• No results found

Geometrical variability of esophageal tumors and its implications for accurate radiation therapy - References

N/A
N/A
Protected

Academic year: 2021

Share "Geometrical variability of esophageal tumors and its implications for accurate radiation therapy - References"

Copied!
27
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Geometrical variability of esophageal tumors and its implications for accurate

radiation therapy

Jin, P.

Publication date

2019

Document Version

Other version

License

Other

Link to publication

Citation for published version (APA):

Jin, P. (2019). Geometrical variability of esophageal tumors and its implications for accurate

radiation therapy.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)

and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open

content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please

let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material

inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter

to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You

will be contacted as soon as possible.

(2)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 169PDF page: 169PDF page: 169PDF page: 169

[1] Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010; 127(12): 2893–2917.

[2] Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136(5): E359–E386.

[3] Integraal Kankercentrum Nederland (IKNL). Nederlandse kankerregistratie; 2018. [4] Arnold M, Laversanne M, Brown LM, Devesa SS, Bray F. Predicting the Future Burden of

Esophageal Cancer by Histological Subtype: International Trends in Incidence up to 2030. Am J Gastroenterol. 2017; 112(8): 1247–1255.

[5] Cook MB, Chow WH, Devesa SS. Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977-2005. Br J Cancer. 2009; 101(5): 855–859.

[6] Otterstatter MC, Brierley JD, De P, Ellison LF, MacIntyre M, Marrett LD, et al. Esophageal cancer in Canada: Trends according to morphology and anatomical location. Can J Gastroen-terol. 2012; 26(10): 723–727.

[7] Castro C, Bosetti C, Malvezzi M, Bertuccio P, Levi F, Negri E, et al. Patterns and trends in esophageal cancermortality and incidence in Europe (1980-2011) and predictions to 2015. Ann Oncol. 2014; 25(1): 283–290.

[8] Edgren G, Adami HO, Vainio EW, Nyrén O. A global assessment of the oesophageal adeno-carcinoma epidemic. Gut. 2013; 62(10): 1406–1414.

[9] Crane LMA, Schaapveld M, Visser O, Louwman MWJ, Plukker JTM, van Dam GM. Oe-sophageal cancer in The Netherlands: Increasing incidence and mortality but improving sur-vival. Eur J Cancer. 2007; 43(9): 1445–1451.

[10] Finks J, Osborne N, Birkmeyer JD. Trends in hospital volume and operative. N Engl J Med. 2011; 364: 2128–37.

[11] Enzinger PC, Mayer RJ. Esophageal Cancer. N Engl J Med. 2003; 349(23): 2241–2252. [12] DeMeester SR. Adenocarcinoma of the esophagus and cardia: A review of the disease and its

treatment. Ann Surg Oncol. 2006; 13(1): 12–30.

[13] Njei B, McCarty TR, Birk JW. Trends in esophageal cancer survival in United States adults from 1973 to 2009: A SEER database analysis. J Gastroenterol Hepatol. 2016; 31(6): 1141– 1146.

[14] Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson AB, et al. Annual Report to the Nation on the Status of Cancer, 1975-2014, Featuring Survival. J Natl Cancer Inst. 2017;

(3)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 170PDF page: 170PDF page: 170PDF page: 170

109(9): 1–22.

[15] Rice TW, Blackstone EH, Rusch VW. 7th edition of the AJCC cancer staging manual: esoph-agus and esophagogastric junction. Ann Surg Oncol. 2010; 17: 1721–1724.

[16] Besharat S, Jabbari A, Semnani S, Keshtkar A, Marjani J. Inoperable esophageal cancer and outcome of palliative care. World J Gastroenterol. 2008; 14(23): 3725–3728.

[17] van Hagen P, Hulshof MCCM, van Lanschot JJB, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BPL, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012; 366(22): 2074–2084.

[18] Gwynne S, Hurt C, Evans M, Holden C, Vout L, Crosby T. Definitive chemoradiation for oesophageal cancer – a standard of care in patients with non-metastatic oesophageal cancer. Clin Oncol. 2011; 23(3): 182–8.

[19] Teoh AYB, Chiu PWY, Yeung WK, Liu SYW, Wong SKH, Ng EKW. Long-term survival out-comes after definitive chemoradiation versus surgery in patients with resectable squamous carcinoma of the esophagus: results from a randomized controlled trial. Ann Oncol. 2013; 24(1): 165–171.

[20] Versteijne E, van Laarhoven HWM, van Hooft JE, van Os RM, Geijsen ED, van Berge Hene-gouwen MI, et al. Definitive chemoradiation for patients with inoperable and/or unresectable esophageal cancer: locoregional recurrence pattern. Dis Esophagus. 2015; 28(5): 453–459. [21] Fletcher GH. Regaud lecture perspectives on the history of radiotherapy. Radiother Oncol.

1988; 12(4): 253–271.

[22] Moonen L, Bartelink H. Fractionation in radiotherapy. Cancer Treat Rev. 1994; 20(4): 365– 378.

[23] Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982; 8(11): 1981–1997.

[24] Douglas BG. Superfractionation: its rationale and anticipated benefits. Int J Radiat Oncol Biol Phys. 1982; 8(7): 1143–1153.

[25] Thames HD, Peters LT, Withers HR, Fletcher GH. Accelerated fractionation vs hyperfrac-tionation: Rationales for several treatments per day. Int J Radiat Oncol Biol Phys. 1983; 9(2): 127–138.

[26] Haviland JS, Owen JR, Dewar JA, Agrawal RK, Barrett J, Barrett-Lee PJ, et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013; 14(11): 1086–1094.

[27] Hegemann NS, Guckenberger M, Belka C, Ganswindt U, Manapov F, Li M. Hypofractionated radiotherapy for prostate cancer. Radiat Oncol. 2014; 9(1): 275.

[28] Ray KJ, Sibson NR, Kiltie AE. Treatment of Breast and Prostate Cancer by Hypofractionated Radiotherapy: Potential Risks and Benefits. Clin Oncol. 2015; 27(7): 420–426.

[29] Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016; 17(8): 1047–1060.

(4)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 171PDF page: 171PDF page: 171PDF page: 171

[30] Bourhis J, Overgaard J, Audry H, Ang KK, Saunders M, Bernier J, et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet. 2006; 368(9538): 843–854.

[31] Mauguen A, Le Péchoux C, Saunders MI, Schild SE, Turrisi AT, Baumann M, et al. Hyperfrac-tionated or accelerated radiotherapy in lung cancer: An individual patient data meta-analysis. J Clin Oncol. 2012; 30(22): 2788–2797.

[32] Pignon JP, Sylvester R, Bourhis J. Hyperfractionated and/or accelerated radiotherapy versus conventional radiotherapy for head and neck cancer. In: Pignon JP, editor. Cochrane Database Syst. Rev. 2. Chichester, UK: John Wiley & Sons, Ltd; 2000. p. 1–8.

[33] Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, et al. Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol. 2008; 26(7): 1086–1092. [34] Nishimura Y, Ono K, Tsutsui K, Oya N, Okajima K, Hiraoka M, et al. Esophageal Cancer

Treated With Radiotherapy: Impact of Total Treatment Time and Fractionation. Int J Radiat Oncol Biol Phys. 1994; 30(5): 1099–105.

[35] Shi XH, Yao W, Liu T. Late course accelerated fractionation in radiotherapy of esophageal carcinoma. Radiother Oncol. 1999; 51(1): 21–26.

[36] Wang J, Lin S, Dong L, Balter P. Quantifying the interfractional displacement of the gastroe-sophageal junction during radiation therapy for egastroe-sophageal cancer. Int J Radiat Oncol Biol Phys. 2012; 83(2): e273–e280.

[37] Kelsen DP, Ginsberg RJ, Pajak TF, Sheahan DG, Gunderson L, Mortimer J, et al. Chemother-apy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med. 1998; 339(27): 1979–1984.

[38] Lee JL, Park SI, Kim SB, Jung HY, Lee GH, Kim JH, et al. A single institutional phase III trial of preoperative chemotherapy with hyperfractionation radiotherapy plus surgery versus surgery alone for resectable esophageal squamous cell carcinoma. Ann Oncol. 2004; 15(6): 947–954.

[39] Herskovic A, Martz K, Al-Sarraf M, Leichman L, Brindle J, Vaitkevicius V, et al. Combined Chemotherapy and Radiotherapy Compared with Radiotherapy Alone in Patients with Can-cer of the Esophagus. N Engl J Med. 1992; 326(24): 1593–1598.

[40] Forastiere AA, Orringer MB, Perez-Tamayo C, Urba SG, Zahurak M. Preoperative chemora-diation followed by transhiatal esophagectomy for carcinoma of the esophagus: Final report. J Clin Oncol. 1993; 11(6): 1118–1123.

[41] Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TP. A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med. 1996; 335(7): 462–7.

[42] Cooper JS, Guo MD, Herskovic A, Macdonald JS, Martenson Jr JA, Al-Sarraf M, et al. Chemoradiotherapy of Locally Advanced Esophageal Cancer. JAMA. 1999; 281(17): 1623– 1627.

[43] Heath EI, Burtness BA, Heitmiller RF, Salem R, Kleinberg L, Knisely JPS, et al. Phase II evalu-ation of preoperative chemoradievalu-ation and postoperative adjuvant chemotherapy for squamous

(5)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 172PDF page: 172PDF page: 172PDF page: 172

cell and adenocarcinoma of the esophagus. J Clin Oncol. 2000; 18(4): 868–876.

[44] Minsky BD, Pajak TF, Ginsberg RJ, Pisansky TM, Martenson J, Komaki R, et al. INT 0123 (Radiation Therapy Oncology Group 94-05) Phase III Trial of Combined-Modality Therapy for Esophageal Cancer: High-Dose Versus Standard-Dose Radiation Therapy. J Clin Oncol. 2002; 20(5): 1167–1174.

[45] Brower JV, Chen S, Bassetti MF, Yu M, Harari PM, Ritter MA, et al. Radiation Dose Escalation in Esophageal Cancer Revisited: A Contemporary Analysis of the National Cancer Data Base, 2004 to 2012. Int J Radiat Oncol Biol Phys. 2016; 96(5): 985–993.

[46] van Daele E, Ceelen W, Boterberg T, Varin O, van Nieuwenhove Y, van de Putte D, et al. Ef-fect of neoadjuvant radiation dose on surgical and oncological outcome in locally advanced esophageal cancer. Acta Chir Belg. 2015; 115(1): 8–14.

[47] Markar S, Gronnier C, Duhamel A, Pasquer A, Théreaux J, du Rieu MC, et al. Salvage Surgery After Chemoradiotherapy in the Management of Esophageal Cancer: Is It a Viable Therapeutic Option? J Clin Oncol. 2015; 33(33): 3866–3873.

[48] Welsh J, Palmer MB, Ajani JA, Liao Z, Swisher SG, Hofstetter WL, et al. Esophageal cancer dose escalation using a simultaneous integrated boost technique. Int J Radiat Oncol Biol Phys. 2012; 82(1): 468–474.

[49] Vieillevigne L, Vidal M, Izar F, Rives M. Is dose escalation achievable for esophageal carci-noma? Reports Pract Oncol Radiother. 2015; 20(2): 135–140.

[50] Kwa SLS, Lebesque JV, Theuws JCM, Marks LB, Munley MT, Bentel G, et al. Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys. 1998; 42(1): 1–9.

[51] Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999; 45(2): 323–329.

[52] Lee HK, Vaporciyan AA, Cox JD, Tucker SL, Putnam JB, Ajani JA, et al. Postoperative pul-monary complications after preoperative chemoradiation for esophageal carcinoma: Correla-tion with pulmonary dose-volume histogram parameters. Int J Radiat Oncol Biol Phys. 2003; 57(5): 1317–1322.

[53] Wang SL, Liao Z, Vaporciyan AA, Tucker SL, Liu H, Wei X, et al. Investigation of clinical and dosimetric factors associated with postoperative pulmonary complications in esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys. 2006; 64(3): 692–699.

[54] Tucker SL, Liu HH, Wang S, Wei X, Liao Z, Komaki R, et al. Dose-volume modeling of the risk of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys. 2006; 66(3): 754–761.

[55] Schallenkamp JM, Miller RC, Brinkmann DH, Foote T, Garces YI. Incidence of radiation pneumonitis after thoracic irradiation: Dose-volume correlates. Int J Radiat Oncol Biol Phys. 2007; 67(2): 410–416.

[56] Wei X, Liu HH, Tucker SL, Wang S, Mohan R, Cox JD, et al. Risk factors for pericardial

(6)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 173PDF page: 173PDF page: 173PDF page: 173

sion in inoperable esophageal cancer patients treated with definitive chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2008; 70(3): 707–714.

[57] Gayed IW, Liu HH, Yusuf SW, Komaki R, Wei X, Wang X, et al. The prevalence of myocardial ischemia after concurrent chemoradiation therapy as detected by gated myocardial perfusion imaging in patients with esophageal cancer. J Nucl Med. 2006; 47(11): 1756–62.

[58] Schultheiss TE. The Radiation Dose-Response of the Human Spinal Cord. Int J Radiat Oncol Biol Phys. 2008; 71(5): 1455–1459.

[59] Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence T, Ten Haken RK. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys. 2002; 53(4): 810–821.

[60] Cassady JR. Clinical radiation nephropathy. Int J Radiat Oncol Biol Phys. 1995; 31(5): 1249– 1256.

[61] Fernandez DC, Hoffe SE, Barthel JS, Vignesh S, Klapman JB, Harris C, et al. Stability of endo-scopic ultrasound-guided fiducial marker placement for esophageal cancer target delineation and image-guided radiation therapy. Pract Radiat Oncol. 2013; 3(1): 32–39.

[62] Machiels M, van Hooft JE, Alderliesten T, Jin P, Hulshof MCCM. Feasibility of Endoscopic Guided Placement of Markers in Patients With Esophageal Tumors. Int J Radiat Oncol Biol Phys. 2014; 90(1): S344.

[63] Machiels M, van Hooft JE, Jin P, van Berge Henegouwen MI, van Laarhoven HWM, Alderli-esten T, et al. Endoscopy/EUS-guided fiducial marker placement in patients with esophageal cancer: a comparative analysis of 3 types of markers. Gastrointest Endosc. 2015; 82(4): 641– 649.

[64] Thomas L, Lapa C, Bundschuh AR, Polat B, Sonke JJ, Guckenberger M. Tumour delineation in oesophageal cancer – A prospective study of delineation in PET and CT with and without endoscopically placed clip markers. Radiother Oncol. 2015; 116(2): 269–275.

[65] Langen KM, Jones DTL. Organ motion and its management. Int J Radiat Oncol Biol Phys. 2001; 50(1): 265–278.

[66] Wiltshire K, Wong R, Alasti H, Abbas A, Cheung F, Ringash J, et al. An Analysis of GTV Motion Using 4D-CT in Patients Receiving Radiotherapy for Esophageal Cancer. Int J Radiat Oncol Biol Phys. 2005; 63(Supplement 1): S279.

[67] Purdie TG, Moseley DJ, Bissonnette JP, Sharpe MB, Franks K, Bezjak A, et al. Respiration cor-related cone-beam computed tomography and 4DCT for evaluating target motion in Stereo-tactic Lung Radiation Therapy. Acta Oncol. 2006; 45(7): 915–22.

[68] Lorchel F, Dumas JL, Noël A, Wolf D, Bosset JF, Aletti P. Esophageal cancer: Determination of internal target volume for conformal radiotherapy. Radiother Oncol. 2006; 80(3): 327–332. [69] Yaremko BP, Guerrero TM, McAleer MF, Bucci MK, Noyola-Martinez J, Nguyen LT, et al. Determination of respiratory motion for distal esophagus cancer using four-dimensional com-puted tomography. Int J Radiat Oncol Biol Phys. 2008; 70(1): 145–53.

[70] Cohen RJ, Paskalev K, Litwin S, Price RA, Feigenberg SJ, Konski AA. Esophageal motion during radiotherapy: quantification and margin implications. Dis Esophagus. 2010; 23(6): 473–9.

(7)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 174PDF page: 174PDF page: 174PDF page: 174

[71] Chen X, Lu H, Tai A, Johnstone C, Gore E, Li XA. Determination of internal target volume for radiation treatment planning of esophageal cancer by using 4-dimensional computed to-mography (4DCT). Int J Radiat Oncol Biol Phys. 2014; 90(1): 102–109.

[72] Landberg T, Chavaudra J, Dobbs J, Hanks G, Johansson KA, Möller T, et al. Report 50. J Int Comm Radiat Units Meas. 1993; os26(1): NP–NP.

[73] Gao XS, Qiao X, Wu F, Cao L, Meng X, Dong Z, et al. Pathological analysis of clinical target volume margin for radiotherapy in patients with esophageal and gastroesophageal junction carcinoma. Int J Radiat Oncol Biol Phys. 2007; 67(2): 389–396.

[74] Landberg T, Chavaudra J, Dobbs J, Gerard JP, Hanks G, Horiot JC, et al. Report 62. J Int Comm Radiat Units Meas. 1999; os32(1): NP–NP.

[75] van Benthuysen L, Hales L, Podgorsak MB. Volumetric modulated arc therapy vs. IMRT for the treatment of distal esophageal cancer. Med Dosim. 2011; 36(4): 404–409.

[76] Lin SH, Wang L, Myles B, Thall PF, Hofstetter WL, Swisher SG, et al. Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2012; 84(5): 1078–1085.

[77] Yin L, Wu H, Gong J, Geng JH, Jiang F, Shi AH, et al. Volumetrimodulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison. World J Gastroenterol. 2012; 18(37): 5266–75.

[78] Roeder F, Nicolay NH, Nguyen T, Saleh-Ebrahimi L, Askoxylakis V, Bostel T, et al. Intensity modulated radiotherapy (IMRT) with concurrent chemotherapy as definitive treatment of locally advanced esophageal cancer. Radiat Oncol. 2014; 9(1): 191.

[79] Freilich J, Hoffe SE, Almhanna K, Dinwoodie W, Yue B, Fulp W, et al. Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer. Dis Esophagus. 2015; 28(4): 352–357.

[80] Cao Cn, Luo Jw, Gao L, Xu Gz, Yi Jl, Huang Xd, et al. Intensity-modulated radiotherapy for cervical esophageal squamous cell carcinoma: clinical outcomes and patterns of failure. Eur Arch Oto-Rhino-Laryngology. 2016; 273(3): 741–747.

[81] Haefner MF, Lang K, Verma V, Koerber SA, Uhlmann L, Debus J, et al. Intensity-modulated versus 3-dimensional conformal radiotherapy in the definitive treatment of esophageal cancer: Comparison of outcomes and acute toxicity. Radiat Oncol. 2017; 12(1): 1–7.

[82] Xu D, Li G, Li H, Jia F. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer. Med (United States). 2017; 96(31): 1–7.

[83] Breedveld S, Storchi PRM, Voet PWJ, Heijmen BJM. ICycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med Phys. 2012; 39(2): 951–963.

[84] Moore JA, Evans K, Yang W, Herman J, McNutt T. Automatic treatment planning implemen-tation using a database of previously treated patients. J Phys Conf Ser. 2014; 489(1). [85] Zarepisheh M, Long T, Li N, Tian Z, Romeijn HE, Jia X, et al. A DVH-guided IMRT

opti-mization algorithm for automatic treatment planning and adaptive radiotherapy replanning. Med Phys. 2014; 41(6Part1): 061711.

(8)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 175PDF page: 175PDF page: 175PDF page: 175

[86] Das IJ, Cheng CW, Chopra KL, Mitra RK, Srivastava SP, Glatstein E. Intensity-modulated radiation therapy dose prescription, recording, and delivery: Patterns of variability among institutions and treatment planning systems. J Natl Cancer Inst. 2008; 100(5): 300–307. [87] Voet PWJ, Breedveld S, Dirkx MLP, Levendag PC, Heijmen BJM. Integrated multicriterial

optimization of beam angles and intensity profiles for coplanar and noncoplanar head and neck IMRT and implications for VMAT. Med Phys. 2012; 39(8): 4858–4865.

[88] Petit SF, Wu B, Kazhdan M, Dekker A, Simari P, Kumar R, et al. Increased organ sparing using shape-based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma. Radiother Oncol. 2012; 102(1): 38–44.

[89] Hussein M, South CP, Barry MA, Adams EJ, Jordan TJ, Stewart AJ, et al. Clinical valida-tion and benchmarking of knowledge-based IMRT and VMAT treatment planning in pelvic anatomy. Radiother Oncol. 2016; 120(3): 473–479.

[90] Fogliata A, Belosi F, Clivio A, Navarria P, Nicolini G, Scorsetti M, et al. On the pre-clinical validation of a commercial model-based optimisation engine: Application to volumetric mod-ulated arc therapy for patients with lung or prostate cancer. Radiother Oncol. 2014; 113(3): 385–391.

[91] Wu B, Kusters M, Kunze-busch M, Dijkema T, McNutt T, Sanguineti G, et al. Cross-institutional knowledge-based planning (KBP) implementation and its performance compar-ison to Auto-Planning Engine (APE). Radiother Oncol. 2017; 123(1): 57–62.

[92] Tol JP, Delaney AR, Dahele M, Slotman BJ, Verbakel WFAR. Evaluation of a knowledge-based planning solution for head and neck cancer. Int J Radiat Oncol Biol Phys. 2015; 91(3): 612–620.

[93] Voet PWJ, Dirkx MLP, Breedveld S, Al-Mamgani A, Incrocci L, Heijmen BJM. Fully auto-mated volumetric modulated arc therapy plan generation for prostate cancer patients. Int J Radiat Oncol Biol Phys. 2014; 88(5): 1175–1179.

[94] Hansen CR, Nielsen M, Bertelsen AS, Hazell I, Holtved E, Zukauskaite R, et al. Automatic treatment planning facilitates fast generation of high-quality treatment plans for esophageal cancer. Acta Oncol. 2017; 56(11): 1495–1500.

[95] Oelkfe U, Scholz C. Dose Calculation Algorithms. In: New Technol. Radiat. Oncol.. vol. 36. Berlin/Heidelberg: Springer-Verlag; 2009. p. 187–196.

[96] Knöös T, Ahnesjö A, Nilsson P, Weber L. Limitations of a pencil beam approach to photon dose calculations in lung tissue. Phys Med Biol. 1995; 40(9): 1411–1420.

[97] Krieger T, Sauer OA. Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol. 2005; 50(5): 859–868.

[98] Sharpe MB, Battista JJ. Dose calculations using convolution and superposition principles: The orientation of dose spread kernels in divergent x-ray beams. Med Phys. 1993; 20(6): 1685– 1694.

[99] Liu HH, Mackie TR, McCullough EC. Correcting kernel tilting and hardening in convolu-tion/superposition dose calculations for clinical divergent and polychromatic photon beams. Med Phys. 1997; 24(11): 1729–1741.

[100] Ahnesjö A. Collapsed cone convolution of radiant energy for photon dose calculation in

(9)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 176PDF page: 176PDF page: 176PDF page: 176

erogeneous media. Med Phys. 1989; 16(4): 577–592.

[101] Lydon JM. Photon dose calculations in homogeneous media for a treatment planning system using a collapsed cone superposition convolution algorithm. Phys Med Biol. 1998; 43(6): 1813–1822.

[102] DeMarco JJ, Solberg TD, Smathers JB. A CT-based Monte Carlo simulation tool for dosimetry planning and analysis. Med Phys. 1998; 25(1): 1–11.

[103] Deng J, Jiang SB, Kapur A, Li J, Pawlicki T, Ma CM. Photon beam characterization and mod-elling for Monte Carlo treatment planning. Phys Med Biol. 2000; 45(2): 411–427.

[104] Hissoiny S, Ozell B, Bouchard H, Després P. GPUMCD: A new GPU-oriented Monte Carlo dose calculation platform. Med Phys. 2011; 38(2): 754–764.

[105] Jia X, Schümann J, Paganetti H, Jiang SB. GPU-based fast Monte Carlo dose calculation for proton therapy. Phys Med Biol. 2012; 57(23): 7783–7797.

[106] Jaffray DA, Siewerdsen JH. Cone-beam computed tomography with a flat-panel imager: initial performance characterization. Med Phys. 2000; 27(6): 1311–1323.

[107] Pouliot J, Bani-Hashemi A, Chen J, Svatos M, Ghelmansarai F, Mitschke M, et al. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Biol Phys. 2005; 61(2): 552–560.

[108] Oelfke U, Tücking T, Nill S, Seeber A, Hesse B, Huber P, et al. Linac-integrated kV-cone beam CT: Technical features and first applications. Med Dosim. 2006; 31(1): 62–70.

[109] Jans HS, Syme AM, Rathee S, Fallone BG. 3D interfractional patient position verification using 2D-3D registration of orthogonal images. Med Phys. 2006; 33(5): 1420–1439. [110] Hawkins MA, Aitken A, Hansen VN, McNair HA, Tait DM. Cone beam CT verification for

oesophageal cancer – impact of volume selected for image registration. Acta Oncol. 2011; 50(8): 1183–1190.

[111] Han C, Schiffner DC, Schultheiss TE, Chen YJ, Liu A, Wong JYC. Residual setup errors and dose variations with less-than-daily image guided patient setup in external beam radiotherapy for esophageal cancer. Radiother Oncol. 2012; 102(2): 309–314.

[112] Martins L, Couto JG, Barbosa B. Use of planar kV vs. CBCT in evaluation of setup errors in oesophagus carcinoma radiotherapy. Reports Pract Oncol Radiother. 2016; 21(1): 57–62. [113] Bel A, van Herk MB, Bartelink H, Lebesque JV. A verification procedure to improve patient

set-up accuracy using portal images. Radiother Oncol. 1993; 29(2): 253–260.

[114] de Boer HCJ, Heijmen BJM. eNAL: an extension of the NAL setup correction protocol for effective use of weekly follow-up measurements. Int J Radiat Oncol Biol Phys. 2007; 67(5): 1586–95.

[115] Chen YJ, Han C, Liu A, Schultheiss TE, Kernstine KH, Shibata S, et al. Setup variations in radiotherapy of esophageal cancer: evaluation by daily megavoltage computed tomographic localization. Int J Radiat Oncol Biol Phys. 2007; 68(5): 1537–45.

[116] Yamashita H, Haga A, Hayakawa Y, Okuma K, Yoda K, Okano Y, et al. Patient setup error and day-to-day esophageal motion error analyzed by cone-beam computed tomography in radia-tion therapy. Acta Oncol. 2010; 49(4): 485–90.

[117] Stroom JC, Heijmen BJM. Geometrical uncertainties, radiotherapy planning margins, and the

(10)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 177PDF page: 177PDF page: 177PDF page: 177

ICRU-62 report. Radiother Oncol. 2002; 64(1): 75–83.

[118] Aaltonen P, Brahme A, Lax I, Levernes S, Naslund I, Reitan JB, et al. Specification of dose delivery in radiation therapy. Recommendation by the Nordic Association of Clinical Physics (NACP). Acta Oncol. 1997; 36 Suppl 1(February): 1–32.

[119] Muijs CT, Beukema JC, Pruim J, Mul VE, Groen H, Plukker JT, et al. A systematic review on the role of FDG-PET/CT in tumour delineation and radiotherapy planning in patients with esophageal cancer. Radiother Oncol. 2010; 97(2): 165–171.

[120] Nowee ME, Voncken FEM, Kotte AN, Goense L, van Rossum PSN, van Lier ALHMW, et al. PO-0709: Interobserver variation of CT and FDG-PET based GTV for oesophageal cancer: a Dutch nationwide study. Radiother Oncol. 2016; 119(Supplement 1): S330–S331. [121] Hashimoto T, Shirato H, Kato M, Yamazaki K, Kurauchi N, Morikawa T, et al. Real-time

monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors. Int J Radiat Oncol Biol Phys. 2005; 61(5): 1559–1564.

[122] Paterson WG. Esophageal peristalsis. GI Motil online. 2006; .

[123] Keall PJ, Cattell H, Pokhrel D, Dieterich S, Wong KH, Murphy MJ, et al. Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int J Radiat Oncol Biol Phys. 2006; 65(5): 1579–1584.

[124] Abbas H, Chang B, Chen ZJ. Motion management in gastrointestinal cancers. J Gastrointest Oncol. 2014; 5(3): 223–235.

[125] van Herk M, Witte M, van der Geer J, Schneider C, Lebesque JV. Biologic and physical frac-tionation effects of random geometric errors. Int J Radiat Oncol Biol Phys. 2003; 57(5): 1460–1471.

[126] Wolthaus JWH, Schneider C, Sonke JJ, van Herk MB, Belderbos JSA, Rossi MMG, et al. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol Biol Phys. 2006; 65(5): 1560–1571.

[127] Wolthaus JWH, Sonke JJ, van Herk M, Belderbos JSA, Rossi MMG, Lebesque JV, et al. Com-parison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. Int J Radiat Oncol Biol Phys. 2008; 70(4): 1229–1238. [128] Sonke JJ, Rossi M, Wolthaus JWH, van Herk MB, Damen EMF, Belderbos J. Frameless

stereo-tactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys. 2009; 74(2): 567–74.

[129] Peulen H, Belderbos J, Rossi M, Sonke JJ. Mid-ventilation based PTV margins in Stereotactic Body Radiotherapy (SBRT): A clinical evaluation. Radiother Oncol. 2014; 110(3): 511–516. [130] Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys. 1999; 44(4): 911–919.

[131] Lens E, Gurney-Champion OJ, Tekelenburg DR, van Kesteren Z, Parkes MJ, van Tienhoven G, et al. Abdominal organ motion during inhalation and exhalation breath-holds: pancreatic motion at different lung volumes compared. Radiother Oncol. 2016; 121(2): 268–275.

(11)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 178PDF page: 178PDF page: 178PDF page: 178

[132] Lens E, van der Horst A, Versteijne E, Bel A, van Tienhoven G. Considerable pancreatic tumor motion during breath-holding. Acta Oncol. 2016; 55(11): 1360–1368.

[133] Craig T, Battista J, Moiseenko V, van Dyk J. Considerations for the implementation of target volume protocols in radiation therapy. Int J Radiat Oncol Biol Phys. 2001; 49(1): 241–250. [134] van Herk MB. Errors and margins in radiotherapy. Semin Radiat Oncol. 2004; 14(1): 52–64. [135] Bel A, van Herk MB, Lebesque JV. Target margins for random geometrical treatment

uncer-tainties in conformal radiotherapy. Med Phys. 1996; 23(9): 1537–1545.

[136] McKenzie AL, van Herk M, Mijnheer B. The width of margins in radiotherapy treatment plans. Phys Med Biol. 2000; 45(11): 3331–3342.

[137] van Herk MB, Remeijer P, Rasch CRN, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000; 47(4): 1121–35.

[138] van Herk M, Remeijer P, Lebesque JV. Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys. 2002; 52(5): 1407–1422.

[139] van Westreenen HL, Westerterp M, Bossuyt PMM, Pruim J, Sloof GW, van Lanschot JJB, et al. Systematic review of the staging performance of 18F- fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol. 2004; 22(18): 3805–3812.

[140] DiMaio CJ, Nagula S, Goodman KA, Ho AY, Markowitz AJ, Schattner MA, et al. EUS-guided fiducial placement for image-guided radiation therapy in GI malignancies by using a 22-gauge needle (with videos). Gastrointest Endosc. 2010; 71(7): 1204–1210.

[141] Kruis MF, van de Kamer JB, Sonke JJ, Jansen EPM, van Herk M. Registration accuracy and image quality of time averaged mid-position CT scans for liver SBRT. Radiother Oncol. 2013; 109(3): 404–408.

[142] Steenbakkers RJHM, Duppen JC, Fitton I, Deurloo KEI, Zijp L, Uitterhoeve ALJ, et al. Ob-server variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: A ‘Big Brother’ evaluation. Radiother Oncol. 2005; 77(2): 182–190. [143] Kouwenhoven E, Giezen M, Struikmans H. Measuring the similarity of target volume

delin-eations independent of the number of observers. Phys Med Biol. 2009; 54(9): 2863–2873. [144] R Core Team. R: A language and environment for statistical computing. Vienna, Austria: The

R Foundation for Statistical Computing; 2013.

[145] Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models using lme4. J Statsitcal Softw. 2015; 67(1): 51.

[146] Fotina I, Lütgendorf-Caucig C, Stock M, Pötter R, Georg D. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlen-therapie und Onkol. 2012; 188(2): 160–167.

[147] Gwynne S, Spezi E, Wills L, Nixon L, Hurt C, Joseph G, et al. Toward semi-automated assess-ment of target volume delineation in radiotherapy trials: the SCOPE 1 pretrial test case. Int J Radiat Oncol Biol Phys. 2012; 84(4): 1037–1042.

[148] Tai P, van Dyk J, Yu E, Battista J, Stitt L, Coad T. Variability of target volume delineation in cervical esophageal cancer. Int J Radiat Oncol. 1998; 42(2): 277–288.

[149] Deurloo KEI, Steenbakkers RJHM, Zijp LJ, de Bois JA, Nowak PJCM, Rasch CRN, et al.

(12)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 179PDF page: 179PDF page: 179PDF page: 179

Quantification of shape variation of prostate and seminal vesicles during external beam radio-therapy. Int J Radiat Oncol Biol Phys. 2005; 61(1): 228–238.

[150] Rasch CRN, Keus R, Pameijer FA, Koops W, de Ru V, Muller S, et al. The potential impact of CT-MRI matching on tumor volume delineation in advanced head and neck cancer. Int J Radiat Oncol Biol Phys. 1997; 39(4): 841–848.

[151] den Hartogh MD, Philippens MEP, van Dam IE, Kleynen CE, Tersteeg RJHA, Pijnappel RM, et al. MRI and CT imaging for preoperative target volume delineation in breast-conserving therapy. Radiat Oncol. 2014; 9(1): 63.

[152] Gurney-Champion OJ, Versteijne E, van der Horst A, Lens E, Rütten H, Heerkens HD, et al. Addition of MRI for CT-based pancreatic tumor delineation: a feasibility study. Acta Oncol. 2017; 56(7): 923–930.

[153] Hou DL, Shi GF, Gao XS, Asaumi J, Li XY, Liu H, et al. Improved longitudinal length accuracy of gross tumor volume delineation with diffusion weighted magnetic resonance imaging for esophageal squamous cell carcinoma. Radiat Oncol. 2013; 8(1): 169.

[154] Gurney-Champion OJ, Lens E, van der Horst A, Houweling AC, Klaassen R, Van Hooft JE, et al. Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Med Phys. 2015; 42(5): 2638–2647.

[155] Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2005; 97(2): 142–6.

[156] Bollschweiler E, Wolfgarten E, Gutschow C, Hölscher AH. Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer. 2001; 92(3): 549–55. [157] Jin HL, Zhu H, Ling TS, Zhang HJ, Shi RH. Neoadjuvant chemoradiotherapy for resectable esophageal carcinoma: A meta-analysis. World J Gastroenterol. 2009; 15(47): 5983–5991. [158] Hawkins MA, Brooks C, Hansen VN, Aitken A, Tait DM. Cone beam computed

tomography-derived adaptive radiotherapy for radical treatment of esophageal cancer. Int J Radiat Oncol Biol Phys. 2010; 77(2): 378–83.

[159] Fukada J, Hanada T, Kawaguchi O, Ohashi T, Takeuchi H, Kitagawa Y, et al. Detection of esophageal fiducial marker displacement during radiation therapy with a 2-dimensional on-board imager: analysis of internal margin for esophageal cancer. Int J Radiat Oncol Biol Phys. 2013; 85(4): 991–8.

[160] Monjazeb AM, Blackstock AW. The impact of multimodality therapy of distal esophageal and gastroesophageal junction adenocarcinomas on treatment-related toxicity and complications. Semin Radiat Oncol. 2013; 23(1): 60–73.

[161] van der Horst A, Wognum S, Dávila Fajardo R, de Jong R, van Hooft JE, Fockens P, et al. Interfractional position variation of pancreatic tumors quantified using intratumoral fiducial markers and daily cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2013; 87(1): 202–8.

[162] Hamming-Vrieze O, van Kranen SR, van Beek S, Heemsbergen W, van Herk M, van den Brekel MWM, et al. Evaluation of tumor shape variability in head-and-neck cancer patients over the course of radiation therapy using implanted gold markers. Int J Radiat Oncol Biol Phys. 2012; 84(2): e201–7.

(13)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 180PDF page: 180PDF page: 180PDF page: 180

[163] van der Heide UA, Kotte ANTJ, Dehnad H, Hofman P, Lagendijk JJW, van Vulpen M. Analysis of fiducial marker-based position verification in the external beam radiotherapy of patients with prostate cancer. Radiother Oncol. 2007; 82(1): 38–45.

[164] Chai X, van Herk MB, van de Kamer JB, Remeijer P, Bex A, Betgen A, et al. Behavior of Lipiodol Markers During Image Guided Radiotherapy of Bladder Cancer. Int J Radiat Oncol Biol Phys. 2010; 77(1): 309–314.

[165] Yamashita H, Kida S, Sakumi A, Haga A, Ito S, Onoe T, et al. Four-dimensional measurement of the displacement of internal fiducial markers during 320-multislice computed tomography scanning of thoracic esophageal cancer. Int J Radiat Oncol Biol Phys. 2011; 79(2): 588–95. [166] Roche A, Malandain G, Pennec X, Ayache N. The correlation ratio as a new similarity measure

for multimodal image registration. In: Wells WM, Colchester A, Delp S, editors. Med. Image Comput. Comput. Interv. — MICCAI’98, Lect. Notes Comput. Sci.. vol. 1496 of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg; 1998. p. 1115– 1124.

[167] Wang Jz, Li Jb, Wang W, Qi Hp, Ma Zf, Zhang Yj, et al. Changes in tumour volume and motion during radiotherapy for thoracic oesophageal cancer. Radiother Oncol. 2015; 114(2): 201– 205.

[168] Pan CC, Kashani R, Hayman JA, Kessler ML, Balter JM. Intra- and inter-fraction esophagus motion in 3D-conformal radiotherapy: Implications for ICRU 62 definitions of internal target volume and planning organ at risk volume. Int J Radiat Oncol Biol Phys. 2004; 60(1): S580– S581.

[169] Sasidharan S, Allison R, Jenkins T, Wolfe M, Mota H, Sibata C. Interfraction Esophagus Mo-tion Study in Image Guided RadiaMo-tion Therapy (IGRT). Int J Radiat Oncol Biol Phys. 2005; 63: S91–S92.

[170] Dieleman EMT, Senan S, Vincent A, Lagerwaard FJ, Slotman BJ, van Sörnsen de Koste JR. Four-dimensional computed tomographic analysis of esophageal mobility during normal res-piration. Int J Radiat Oncol Biol Phys. 2007; 67(3): 775–80.

[171] Lavoie C, Higgins J, Bissonnette JP, Le LW, Sun A, Brade A, et al. Volumetric image guidance using carina vs spine as registration landmarks for conventionally fractionated lung radiother-apy. Int J Radiat Oncol Biol Phys. 2012; 84(5): 1086–1092.

[172] Yu W, Cai XW, Liu Q, Zhu ZF, Feng W, Zhang Q, et al. Safety of dose escalation by simultane-ous integrated boosting radiation dose within the primary tumor guided by 18FDG-PET/CT for esophageal cancer. Radiother Oncol. 2015; 114(2): 195–200.

[173] Kwint M, Conijn S, Schaake E, Knegjens J, Rossi M, Remeijer P, et al. Intra thoracic anatomical changes in lung cancer patients during the course of radiotherapy. Radiother Oncol. 2014; 113(3): 392–397.

[174] Gebski V, Burmeister B, Smithers BM, Foo K, Zalcberg J, Simes J. Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis. Lancet Oncol. 2007; 8(3): 226–234.

[175] Jaffray DA. Image-guided radiation therapy: From concept to practice. Semin Radiat Oncol. 2007; 17(4): 243–244.

(14)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 181PDF page: 181PDF page: 181PDF page: 181

[176] Jin P, van der Horst A, de Jong R, van Hooft JE, Kamphuis M, van Wieringen N, et al. Marker-based quantification of interfractional tumor position variation and the use of markers for setup verification in radiation therapy for esophageal cancer. Radiother Oncol. 2015; 117(3): 412–418.

[177] Maxim PG, Loo BW, Shirazi H, Thorndyke B, Luxton G, Le QT. Quantification of motion of different thoracic locations using four-dimensional computed tomography: implications for radiotherapy planning. Int J Radiat Oncol Biol Phys. 2007; 69(5): 1395–1401.

[178] Spoelstra FOB, van der Weide L, van Sörnsen de Koste JR, Vincent A, Slotman BJ, Senan S. Feasibility of using anatomical surrogates for predicting the position of lung tumours. Radio-ther Oncol. 2012; 102(2): 287–289.

[179] Higgins J, Bezjak A, Franks K, Le LW, Cho BC, Payne D, et al. Comparison of spine, carina, and tumor as registration landmarks for volumetric image-guided lung radiotherapy. Int J Radiat Oncol Biol Phys. 2009; 73(5): 1404–1413.

[180] Schaake EE, Belderbos JSA, Buikhuisen WA, Rossi MMG, Burgers JA, Sonke JJ. Mediasti-nal lymph node position variability in non-small cell lung cancer patients treated with radical irradiation. Radiother Oncol. 2012; 105(2): 150–4.

[181] van de Voorde L, Larue R, Persoon L, Öllers M, Nijsten S, Bosmans G, et al. The influence of gastric filling instructions on dose delivery in patients with oesophageal cancer: A prospective study. Radiother Oncol. 2015; 117(3): 442–447.

[182] Case RB, Sonke JJ, Moseley DJ, Kim J, Brock KK, Dawson LA. Inter- and Intrafraction Vari-ability in Liver Position in Non-Breath-Hold Stereotactic Body Radiotherapy. Int J Radiat Oncol Biol Phys. 2009; 75(1): 302–308.

[183] Hawkins MA, Aitken A, Hansen VN, McNair HA, Tait DM. Set-up errors in radiotherapy for oesophageal cancers - Is electronic portal imaging or conebeam more accurate? Radiother Oncol. 2011; 98(2): 249–254.

[184] Kamphuis M, van Wieringen N, Jin P, Alderliesten T, van Os R, Bel A, et al. PO-1096 Inter-fraction variation of gas volume in the abdominal region during radiotherapy for distal esophageal cancer. Radiother Oncol. 2015; 115(Supplement 1): S592–S593.

[185] Nyeng TB, Nordsmark M, Hoffmann L. Dosimetric evaluation of anatomical changes during treatment to identify criteria for adaptive radiotherapy in oesophageal cancer patients. Acta Oncol. 2015; 54(9): 1467–1473.

[186] Kumagai M, Hara R, Mori S, Yanagi T, Asakura H, Kishimoto R, et al. Impact of Intrafractional Bowel Gas Movement on Carbon Ion Beam Dose Distribution in Pancreatic Radiotherapy. Int J Radiat Oncol Biol Phys. 2009; 73(4): 1276–1281.

[187] Houweling AC, Fukata K, Kubota Y, Shimada H, Rasch CRN, Ohno T, et al. The impact of in-terfractional anatomical changes on the accumulated dose in carbon ion therapy of pancreatic cancer patients. Radiother Oncol. 2016; 119(2): 319–325.

[188] van der Horst A, Houweling AC, van Tienhoven G, Visser J, Bel A. Dosimetric effects of anatomical changes during fractionated photon radiation therapy in pancreatic cancer pa-tients. J Appl Clin Med Phys. 2017; 18(6): 142–151.

[189] Houweling AC, Crama K, Visser J, Fukata K, Rasch CRN, Ohno T, et al. Comparing the

(15)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 182PDF page: 182PDF page: 182PDF page: 182

dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients. Phys Med Biol. 2017; 62(8): 3051–3064. [190] Bouchard M, McAleer MF, Starkschall G. Impact of Gastric Filling on Radiation Dose

De-livered to Gastroesophageal Junction Tumors. Int J Radiat Oncol Biol Phys. 2010; 77(1): 292–300.

[191] Soukup M, Söhn M, Yan D, Liang J, Alber M. Study of Robustness of IMPT and IMRT for Prostate Cancer Against Organ Movement. Int J Radiat Oncol Biol Phys. 2009; 75(3): 941– 949.

[192] Sasaki M, Ikushima H, Tominaga M, Kamomae T, Kishi T, Oita M, et al. Dose impact of rectal gas on prostatic IMRT and VMAT. Jpn J Radiol. 2015; 33(12): 723–733.

[193] Berger T, Petersen JBB, Lindegaard JC, Fokdal LU, Tanderup K. Impact of bowel gas and body outline variations on total accumulated dose with intensity-modulated proton therapy in locally advanced cervical cancer patients. Acta Oncol. 2017; 56(11): 1472–1478. [194] Lorchel F , Dumas JL, Noël A, Wolf D, Bosset JF, Aletti P. Dosimetric consequences of

breath-hold respiration in conformal radiotherapy of esophageal cancer. Phys Medica. 2006; 22(4): 119–126.

[195] Gong G, Wang R, Guo Y, Zhai D, Liu T, Lu J, et al. Reduced lung dose during radiotherapy for thoracic esophageal carcinoma: VMAT combined with active breathing control for moderate DIBH. Radiat Oncol. 2013; 8(1): 291.

[196] Ford EC, Mageras GS, Yorke E, Ling CC. Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys. 2003; 30(2003): 88–97.

[197] Yang GY, McClosky SA, Khushalani NI. Principles of modern radiation techniques for esophageal and gastroesophageal junction cancers. Gastrointest Cancer Res. 2009; 3(2 Suppl): S6–S10.

[198] Zhao Kl, Liao Z, Bucci MK, Komaki R, Cox JD, Yu ZH, et al. Evaluation of respiratory-induced target motion for esophageal tumors at the gastroesophageal junction. Radiother Oncol. 2007; 84(3): 283–9.

[199] Patel AA, Wolfgang JA, Niemierko A, Hong TS, Yock T, Choi NC. Implications of respira-tory motion as measured by four-dimensional computed tomography for radiation treatment planning of esophageal cancer. Int J Radiat Oncol Biol Phys. 2009; 74(1): 290–6.

[200] Vesprini D, Ung Y, Dinniwell R, Breen S, Cheung F, Grabarz D, et al. Improving Observer Vari-ability in Target Delineation for Gastro-oesophageal Cancer-the Role of 18Ffluoro-2-deoxy-d-glucose Positron Emission Tomography/Computed Tomography. Clin Oncol. 2008; 20(8): 631–638.

[201] Yamada Y, Lovelock DM, Chang J, Bilsky MH. Central Nervous System Tumors. In: Tim-merman RD, Xing L, editors. Image-Guided Adapt. Radiat. Ther. Philadelphia : Lippincott Williams & Wilkins/Wolters Kluwer Health; 2010. p. 264 – 278.

[202] Lens E, van der Horst A, Versteijne E, van Tienhoven G, Bel A. Dosimetric advantages of mid-ventilation compared with internal target volume for radiation therapy of pancreatic cancer. Int J Radiat Oncol Biol Phys. 2015; 92(3): 675–682.

(16)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 183PDF page: 183PDF page: 183PDF page: 183

[203] Lens E, van der Horst A, Kroon PS, van Hooft JE, Dávila Fajardo R, Fockens P, et al. Dif-ferences in respiratory-induced pancreatic tumor motion between 4D treatment planning CT and daily cone beam CT, measured using intratumoral fiducials. Acta Oncol. 2014; 53(9): 1257–1264.

[204] Oldham M, Létourneau D, Watt L, Hugo GD, Yan D, Lockman D, et al. Cone-beam-CT guided radiation therapy: A model for on-line application. Radiother Oncol. 2005; 75(3): 271.E1– 271.E8.

[205] Smitsmans MHP, de Bois J, Sonke JJ, Betgen A, Zijp LJ, Jaffray DA, et al. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2005; 63(4): 975–984.

[206] Thilmann C, Nill S, Tucking T, Hoss A, Hesse B, Dietrich L, et al. Correction of patient posi-tioning errors based on in-line cone beam CTs: clinical implementation and first experiences. Radiat Oncol. 2006; 1(1): 16.

[207] Duggan DM, Ding GX, Coffey CW, Kirby W, Hallahan DE, Malcolm A, et al. Deep-inspiration breath-hold kilovoltage cone-beam CT for setup of stereotactic body radiation therapy for lung tumors: Initial experience. Lung Cancer. 2007; 56(1): 77–88.

[208] Groh BA, Siewerdsen JH, Drake DG, Wong JW, Jaffray DA. A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phys. 2002; 29(2002): 967–975. [209] Dávila Fajardo R, Lekkerkerker SJ, van der Horst A, Lens E, Bergman JJ, Fockens P, et al.

EUS-guided fiducial markers placement with a 22-gauge needle for image-EUS-guided radiation therapy in pancreatic cancer. Gastrointest Endosc. 2014; 79(5): 851–855.

[210] Jin P, Hulshof MCCM, de Jong R, van Hooft JE, Bel A, Alderliesten T. Quantification of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional computed tomography. Radiother Oncol. 2016; 118(3): 492–497.

[211] Sonke JJ, Zijp L, Remeijer P, van Herk MB. Respiratory correlated cone beam CT. Med Phys. 2005; 32(4): 1176–1186.

[212] Sonke JJ, Lebesque JV, van Herk M. Variability of Four-Dimensional Computed Tomography Patient Models. Int J Radiat Oncol Biol Phys. 2008; 70(2): 590–598.

[213] Chan MKH, Lee V, Chiang CL, Lee FAS, Law G, Sin NY, et al. Lipiodol versus diaphragm in 4D-CBCT-guided stereotactic radiotherapy of hepatocellular carcinomas. Strahlentherapie und Onkol. 2016; 192(2): 92–101.

[214] Jin P, Hulshof MCCM, van Wieringen N, Bel A, Alderliesten T. Interfractional variability of respiration-induced esophageal tumor motion quantified using fiducial markers and four-dimensional cone-beam computed tomography. Radiother Oncol. 2017; 124(1): 147–154. [215] Chung H, Poulsen PR, Keall PJ, Cho S, Cho B. Reconstruction of implanted marker

trajecto-ries from cone-beam CT projection images using interdimensional correlation modeling. Med Phys. 2016; 43(8): 4643–4654.

[216] Lamba R, McGahan JP, Corwin MT, Li CS, Tran T, Seibert JA, et al. CT Hounsfield Num-bers of Soft Tissues on Unenhanced Abdominal CT Scans: Variability Between Two Different Manufacturers’ MDCT Scanners. AJR Am J Roentgenol. 2014; 203(5): 1013–1020. [217] Zijp LJ, Sonke JJ, van Herk MB. Extraction of the respiratory signal from sequential thorax

(17)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 184PDF page: 184PDF page: 184PDF page: 184

Cone-Beam X-ray images. In: Proc. 14th ICCR. Seoul, Korea; 2004. p. 1–4.

[218] van Herk MB, Zijp LJ, Remeijer P, Wolthaus JWH, Sonke JJ. On-line 4D cone beam CT for daily correction of lung tumour position during hypofractionated radiotherapy. In: Proc. 15th ICCR. Toronto, Canada; 2007. p. 1–4.

[219] Chandra A, Guerrero TM, Liu HH, Tucker SL, Liao Z, Wang X, et al. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother Oncol. 2005; 77(3): 247–53.

[220] Fenkell L, Kaminsky I, Breen S, Huang S, van Prooijen M, Ringash J. Dosimetric comparison of IMRT vs. 3D conformal radiotherapy in the treatment of cancer of the cervical esophagus. Radiother Oncol. 2008; 89(3): 287–291.

[221] Duma MN, Berndt J, Rondak IC, Devecka M, Wilkens JJ, Geinitz H, et al. Implications of free breathing motion assessed by 4D-computed tomography on the delivered dose in radiotherapy for esophageal cancer. Med Dosim. 2015; 40(4): 378–382.

[222] Jin P, van Wieringen N, Hulshof MCCM, Bel A, Alderliesten T. 4D cone-beam CT imaging for guidance in radiation therapy: setup verification by use of implanted fiducial markers. In: Webster RJ, Yaniv ZR, editors. Proc. SPIE 9786 Med. Imaging Image-Guided Proced. Robot. Interv. Model.. vol. 9786; 2016. p. 97862N.

[223] Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013; 4(2): 133–142.

[224] Pantarotto JR, Piet AHM, Vincent A, van Sörnsen de Koste JR, Senan S. Motion Analysis of 100 Mediastinal Lymph Nodes: Potential Pitfalls in Treatment Planning and Adaptive Strate-gies. Int J Radiat Oncol Biol Phys. 2009; 74(4): 1092–1099.

[225] Jan N, Hugo GD, Mukhopadhyay N, Weiss E. Respiratory motion variability of primary tu-mors and lymph nodes during radiotherapy of locally advanced non-small-cell lung cancers. Radiat Oncol. 2015; 10(1): 133.

[226] Guckenberger M, Wilbert J, Meyer J, Baier K, Richter A, Flentje M. Is a single respiratory correlated 4D-CT study sufficient for evaluation of breathing motion? Int J Radiat Oncol Biol Phys. 2007; 67(5): 1352–9.

[227] Velec M, Moseley JL, Brock KK. Simplified strategies to determine the mean respiratory po-sition for liver radiation therapy planning. Pract Radiat Oncol. 2014; 4(3): 160–166. [228] Ehrbar S, Jöhl A, Tartas A, Stark LS, Riesterer O, Klöck S, et al. ITV, mid-ventilation, gating

or couch tracking – A comparison of respiratory motion-management techniques based on 4D dose calculations. Radiother Oncol. 2017; 124(1): 80–88.

[229] Velec M, Moseley JL, Dawson LA, Brock KK. Dose escalated liver stereotactic body radiation therapy at the mean respiratory position. Int J Radiat Oncol Biol Phys. 2014; 89(5): 1121– 1128.

[230] Wang W, Li J, Zhang Y, Li F, Xu M, Fan T, et al. Comparison of patient-specific internal gross tumor volume for radiation treatment of primary esophageal cancer based separately on three-dimensional and four-dimensional computed tomography images. Dis Esophagus. 2014; 27(4): 348–354.

[231] Machiels M, Jin P, Jelvehgaran P, Gurney-Champion OJ, Geijsen ED, Jeene PM, et al.

(18)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 185PDF page: 185PDF page: 185PDF page: 185

0697: Reduced inter- and intra-observer variation in esophageal tumor delineation using fidu-cial markers. Radiother Oncol. 2017; 123(Supplement 1): S364–S365.

[232] Wolthaus JWH, Sonke JJ, van Herk M, Damen EMF. Reconstruction of a time-averaged mid-position CT scan for radiotherapy planning of lung cancer patients using deformable registra-tion. Med Phys. 2008; 35(9): 3998–4011.

[233] Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998; 25(5): 656–61.

[234] Low DA, Dempsey JF. Evaluation of the gamma dose distribution comparison method. Med Phys. 2003; 30(9): 2455–2464.

[235] Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algo-rithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017; 44(7): e43–e76.

[236] Brock KK. Results of a Multi-Institution Deformable Registration Accuracy Study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010; 76(2): 583–596.

[237] Admiraal MA, Schuring D, Hurkmans CW. Dose calculations accounting for breathing motion in stereotactic lung radiotherapy based on 4D-CT and the internal target volume. Radiother Oncol. 2008; 86(1): 55–60.

[238] Mexner V, Wolthaus JWH, van Herk M, Damen EMF, Sonke JJ. Effects of respiration-induced density variations on dose distributions in radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys. 2009; 74(4): 1266–1275.

[239] Oechsner M, Odersky L, Berndt J, Combs SE, Wilkens JJ, Duma MN. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy. Radiat Oncol. 2015; 10(1): 1–9.

[240] Khamfongkhruea C, Thongsawad S, Tannanonta C, Chamchod S. Comparison of CT images with average intensity projection, free breathing, and mid-ventilation for dose calculation in lung cancer. J Appl Clin Med Phys. 2017; 18(2): 26–36.

[241] Velec M, Moseley JL, Craig T, Dawson LA, Brock KK. Accumulated dose in liver stereotactic body radiotherapy: Positioning, breathing, and deformation effects. Int J Radiat Oncol Biol Phys. 2012; 83(4): 1132–1140.

[242] Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013; 368(11): 987–998.

[243] Shadad AK. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World J Gastroenterol. 2013; 19(2): 185.

[244] Weiss E, Hess CF. The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy: Theoretical aspects and practical experiences. Strahlentherapie und Onkol. 2003; 179(1): 21–30.

[245] Njeh CF, Dong L, Orton CG. IGRT has limited clinical value due to lack of accurate tumor delineation. Med Phys. 2013; 40(4): 1–4.

[246] Segedin B, Petric P. Uncertainties in target volume delineation in radiotherapy - Are they relevant and what can we do about them? Radiol Oncol. 2016; 50(3): 254–262.

(19)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 186PDF page: 186PDF page: 186PDF page: 186

[247] van de Steene J, Linthout N, de Mey J, Vinh-Hung V, Claassens C, Noppen M, et al. Definition of gross tumor volume in lung cancer: Inter-observer variability. Radiother Oncol. 2002; 62(1): 37–39.

[248] Steenbakkers RJHM, Duppen JC, Fitton I, Deurloo KEI, Zijp LJ, Comans EFI, et al. Re-duction of observer variation using matched CT-PET for lung cancer delineation: A three-dimensional analysis. Int J Radiat Oncol Biol Phys. 2006; 64(2): 435–448.

[249] Persson GF, Nygaard DE, Hollensen C, af Rosenschöld PM, Mouritsen LS, Due AK, et al. Interobserver delineation variation in lung tumour stereotactic body radiotherapy. Br J Radiol. 2012; 85(1017): 6–10.

[250] Dalah E, Moraru I, Paulson E, Erickson B, Li XA. Variability of target and normal structure de-lineation using multimodality imaging for radiation therapy of pancreatic cancer. Int J Radiat Oncol Biol Phys. 2014; 89(3): 633–640.

[251] Bird D, Scarsbrook AF, Sykes J, Ramasamy S, Subesinghe M, Carey B, et al. Multimodality imaging with CT, MR and FDG-PET for radiotherapy target volume delineation in oropha-ryngeal squamous cell carcinoma. BMC Cancer. 2015; 15(1): 1–10.

[252] Versteijne E, Gurney-Champion OJ, van der Horst A, Lens E, Kolff MW, Buijsen J, et al. Con-siderable interobserver variation in delineation of pancreatic cancer on 3DCT and 4DCT: a multi-institutional study. Radiat Oncol. 2017; 12(1): 58.

[253] Wu AJ, Bosch WR, Chang DT, Hong TS, Jabbour SK, Kleinberg LR, et al. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gas-troesophageal Junction Cancer. Int J Radiat Oncol Biol Phys. 2015; 92(4): 911–920. [254] Nijkamp J, de Haas-Kock DFM, Beukema JC, Neelis KJ, Woutersen D, Ceha H, et al. Target

volume delineation variation in radiotherapy for early stage rectal cancer in the Netherlands. Radiother Oncol. 2012; 102(1): 14–21.

[255] Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol. 2006; 79(SPEC. ISS.).

[256] Thorwarth D. Functional imaging for radiotherapy treatment planning: Current status and future directions - A review. Br J Radiol. 2015; 88(1051).

[257] Rasch CRN, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: A multi-observer study. Int J Radiat Oncol Biol Phys. 1999; 43(1): 57–66.

[258] Rasch CRN, Remeijer P, Koper PCM, Meijer GJ, Stroom JC, van Herk M, et al. Comparison of prostate cancer treatment in two institutions: a quality control study. Int J Radiat Oncol Biol Phys. 1999; 45(4): 1055–1062.

[259] Rasch CRN, Steenbakkers RJHM, Fitton I, Duppen JC, Nowak PJCM, Pameijer FA, et al. De-creased 3D observer variation with matched CT-MRI, for target delineation in Nasopharynx cancer. Radiat Oncol. 2010; 5: 21.

[260] Jonsson JH, Garpebring A, Karlsson MG, Nyholm T. Internal fiducial markers and suscep-tibility effects in MRI - Simulation and measurement of spatial accuracy. Int J Radiat Oncol Biol Phys. 2012; 82(5): 1612–1618.

[261] de Blanck SR, Scherman-Rydhög J, Siemsen M, Christensen M, Baeksgaard L, Irming Jølck

(20)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 187PDF page: 187PDF page: 187PDF page: 187

R, et al. Feasibility of a novel liquid fiducial marker for use in image guided radiotherapy of oesophageal cancer. Br J Radiol. 2018; 91: 20180236.

[262] Voncken FEM, Nakhaee S, Wiersema L, van Dieren JM, van Leerdam ME, Sonke JJ, et al. Quantification of Esophageal Tumor Motion and Recommendations on Setup Verification Strategy During Image Guided Radiation Therapy. Int J Radiat Oncol Biol Phys. 2016; 96(2): E638–E639.

[263] van Nunen A, van der Sangen MJC, van Boxtel M, van Haaren PMA. Technical Innovations & Patient Support in Radiation Oncology Cone-Beam CT-based position verification for oe-sophageal cancer : Evaluation of registration methods and anatomical changes during radio-therapy. Tech Innov Patient Support Radiat Oncol. 2017; 3-4: 30–36.

[264] Palmer J, Yang J, Pan T, Court LE. Motion of the esophagus due to cardiac motion. PLoS One. 2014; 9(2): e89126.

[265] Wang H, Dong L, Lii MF, Lee AL, de Crevoisier R, Mohan R, et al. Implementation and val-idation of a three-dimensional deformable registration algorithm for targeted prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2005; 61(3): 725–735.

[266] Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, Wertz H, Stieler F, Jahnke A, et al. Deep Inspiration Breath Hold - Based Radiation Therapy: A Clinical Review. Int J Radiat Oncol Biol Phys. 2016; 94(3): 478–492.

[267] Dawson LA, Brock KK, Kazanjian S, Fitch D, McGinn CJ, Lawrence TS, et al. The repro-ducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys. 2001; 51(5): 1410–1421.

[268] Nakamura M, Shibuya K, Shiinoki T, Matsuo Y, Nakamura A, Nakata M, et al. Positional re-producibility of pancreatic tumors under end-exhalation breath-hold conditions using a visual feedback technique. Int J Radiat Oncol Biol Phys. 2011; 79(5): 1565–1571.

[269] Barnes EA, Murray BR, Robinson DM, Underwood LJ, Hanson J, Roa WHY. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys. 2001; 50(4): 1091–1098.

[270] Marchand V, Zefkili S, Desrousseaux J, Simon L, Dauphinot C, Giraud P. Dosimetric compari-son of free-breathing and deep inspiration breath-hold radiotherapy for lung cancer. Strahlen-therapie und Onkol. 2012; 188(7): 582–591.

[271] Park JC, Park SH, Kim JH, Yoon SM, Song SY, Liu Z, et al. Liver motion during cone beam computed tomography guided stereotactic body radiation therapy. Med Phys. 2012; 39(10): 6431–6442.

[272] Worm ES, Hoyer M, Fledelius W, Hansen AT, Poulsen PR. Variations in magnitude and direc-tionality of respiratory target motion throughout full treatment courses of stereotactic body radiotherapy for tumors in the liver. Acta Oncol. 2013; 52(7): 1437–1444.

[273] Chan MKH, Kwong DLW, Tam E, Tong A, Ng SCY. Quantifying variability of intrafractional target motion in stereotactic body radiotherapy for lung cancers. J Appl Clin Med Phys. 2013; 14(5): 140–152.

[274] Ge J, Santanam L, Noel C, Parikh PJ. Planning 4-dimensional computed tomography (4DCT) cannot adequately represent daily intrafractional motion of abdominal tumors. Int J Radiat

(21)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 188PDF page: 188PDF page: 188PDF page: 188

Oncol Biol Phys. 2013; 85(4): 999–1005.

[275] Zhang F, Kelsey CR, Yoo D, Yin FF, Cai J. Uncertainties of 4-dimensional computed tomography-based tumor motion measurement for lung stereotactic body radiation therapy. Pract Radiat Oncol. 2014; 4(1): e59–e65.

[276] Case RB, Moseley DJ, Sonke JJ, Eccles CL, Dinniwell RE, Kim J, et al. Interfraction and In-trafraction Changes in Amplitude of Breathing Motion in Stereotactic Liver Radiotherapy. Int J Radiat Oncol Biol Phys. 2010; 77(3): 918–925.

[277] Steiner E, Shieh CC, Caillet V, Booth JT, Hardcastle N, Briggs A, et al. 4D cone beam CT-measured target motion underrepresents actual motion. Int J Radiat Oncol Biol Phys. 2018; 102(4): 932-940.

[278] Eccles CL, Brock KK, Bissonnette JP, Hawkins M, Dawson LA. Reproducibility of liver posi-tion using active breathing coordinator for liver cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2006; 64(3): 751–759.

[279] Dieters M, Beukema JC, van Den Bergh ACM, Korevaar EW, Sijtsema NM, Langendijk JA, et al. Significant heart dose reduction by deep inspiration breath hold for RT of esophageal cancer. Radiother Oncol. 2017; 123(1): S366–S367.

[280] Heethuis SE, Borggreve AS, Goense L, van Rossum PSN, Mook S, van Hillegersberg R, et al. Quantification of variations in intra-fraction motion of esophageal tumors over the course of neoadjuvant chemoradiotherapy based on cine-MRI. Phys Med Biol. 2018; 63(14): 145019. [281] Vergalasova I, Maurer J, Yin FF. Potential underestimation of the internal target volume (ITV)

from free-breathing CBCT. Med Phys. 2011; 38(8): 4689–4699.

[282] Dietrich L, Jetter S, Tücking T, Nill S, Oelfke U. Linac-integrated 4D cone beam CT: first experimental results. Phys Med Biol. 2006; 51(11): 2939–2952.

[283] Jin P, van Wieringen N, Hulshof MCCM, Bel A, Alderliesten T. Tailoring four-dimensional cone-beam CT acquisition settings for fiducial marker-based image guidance in radiation ther-apy. J Med Imaging. 2018; 5(2): 021207.

[284] O’Brien RT, Cooper BJ, Keall PJ. Optimizing 4D cone beam computed tomography acquisi-tion by varying the gantry velocity and projecacquisi-tion time interval. Phys Med Biol. 2013; 58(6): 1705–23.

[285] Lu J, Guerrero TM, Munro P, Jeung A, Chi PCM, Balter P, et al. Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling. Med Phys. 2007; 34(9): 3520– 3529.

[286] Bergner F, Berkus T, Oelhafen M, Kunz P, Pan T, Kachelriess M. Autoadaptive phase-correlated (AAPC) reconstruction for 4D CBCT. Med Phys. 2009; 36(12): 5695–5706. [287] Zhang H, Sonke JJ. Directional Interpolation for Motion Weighted 4D Cone-Beam CT

Recon-struction. In: Med. image Comput. Comput. Interv. MICCAI 2012. vol. 15. Springer-Verlag Berlin Heidelberg; 2012. p. 181–188.

[288] Shieh CC, Kipritidis J, O’Brien RT, Kuncic Z, Keall PJ. Image quality in thoracic 4D cone-beam CT: a sensitivity analysis of respiratory signal, binning method, reconstruction algo-rithm, and projection angular spacing. Med Phys. 2014; 41(4): 041912.

[289] Leng S, Zambelli J, Tolakanahalli R, Nett B, Munro P, Star-Lack J, et al. Streaking artifacts

(22)

527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin 527155-L-bw-Jin Processed on: 18-12-2018 Processed on: 18-12-2018 Processed on: 18-12-2018

Processed on: 18-12-2018 PDF page: 189PDF page: 189PDF page: 189PDF page: 189

reduction in four-dimensional cone-beam computed tomography. Med Phys. 2008; 35(10): 4649–4659.

[290] Cooper BJ, O’Brien RT, Balik S, Hugo GD, Keall PJ. Respiratory triggered 4D cone-beam computed tomography: a novel method to reduce imaging dose. Med Phys. 2013; 40(4): 041901.

[291] Yan H, Zhen X, Folkerts M, Li Y, Pan T, Cervino L, et al. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging. Med Phys. 2014; 41(7): 071903.

[292] Lee S, Yan G, Lu B, Kahler D, Li JG, Sanjiv SS. Impact of scanning parameters and breath-ing patterns on image quality and accuracy of tumor motion reconstruction in 4D CBCT: A phantom study. J Appl Clin Med Phys. 2015; 16(6): 195–212.

[293] Sauppe S, Hahn A, Brehm M, Paysan P, Seghers D, Kachelriess M. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region. In: Kontos D, Flohr TG, Lo JY, editors. Proc. SPIE 9783 Med. Imaging Phys. Med. Imaging. vol. 9783; 2016. p. 1–9.

[294] O’Brien RT, Stankovic U, Sonke JJ, Keall PJ. Reducing 4DCBCT imaging time and dose: The first implementation of variable gantry speed 4DCBCT on a linear accelerator. Phys Med Biol. 2017; 62(11): 4300–4317.

[295] Kini VR, Vedam SS, Keall PJ, Patil S, Chen C, Mohan R. Patient training in respiratory-gated radiotherapy. Med Dosim. 2003; 28(1): 7–11.

[296] Hoogeman MS, Nuyttens JJ, Levendag PC, Heijmen BJM. Time Dependence of Intrafraction Patient Motion Assessed by Repeat Stereoscopic Imaging. Int J Radiat Oncol Biol Phys. 2008; 70(2): 609–618.

[297] Giraud P, Houle A. Respiratory Gating for Radiotherapy: Main Technical Aspects and Clin-ical Benefits. ISRN Pulmonol. 2013; 2013(Table 1): 1–13.

[298] Verellen D, Depuydt T, Gevaert T, Linthout N, Tournel K, Duchateau M, et al. Gating and tracking, 4D in thoracic tumours. Cancer/Radiothérapie. 2010; 14(6-7): 446–454.

[299] Underberg RWM, van Sörnsen de Koste JR, Lagerwaard FJ, Vincent A, Slotman BJ, Senan S. A dosimetric analysis of respiration-gated radiotherapy in patients with stage III lung cancer. Radiat Oncol. 2006; 1(1): 1–9.

[300] Muirhead R, Featherstone C, Duffton A, Moore K, McNee S. The potential clinical benefit of respiratory gated radiotherapy (RGRT) in non-small cell lung cancer (NSCLC). Radiother Oncol. 2010; 95(2): 172–177.

[301] Jang SS, Huh GJ, Park SY, Yang PS, Cho EY. The impact of respiratory gating on lung dosimetry in stereotactic body radiotherapy for lung cancer. Phys Medica. 2014; 30(6): 682–689. [302] Minohara S, Kanai T, Endo M, Noda K, Kanazawa M. Respiratory gated irradiation system

for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys. 2000; 47(4): 1097–1103.

[303] Lu HM, Brett R, Sharp G, Safai S, Jiang SB, Flanz J, et al. A respiratory-gated treatment system for proton therapy. Med Phys. 2007; 34(8): 3273–3278.

[304] Hong TS, DeLaney TF, Mamon HJ, Willett CG, Yeap BY, Niemierko A, et al. A prospective feasibility study of respiratory gated proton beam therapy for liver tumors. Pr Radiat Oncol. 2014; 4(5): 316–322.

Referenties

GERELATEERDE DOCUMENTEN

Assessment is crucial for students’ learning. The theory and practice of assessment, however, has received little attention in the literature on critical feminist

The purpose of this study was to explore similarities and differences of choral rehearsals at one university choir in China and one university choir in Canada, focusing on

For example, at level 3, online platforms can support a large number of people for co-creation over a physical meeting place, community- based research partnerships support

http://www.policyalternatives.ca.. Schools, that aims to prevent childhood obesity; the role of “Critical Friend”; collaborative play in the CHILD project to co-construct

This thesis examines the legal case of Inouye Kanao, a second-generation Japanese Canadian who was executed for high treason in August 1947 in Hong Kong.. In this thesis, I trace

Although useless on their own, the unreal data sets are very useful when combined with a modified ID3 decision tree inducer. In his thesis, Fong shows that the decision tree that

Finally, and most importantly, it presents a method o f investigation and analysis that included Jay as a knower o f his everyday life in order to explore the relations that

On the eve of the Canadian army’s arrival in Flanders in 1915, soon after the beginning of the Great War, the more enlightened in the Canadian ranks were aware that, if history