcosineroll-offfilter).The

resultsforthedifferentgravitymodelsaresummarizedinTable2.

TheresultsshowedthatEIGEN-6c2,themostrecentand

high-estresolutionmodel,givesthebestresults.Thiswasexpectedsince

themodelhasbeenshowntohaveahigheraccuracythananyother

gravitymodel(Försteetal.,2013).However,thedifferencesinthe

models(Fig.7)werenotsignificant.Inaddition,thecorrelations

areallhighandcomparable,andstandarddeviationresultsvary

little(Table2).Whencomparedtothestandarddeviationthatis

obtainedforthebestmodel(seeTable1)onecanconcludethat

choicesmadein thecreationofthemodel areofmuch greater

consequencethanthevariabilitybetweenmodels(at100km

reso-lution).

5. Discussion

Itisdifficulttoquantifyhowmuch3DOOAhasimprovedthe

modellingofsubsurface objects.Anexpert modelermighthave

cometoasimilarresult,ormaybeevenbetter.Themainadvantage

isthattheboundariesarebasedonphysicalrulesandknowledge,

andthattheyareobjectiveandrepeatable.Anadditionaladvantage

wasthatthetopandbottomoftheobjectsweredetermined,

some-thingthattraditionallyhasbeendifficultduetostrongsmearing

and/orsmoothingintheverticaldirection.

Inthisexampletheboundariesoftheobjectswerefixed,and

theinversiononlyinfluencedtheinternalphysicalpropertiesofthe

objects.Thisis,ofcourse,alimitationandcanbegivenmoredegrees

offreedominfutureattempts.Themethodwedevelopedisidealfor

incorporatingaprioriinformationintheidentificationofobjects.

Weonlyusedgeologicalknowledgeonthemaingeologicaland

tec-tonicfeaturesintheareabasedonAdamsetal.(2012),andcrustal

thicknessfromTugumeetal.(2013).Moreaprioriinformationcan

potentiallybeincorporated,suchasvelocity–densityrelationships,

pointobservationsfrom,forexample,receiverfunctionanalysis,

and petrochemicalknowledgeonthephysicalpropertiesof the

variousdefinedobjects.Thiswayphysicalpropertiescanbe

fur-therconstrained.Inourexperimentsweobservedthatforsome

objectparametershadnon-realisticdensitycontrastvalues(e.g.,

theMoholayer).Byaddingrangeswithinwhichparametersmay

vary,theresultislikelytobemorerealisticintermsofretrieved

physicalproperties.

Becauseofthepoorlyresolvedcrustalpartoftheseismological

model (Adams et al., 2012), there is no strictly defined

struc-turalintegritybetweenthecrustalandtheuppermantlepartof

themodel.ThesharpMohoboundarydefinedinthetomographic

modelisnotphysicallyrealisticinallplaces,andreplacementby

anothercrustalthicknessmodelcreatesanuncertaintyinthe

phys-icalcontinuationofthephysicalproperties,therebyaddingmore

uncertaintyonstructuralintegrity.

The31%misfitvaluebetweenthecalculatedandmeasured

grav-ity,basedontheuppermantlepartofthemodel,canbeexplained

duetotheabsenceofthecrustalpartinthemodel.Thedramatic

improvementinthecorrelationandstandarddeviationafteradding

theMohoaredoubtfulwhenconsideringtheunrealisticallyhigh

density contrastof the Moho thathad a highinfluenceon the

measuredsignal.Therefore,inordertoprovethenecessitytoadd

arealisticMohosurface,theinversionwascarriedoutexcluding

theMoholayer(adensitycontrast=0)fromtheinversionusingnp

indexmentionedinEqs.(2)and(3).Theresultsoftheinversion

showedasignificantimprovementof89%inthecalculatedsignal

(Table1).Thisunderscorestheimportanceofknowledgeonthe

shapeoftheMohosurface.Inaddition,itreflectsthenecessityfor

densitycontrastconstraintsofsomeobjects,sinceaminorchange

inoneobjectinthemodelcausedsignificantchangesinthe

den-sitycontrastofallobjects.Table2showsthatanegligiblechange

(9)

Fig.7. MapsshowthedifferencebetweencombinedsatelliteandsurfacedatagravitymodelEIGEN-6c2thatshowedthebestfitintheinversionresults(Table2)andthe differentgravitymodels.(A)ThedifferencebetweenEIGEN-6c2andthecombinedsatelliteandsurfacedatagravitymodelEIGEN-6c.(B)ThedifferencebetweenEIGEN-6c2and satelliteonlygravitymodelGOCO03S.(C)ThedifferencebetweenEIGEN-6c2andsatelliteonlygravitymodel(GO-CONS-GCF-2-DIR-R4).(D)ThedifferencebetweenEIGEN-6c2 andsatelliteonlygravitymodel(GO-CONS-GCF-2-TIM-R4).

densitycontrastvalues.Anotherindicatorforthehighsensitivity

ofthedensitycontrastvaluesisthatthevaluesarenotstablewith

changesintheextentofthemeasuredgravitysignal.Sometests

weredonetoremovetheedgeeffectinthecalculatedgravity

sig-nalbyreducingthemeasuredgravityextentby4,8,and12%ofthe

totalextentofthestudyarea.Theresultsofthedensitycontrastfor

eachtrialwerealsodifferent.Moreover,theedgeeffectwasstill

presentintheforwardsignalandthemisfitbetweenthemeasured

andthecalculatedgravitysignal(Fig.6CandD)sincetheforward

calculationofIGMAS+isbasedonflatEarthassumptionsanddoes

nottakeintoaccountthesphericalshapeoftheEarth.

Theuncertainty in the location of theextracted objects are

relatedtotheuncertaintyoftheseismictomographicmodel.Adams

etal.(2012)statedthattheuncertaintiesformajorfeaturesinthe

modelarerangingfrom25to50kmfortheshallowzoneofthe

uppermantle partofthemodel (40–250km)and canbeupto

75–100kmfordepths>250km.Theuncertaintyofthecrustalpart

ofthemodel(0–40km)wasnotdiscussedinAdamsetal.(2012)

butwasassumedtobethesameasforthedepthrange40–250km.

Theuncertaintiesarereflectedintheresultsoftheobjectbased

inversion. The correlation factor and thestandard deviation of

theinversionresultsshowthatforthecompletemodel,including

theundulatedMohodensitycontrasts5.157t/m3,thecorrelation

was0.95 and the standard deviation of the misfit wasaround

11×10−5m/s2(Fig.6DandE).Themisfitcanbeexplainedbythe

inherentuncertainty intheseismicmodel thatalsoincludethe

objectboundaries.Theinversionalgorithmonlyallowedchange

inthedensitycontrasts.Thatresultedinsomeobjectsdensity

con-trasttobeunrealistic.However,ifthealgorithmwasallowedto

changetheboundarieslocationwithincertainlimitsthatarelinked

totheuncertaintyoftheinputdata,maybeboththelocationof

theobjects’boundaries and thedensity contrastvalues willbe

improved.Thiscanbedonethroughimplementing insightona

prioriknowledgeaboutthepossibledensitycontrastrangesofthe

objectsthatcanpreventaddingmorenon-uniquenesstothe

prob-lemduetotheavailableinfinitecombinationofboundarylocations

anddensitycontrastvalues.

6. Conclusion

Inthisresearchwedevelopedamethodtoextract3Dobjects

(10)

I.Fadeletal./InternationalJournalofAppliedEarthObservationandGeoinformation35(2015)44–53 53

objectswerethenreconstructedinanobject-basedgravity

mod-elling environment (IGMAS+), and the density contrast value

foreachobject calculatedusinganobject-basedinversion

tech-nique.Thecalculatedgravitysignalfromtheuppermantle part

(>40–400km) of the model produced a 69% correlation with

observedgravity.Thelowfitismainlyduetotheabsenceofthe

Mohoundulation surface,and thecrustalpart.Byadding aflat

Moholayerwitha2kmthicknessandthecrustalobjects,basedon

thetomographicmodel,thecalculatedgravitysignalonlyimproved

by3%.However,byaddingtheMohoundulationsurfacebasedon

thecrustalthicknessmapofAfricabyTugumeetal.(2013)and,

theintra-crustalobjectsfromthetomographicmodelfromAdams

etal.(2012),thefitofthecalculatedgravitysignalwiththeobserved

gravitysignificantlyimprovedupto95%.However,theresultsfor

theMohoandthecrustalpartneedfurtherverification,and

fur-therimprovementsareexpectedbasedonothergeophysicaldata

sources,suchasreceiverfunctions.

Theusageofthedifferentsatellitegravitymodels,either

satel-liteonlymodelsorsatelliteandterrestrialmodels,onlyhadaminor

effectontheinversionresults.Uncertaintyintheinversionislarger

thanthevariabilityduetotheuseofdifferentmodels(allat100km

resolution).

Integrating3DOOAina3Dobject-orientedgravitymodelling

environment canleadtoa significantimprovement in

convert-ingthevoxel-basedgeophysicalmodelsintoobject-basedmodels

based on simple and objective knowledge-based classification

rules. In addition, the object-based inversion approach can be

improvedbyusingthedifferentavailablesegmentationalgorithms,

which,forexample,allowobjectstogrowandshrinkautomatically,

andhenceallowsomeflexibilityforautomaticadjustmentofthe

boundarylocation,andthustooptimizefittingresults.

Acknowledgments

WethankDr.AubreyaAdamsatWashingtonUniversityfor

mak-ingtheseismictomographymodelofthestudyareaavailablefor

thisstudy.WewouldliketothankProf.Dr.Hans-JürgenGötzeand

hisresearchteamatKielUniversityfor providingtheacademic

licensefortheIGMAS+software.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.jag.2013.11.004.

References

Adams,A.,Nyblade,A.,Weeraratne,D.,2012.Uppermantleshearwavevelocity structurebeneaththeEastAfricanplateau:evidenceforadeep,plateauwide lowvelocityanomaly.GeophysicalJournalInternational189(1),123–142.

Bassin,C.,Laske,G.,Masters,G.,2000.Thecurrentlimitsofresolutionforsurface wavetomographyinNorthAmerica.EOSTransactionsAGU81,F897.

Bezada,M.J.,Zelt,C.A.,2011.Gravityinversionusingseismicallyderivedcrustal densitymodelsandgeneticalgorithms:anapplicationtotheCaribbean-South Americanplateboundary.GeophysicalJournalInternational185(2),577–592.

Birch,F.,1961.Thevelocityofcompressionalwavesinrocksto10kilobars:2.Journal ofGeophysicalResearch66(7),2199–2224.

Blaschke,T.,2010.Objectbasedimageanalysisforremotesensing.ISPRSJournalof PhotogrammetryandRemoteSensing65(1),2–16.

Brocher,T.,2005.Empiricalrelationsbetweenelasticwavespeedsanddensity intheEarth’scrust.BulletinoftheSeismologicalSocietyofAmerica95(6), 2081–2092.

Cammarano,F.,Tackley,P.,Boschi,L.,2011.Seismic,petrologicalandgeodynamical constraintsonthermalandcompositionalstructureoftheuppermantle:global thermochemicalmodels.GeophysicalJournalInternational187(3),1301–1318.

Christensen,N.,Mooney,W.,1995.Seismicvelocitystructureandcompositionofthe continentalcrust;aglobalview.JournalofGeophysicalResearch-SolidEarth100 (B6),9761–9788.

Ebbing,J.,Braitenberg,C.,Götze,H.,2001.Forwardandinversemodellingofgravity revealinginsightintocrustalstructuresoftheEasternAlps.Tectonophysics337 (3–4),191–208.

Fadel,I.,Kerle,N.,Meijde,M.,2015.3Dobjectorientedimageanalysisofgeophysical data.GeophysicalJournalInternational35,44–53.

Förste,C.,Bruinsma,S.,Flechtner,F.,Marty,J.-C.,Dahle,C.,Abrykosov,O.,Lemoine, J.-M.,Neumayer,H.,Barthelmes,F.,Biancale,R.,etal.,2013.Eigen-6c2-anew combinedglobalgravityfieldmodelincludingGOCOdatauptodegreeand order1949ofGFZ-PotsdamandGRGS-Toulouse.In:EGUGeneralAssembly ConferenceAbstracts,vol.15,p.4077.

Förste,C.,Bruinsma,S.,Shako,R.,Marty,J.,Flechtner,F.,Abrikosov,O.,Dahle,C., Lemoine,J.,Neumayer,K.,Biancale,R.,etal.,2011.EIGEN-6-anewcombined globalgravityfieldmodelincludinggocedatafromthecollaborationof GFZ-PotsdamandGRGS-Toulouse.In:GeophysicalResearchAbstracts,vol.13.

Gardner,G.,Gardner,L.,Gregory,A.,1974.Formationvelocityanddensity:the diag-nosticbasicsforstratigraphictraps.Geophysics39(6),770–780.

Godfrey,N.,Beaudoin,B.,Klemperer,S.,1997.OphioliticbasementtotheGreat Val-leyforearcbasin,California,fromseismicandgravitydata:implicationsfor crustalgrowthattheNorthAmericancontinentalmargin.GeologicalSociety ofAmericaBulletin109(12),1536–1562.

Götze,H.,Lahmeyer,B.,1988.Applicationofthree-dimensionalinteractivemodeling ingravityandmagnetics.Geophysics53(8),1096–1108.

Haase,C.,2008.Improvedestimation ofsubsurfacemagneticproperties using minimummean-square error methods.Christian-Albrechts-UniversityKiel, Germany(Diplomathesis).

Korenaga,J.,Holbrook,W.S.,Detrick,R.S.,Kelemen,P.B.,2001.Gravityanomalies andcrustalstructureatthesoutheastGreenlandmargin.JournalofGeophysical Research:SolidEarth106(B5),8853–8870.

Liu,Q.,Gu,Y.,2012.Seismicimaging:fromclassicaltoadjointtomography. Tectono-physics566–567,31–66.

Martha,T.,Kerle,N.,vanWesten,C.,Jetten,V.,Kumar,K.,2011.Segment opti-mizationanddata-driventhresholdingforknowledge-basedlandslidedetection byobject-basedimageanalysis.IEEETransactionsonGeoscienceandRemote Sensing49(12),4928–4943.

Mishra,D.,Kumar,M.R.,Arora,K.,2012.Longwavelengthsatellitegravityandgeoid anomaliesoverHimalaya,andTibet:lithosphericstructuresand seismotecton-icsofdeepfocusearthquakesofHinduKushPamirandBurmesearc.Journalof AsianEarthSciences48,93–110.

Ravat,D.,Lu,Z.,Braile,L.,1999.Velocity–densityrelationshipsandmodelingthe lithosphericdensityvariationsoftheKenyaRift.Tectonophysics302(3–4), 225–240.

Saether,B.,1997.Improvedestimationofsubsurfacemagneticpropertiesusing min-imummean-squareerrormethods.Norgesteknisk-naturvitenskapeligeuniv, Trondheim,Norway(Ph.D.Thesis).

Sanchez,J.,Götze,H.,Schmitz,M.,2011.A3-Dlithosphericmodelofthe Caribbean-SouthAmericanplateboundary.InternationalJournalofEarthSciences100(7), 1697–1712.

Schmidt,S.,Götze,H.,Fichler,Ch.,A.M.,2010.IGMAS+:anew3Dgravity,FTGand magneticmodellingsoftware.Extendedabstract.Geoinformatik,57–63.

Schmidt,S.,Plonka,C.,Götze,H.,Lahmeyer,B.,2011.Hybridmodellingof grav-ity,gravitygradientsandmagneticfields.GeophysicalProspecting59(6,SI), 1046–1051.

Schoenmeyer,R.,Prvulovic,D.,Rotarska-Jagiela,A.,Haenschel,C.,Linden,D.E.J., 2006.Automatedsegmentationoflateralventriclesfromhumanandprimate magneticresonanceimagesusingcognitionnetworktechnology.Magnetic Res-onanceImaging24(10),1377–1387.

Tugume,F.,Nyblade,A.,Juli,J.,vanderMeijde,M.,2013.Precambriancrustal struc-tureinAfricaandArabia:evidencelackingforsecularvariation.Tectonophysics,

http://dx.doi.org/10.1016/j.tecto.2013.04.027(inpress).

vanderMeijde,M.,Juli,J.,Assumpo,M.,2013.GravityderivedMohoforSouth Amer-ica.Tectonophysics,http://dx.doi.org/10.1016/j.tecto.2013.03.023(inpress). vander Meijde,M., Pail,R.,Bingham, R.,Floberghagen, R.,2015. GOCEdata,

models,andapplications;areview.Int.J.Appl.EarthObs.Geoinform. 35, 4–15.

Referenties

GERELATEERDE DOCUMENTEN

Nadat de projectresultaten met convenantspartners zijn uitgewerkt in oplossingen, weten telers met welke emissieroutes ze rekening moeten houden en wat ze eraan kunnen

Research has been done on the impact of income on the accessibility of dominant sustainable activities, and the influence of policies on this relationship..

Developing, motivating and rewarding employees to perform at their optimal levels, aligning individual tasks and goals to organisational goals, clarifying employee responsibility and

[31] To study cell- cell interactions, regulation of proliferation and differen- tiation, wound healing, skin barrier function and skin- microbiome interactions, 3D skin

Keywords: water supply, service delivery, neighbourhood, exit, voice and loyalty framework, inadequate public services, Lagos, Benin, urban households.. Disciplines: Public

Oliviera en Mitchell was die eerste magistrate, Later is die kantoor na die westekant van die spoorlyn verskuif waar dit saam met die polisie in een gebou gehuisves

Although the model trained on preprocessed data classi- fied the spectra with accuracy of 90.89% in full spectral area and 90.22% in fingerprint and 91.22% in high fre- quency,