• No results found

Feedforward control of sheet bending based on force measurements

N/A
N/A
Protected

Academic year: 2021

Share "Feedforward control of sheet bending based on force measurements"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Journal

of

Manufacturing

Processes

jo u r n al h om ep age : w w w . e l s e v i e r . c o m / l o c a t e / m a n p r o

Technical

Paper

Feedforward

control

of

sheet

bending

based

on

force

measurements

Jos

Havinga

a,∗

,

Ton

van

den

Boogaard

a

,

Franz

Dallinger

b

,

Pavel

Hora

b

aFacultyofEngineeringTechnology,UniversityofTwente,Drienerlolaan5,Enschede,TheNetherlands

bInstituteofVirtualManufacturing,ETHZürich,Tannenstrasse3,Zürich,Switzerland

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received2December2016

Receivedinrevisedform4October2017

Accepted6October2017 Keywords: Metalforming Sheetbending Product-to-productvariation Feedforwardcontrol Forcemeasurement Processestimator LASSOregression

a

b

s

t

r

a

c

t

Theaccuracywhichcanbereachedwithfeedbackcontrolinindustrialmetalformingprocessesislimited byproduct-to-productvariationsintheprocess.Thesevariationsmaybecontrolledwithafeedforward controlsystem.Todoso,ameasurementsystemandaprocessestimatorareneededtomeasureand correctforthesevariations.Inthiswork,theuseofforcemeasurementsforfeedforwardcontrolofasteel sheetbendingprocessisinvestigated.Amulti-stagedemonstratorprocessisdevelopedwithcutting,deep drawingandbendingstagesandalargenumberofforcesensors.Severalrelationsbetweenprocessforces andtheproductgeometryarestudiedinanextensiveanalysisofmeasurementdatafromtheproduction process.ItisproposedtobuildamovingwindowprocessestimatorusingtheLASSOregressionmethod. Theparametersoftheregressionmodelareupdatedduringproductionbasedonhistoricaldataofthe productionline.Severalsimulationrunsareperformedtoestimatetheeffectoffeedforwardcontrolon theprocessaccuracy.Thesesimulationrunsarebasedonmeasurementsfromtherealproductionline andminorassumptions.Theproposedapproachleadstoanestimateddecreaseof24%intherootmean squareerrorofthefinalanglewithrespecttoasimulationrunwithfeedbackcontrolonly.

©2017TheSocietyofManufacturingEngineers.PublishedbyElsevierLtd.Allrightsreserved.

1. Introduction:controlofmetalformingprocesses

Metalformingprocessessufferfromvariationsofmaterial prop-ertiesandprocessconditions.Thesedisturbancesaffectthefinal propertiesoftheproduct.For productswithnarrowtolerances, closed-loopcontrolmaybeusedtoensureproductquality.A driv-ingfactorforrecentdevelopmentsincontrolofformingprocesses istheuseofinformationtechnology,enablingforreal-time pro-cessingofincreasingly detailedsensor dataandprocessmodels

[1].

Anextensivereviewoncontrolofmetalformingprocessesis givenintheworkofPolyblanketal.[2].Theyobservedthatcontrol systemsinformingprocessesareusuallydesignedtocontrolthe movementofthetooling,butlacktheabilitytocontrolthefinal stateoftheproduct,suchasitsgeometryorstressdistribution. Ontheotherhand,theyforeseeanexpansionintheapplications ofclosed-loopcontrolinmetalforming,basedonthe accessibil-ityofthemaincomponentsneededforprocesscontrol:sensors, actuatorsandprocessmodels.Giventheongoingdevelopmentof computingpower,increasinglydetailedprocessmodelsand

con-∗ Correspondingauthor.

E-mailaddress:joshavinga@gmail.nl(J.Havinga).

trolsystemsmaybedevelopedinpursuitofahigheraccuracyof formingprocesses.

Animportantfactorforthedesignofmanufacturingcontrol sys-temsistherateofchangeoftheprocessdisturbances.Disturbances whichchangeslowlyovertimemaybecontrolledwithfeedback systems,adapting theprocess settings basedonmeasurements fromfinishedproducts.However,product-to-productvariations cannotbeeliminatedwithsuchsystemsandmustbecontrolled withfeedforwardcontrolbasedonmeasurementsfromthe semi-finishedproducts.Inthecurrentwork,theeligibilityoftheuseof forcemeasurementsinafeedforwardestimatorofasheet bend-ingprocessisinvestigated.Thequestioniswhetherthevariations intheprocessarereflectedbytheforcemeasurements.Several researchershaveinvestigatedtheuseofforcemeasurementsin controlofformingprocesses(Section2).Differentmethodshave beendevelopedtoadjustforchangesinproductionconditions(e.g. changesinnominalsheetthicknessorinusedmaterial).However, littleworkhasbeenpublishedoncontrolofproduct-to-product variationsinmetalformingprocesses.Thisisreflectedbythesmall numberofproductsusedfortrainingofcontrolmodelsandfor val-idationofthecontrolmethods:formoststudiesthedatasetsize doesnotexceed100products(Table1).

Tostudyproduct-to-productvariationsinmetalforming,large datasetswithmeasurementsfromeveryproductinthe produc-tionlineare needed.To thebest ofour knowledge,nostudies

https://doi.org/10.1016/j.jmapro.2017.10.011

(2)

[9] data inbetween0.70and0.85mmand

fivelubricationconditions

Helleretal.[10] Airbending Linearmodelwithsemi-analytical

simulationdata

Threematerials,threethicknesses

andfourtargetangles

n/a 72

Longoand

Maccarini[11]

Airbending Linearinterpolationwith

simulationdata

No n/a 5

Grocheetal.[12] Airbending Linearregression Threematerials,threethicknesses

andthreetargetangles

Unclear 30

Fig.1.Demonstratorproduct.

withanextensiveanalysisof a largenumber ofmeasurements havebeenpresentedintheliteratureonmetalformingprocesses. In theMEGaFiTproject[3],a metalforming demonstrator pro-cesshasbeendevelopedtoinvestigatethefeasibilityofcontrolof product-to-productvariationsinmetalforming.The demonstra-torprocessincludesdeepdrawing,forgingandbendingsteps.In thiswork,theuseofforcemeasurementsforcontrolofthe bend-ingstageisinvestigated.Section2isaliteraturestudyontheuse offorcemeasurementsforcontrolofmetalformingprocesses.In Section3thedemonstratorprocessispresented.InSection4 sev-eralcorrelationsbetweenmeasurementdataareshowntodeepen theinsightintothedemonstratorprocess.InSection5aproposal ismade fora model basedonexperimentaldatatobe usedin thecontrolofthebendingprocess.Aseriesofsimulationrunsare performedusingtheproposedmethodincombinationwith mea-surementdataobtainedfromthedemonstratorprocessinorderto assessthepotentialeffectofafeedforwardcontrolsystembasedon forcemeasurements.Finally,conclusionsanddiscussionarefound inSection6.

2. Literature:forcemeasurementsforfeedforwardcontrol

Thefollowingoverviewislimitedtostudieswith experimen-taldataontherelationsbetweenforcemeasurementsandproduct properties,whereaspurelynumericalstudiesareneglected.A sum-maryofthediscussedpapersisgiveninTable1.

Hardtetal.[4]implementedforceandcurvaturemeasurements inarollstraighteningprocess.Theyestimatedthecurvatureafter unloadingbasedona user-defined valueofthe elasticbending stiffnessandforceandcurvaturemeasurements.Inasetofeight

experiments,theyachievedareductionof53–95%forthe maxi-mumlateraldeflectionoftheproduct.

Müller-Duysing[5]developedacontrolsystemforairbending basedonmeasurementoftheintermediateangleandtheforce dur-ingbending.Theintermediateangleatthreedifferentpositions ofthepunchandthebendingforceattwodifferentpositionsof thepunchwereusedasinputofalinearregressionmodel.After optimizing theregression coefficients based onmeasured data, theRoot-Mean-SquareError(RMSE)ofthepredictionerrorofthe modelwas0.17◦overasetof44productswiththreedifferent mate-rials.TheRMSEofthepredictionerrorofthebestmodelwithout forcemeasurementwas0.24◦.

Yang et al. [6] created an experimental database of an air bendingprocess withforce andangle measurementsand other information suchas sheet thickness, ambienttemperature and materialname.Forthecontrolofanewworkpiece,datafromthe databasewasselectedbasedonafuzzylogicsystem.Usingthis selection,theycomparedtheexperimentalforcecurveswiththe measuredforcecurveanddeterminedthemaximumforceneeded toachievethedesiredangle.Anaccuracyof0.1◦wasreachedwhen thedatabase wasfilled withinformation similar tothat of the processedworkpiece.Anaccuracyof0.25◦ wasreachedwhena databasewithalargevarietyofexperimentaldatawasusedin combination withthemodified fuzzymodels.The uncontrolled accuracyisnotmentionedinthepaper.

Astudyonairbendingwiththreedifferentsheetthicknesses wasperformedbyForcelleseetal.[7].Theyfittedtheforcecurveto aregressionmodelwithfiveparametersandrelatedtheparameters tothefinalangleofthestripusingneuralnetworkmodels.They studiedtheeffectof thetraining setsizeof theneuralnetwork modelsonthebendingaccuracyandfoundstandarddeviationsin therangeof0.11–0.23◦fortheanglewiththedifferenttrainingset sizesandthicknesses.Theuncontrolledaccuracyisnotreported.

Nastran and Kuzman [8] examined a wire bending process which is precededby a straightening process. Theyobserved a strongcorrelationbetweentheforceontherollersduring straight-eningandthefinalgeometryafterbending.Theydevelopedamodel torelatethevariationoftheforcetovariationoftheyieldstressand proposedtocontrolthepositionoftherollerstoaffecttheamount ofplasticworkduringstraighteningandkeeptheyieldstressofthe incomingwireforthebendingprocessataconstantlevel.

Controlof a steelchannel forming process by adjusting the binderforcetrajectorywasinvestigatedbyViswanathanetal.[9]. Thecoefficientsofathirdorderpolynomialfitoftheforcecurve

(3)

Fig.2.Technicaldrawingofdemonstratorproduct,includingnumberingofthe

flaps.Theforgedprofileinthecenterofthecupisnotdrawn.

Fig.3.Tooling.

wereused asinput ofa two-layer neuralnetwork. After train-ingthenetworkwithfivedifferentsteelsheetsandfourdifferent lubricationconditions,itwasusedtocontrolthespringbackofthe product.Newtestswereperformedwiththesamesteelgrades asusedfortrainingtheneuralnetwork.Springbackvalueswithin specifications(10◦–12◦)werefound.However,twooutofthefour experimentswithothersteelgradesresultedinproductsoutof specification.

Helleretal.[10]usedforceandanglemeasurementsinanair bendingprocesswithpartialunloading.Usingsimulationdataand alinearrelationbetweenthemeasuredforceatthefullyloadedand thepartiallyunloadedstate,theydeterminedthemaximumforce neededtoachievethedesiredangle.Induplicateexperimentswith threedifferentmaterials,threedifferentsheetthicknessesandfour differenttargetangles,theyfoundanaverageerrorof0.4◦.

LongoandMaccarini[11]usedanfiniteelementmodelto esti-matematerialpropertiesbasedontheforcecurveinairbending. Theestimatewasusedtopredicttheangleafterspringback.They

foundgoodagreementintheaveragepredictedspringbackangle overasetoffiveexperiments.

Grocheetal.[12]usedthemaximumblankingforcefroma pre-viousprocessstageandthesheetthicknesstopredicttheangleafter springbackinairbending,basedonalinearregressionmodelbuilt withhistoricaldatafromtheprocess.Thefeedforwardcontrolloop wascombinedwithafeedbackcontrollerandtheapproachshowed improvedperformancewithrespecttotheuseoffeedbackcontrol only.

Thesignificance of force measurementsfor control ofmetal forming processes is evidently shown throughout the above-mentioned studies. However, force measurements have been mainlyusedtoadaptthemanufacturingprocesstochangesin pro-cessconditions.Inthiswork,theuseofforcemeasurementsfor predictingproduct-to-productvariationsisstudied.

3. Demonstratorprocess

Ademonstratorprocesshasbeendesigned toinvestigatethe feasibility of product-to-product control in metal forming. The demonstratorproductisshowninFig.1.Threetypesofforming processeshavebeenusedintheprocess:deepdrawing,forgingand bending.Theproductisproducedinanindustrialenvironmentata productionrateofoneproductpersecond.Itisformedfroma280 or300␮mthickand38mmwidestainlesssteelstripanditremains attachedtothestripduringallprocesssteps.Themaindimensions oftheproductareshowninFig.2.

Thetooling consistsof fourmodules:cutting,deepdrawing, forgingandbending(Fig.3),mountedonanindustrialstamping press.Everymodulehasseveralpositionsinwhich theforming stepsareperformed.Theorderandnumberingoftheprocesssteps isshowninFig.4.Duringeachstrokeofthepressallproductsmove oneposition.Therefore,thetotalproductiontimeofoneproductis aroundtwentyseconds.Thestripremainsalignedinthetoolingby theuseofpilotholesandpins.

Thefirstmodulehasthreecuttingstages.Thesecondmodule hasasingledeepdrawingstage,withfourblankholdersections whicharecontrolledindependentlywithahydraulicsystem.This enablescontroloftheroundnessoftheflange,whichisinfluenced bytheanisotropyofthematerial.Thehydraulicsystemis auto-maticallyre-pressurizedtothemaximumpressurepmaxwhenits

pressuredropsbelowtheminimumpressurepmin.Thethird

mod-ulehastwocuttingstagesandoneforgingstagetoformsix200␮m wideparallelribsinthebottomofthecup.Theheightoftheribs dependsontheappliedforgingforce[13].

Inthelastmodule,threeflapsarecutoutinthebottomofthe cup.Thereafter,theflapsarebentto50◦ inacloseddie(Fig.5a), andfinallytheyarebentbacktoadesiredangleinanopenbending stage(Fig.5b).Duringthefirstbendingstage,thebendingforces ofallflapsaremeasured.Theforce–displacementcurvefromthis bendingstageisstrongly nonlineardue tothegeometryofthe tooling.Thebendingforcemeasurementsandtheinterpretations thereofarediscussedinSection4.3.Inthesecondbendingstage,the amountofbackbendingcanbeadaptedfromproducttoproduct. AsshowninFig.5b,ahorizontaltranslationwhichisimposedbya servomotorconvertsintoverticalmovementofthebackbending punchthroughaslantedgroovewitharatioof1to10.Theactuator doesnotmoveduringcontactbetweenthepunchandtheproduct. Inthelaststageofthebendingmodule,apictureofthesideofflap 2istakentodeterminetheangle(Fig.6).Thestandarddeviationof theanglemeasurementerrorisdeterminedtobelessthan0.01◦.

Alargeamountofdataisstoredduringmanufacturing.Process forces,blankholderpressure,flapangleandincomingsheet thick-nessaremeasuredandstoredduringproduction.Anoverviewof thesensorsisgiveninTable2.Relevantinformationisobtained

(4)

Fig.4.Productionstepsofdemonstratorproduct.

Table2

Overviewofsensorsinthedemonstratorprocess.

Processstage(nr) Description Sensor Range Samplingrate Amount

Thickness Vollmer 0–1mm 1

Cutting(1) Pilotholecuttingforce KistlerSlimLine9132B29 0–7kN 5kHz 1

Deepdrawing(7) Punchforce KistlerSlimLine9133B29 0–14kN 5kHz 1

Deepdrawing(7) Blankholderpressure 5kHz 4

Forging(12) Punchforce KistlerSlimline9134B29 0–26kN 5kHz 1

Bending(16) Punchforce KistlerSlimLine9130B39 0–3kN 5kHz 3

Bending(19) Flapangle AVTStingrayCCD 20–80◦ 1

Fig.5. Thetwoformingstepsfromthebendingmodule.(a)Overbendingstage (stage16).(b)Backbendingstage(stage18).

fromthesensorsduringthefractionofthestrokewherethereis contactbetweenthetoolingandtheproduct,whereasnosignal ismeasuredduringtherestofthestroke.Thenumberofrelevant samplingpointsforeachprocessstagedependsonthesensor sam-plingrate,theexactgeometryofthetooling,thestampingrate(1 stokepersecond)andthetotalstrokelengthofthepress(38mm). Thenumberofsamplingpointsduringcontactbetweentoolingand productisroughly100forthecuttingstage,700forthe deepdraw-ingstage,350fortheforgingstageand450forthebendingstage. Ineachtest,allrawdataarestoredandpost-processedwithoffline proceduressuchasfilteringandaligningofforcemeasurements. Moredetailsonthepost-processingcanbefoundinHavinga[14]. Anoverviewofpost-processedsensorsignalscanbefoundinFig.7. Fourtestswithdifferentsettingswereperformed.Anoverview ofthetestsisgiveninTable3.Atleast3000productshavebeen producedineverytest.Twodifferentnominalsheetthicknesses havebeenused.Thevaluespminandpmaxdenotethelowerand

upperboundforthepressureofthehydraulicsystemforthedeep drawingblankholders.Foreverysheetthickness,onetestwithand onetestwithoutbackbendingwasperformed.Somechangeshave beenmadetothetoolingfortestnumber4.Thepurposeofthese changeswastominimizethedisturbancestotheprocesscausedby thetooling.Thestabilityofthehydraulicsystemofthedeep draw-ingstageispoor,aswillbediscussedinSection4.4.Thestability wasimprovedbyreducingthebandwidthofthepressureofthe hydraulicsystem.Furthermore,theforgingpunchwasremovedto decreasetheloadsonthetooling.

Fig.6. Pictureofflapfrominlinecamera(step19).

4. Testresults

Severallongtestrunshavebeenperformedwiththe demon-stratorprocess.Allforcemeasurementsduringdeformationofthe productarestoredforallproducts.Hence,thousandsofdatapoints arestoredperproduct.

Theobjectiveof thisworkistodecreaseproduct-to-product variationinthedemonstratorprocessusingfeedforwardcontrol basedonforcemeasurements.Todoso,therelationsbetweenforce measurementsandthefinalangleoftheflaphavetobeidentified.In Section5,thisisdonewithregressionanalysis.However,itishard togaininsightaboutthemeasurementsbasedontheseregression modelsonly.Themeasurementsandtheirrelationswiththefinal angleoftheflaparethekeyfactorforfeedforwardcontrolofthe demonstratorprocess.Therefore, severalobservationsaboutthe measurementsarediscussedinthissection.

Thissectionstartswiththedefinitionofa scaledcorrelation measureinSection4.1.Thismeasureisusedforanalysisofthe data.Thereafter,thefollowingaspectsofthedataarediscussed:the amountofvariationoftheangle(Section4.2),thebendingforces (Section4.3), variation inthedeep drawingstage (Section4.4), theeffectofthicknessvariation(Section4.5)andthecorrelation betweentheforcesandtheangle(Section4.6).

(5)

Table3

Overviewofdatasets.

Datasetnumber Nominalthickness Backbending Blankholderpmin/pmax Datasetsize

1 280␮m Yes 100/130bar 3507products

2 280␮m No 100/130bar 3268products

3 300␮m Yes 100/130bar 3142products

4 300␮m No 100/105bar 3530products

Fig.7.Typicalsensorsignalsforallprocessstagesforasingleproduct.Thedeepestpointofthepressat500msisindicatedwithadashedline.Theplottedtimerangeofeach curveindicatestherangeofdatawhichhasbeenusedintheprocessestimatorfromSection5.(a)Cutting.(b)Deepdrawing.(c)Blankholderpressure(fourblankholders).

(d)Forging.(e)Bending(threepunches).

4.1. Scaledcorrelation

Oneofthetoolsforidentifyingcorrelationsbetweentwosignals isthecross-correlationplot.Inthecaseofcontrolofmetalforming processes,thelong-termcorrelationisofnointerest,because long-termvariationscanbecontrolledwithfeedbackcontrol.Therefore, ascaledcorrelationmeasureisusedtodeterminetheshort-term correlation[15].Thescaledcorrelationcoefficientisbasedonthe Pearsoncorrelationcoefficient.ThePearsoncorrelationbetween twosignalsXandYis:

(X,Y )=cov(X,Y ) XY

(1) ThecovariancebetweenXandYiscov(X,Y),andthestandard deviationsofXandYareXandYrespectively.Forthe

demonstra-torprocess,XandYmaybemeasurementssuchasthethicknessor themaximumbendingforceforeachproduct.

Thescaledcorrelationfactoris determinedasfollows: abin widthnb ischosen, and thecomplete datasetisdivided intoK

non-overlappingbinswitha widthof nb products.ThePearson

correlationcoefficientisdeterminedineverybin,andthescaled correlationcoefficientsisdefinedastheaverageofthesevalues:

s= 1 K K



i=1 i (2)

whereKistheintegerpartofthenumberofproductsinthedataset dividedbythebin widthnb.Inthis work,a binwidthnbof 10

productsisused.

Thescaledcorrelationfactorsareusedincross-correlationplots. Cross-correlationisdefinedas:

s()=s(X(t),Y (t+)) (3)

Thefactorisashiftinthenumberingoftheproducts.If–as anexample–thedatasetsizeis1003products,Xisthethickness andYisthemaximumbendingforce,s(3)isthescaledcorrelation

betweenthethicknessofproducts1to1000andthemaximum bendingforceofproducts4to1003.Inthecaseofauto-correlation, XandYareequal.

4.2. Anglevariation

ThemeasuredanglesfromthedifferenttestsareshowninFig.8. Ineachplot,thescalingofthehorizontalaxisinbetweenproducts number1000and1050ischanged,togiveanimpressionofthe amountofproduct-to-productvariation.Product-to-product vari-ationrepresentsasignificantpartofthetotalvariationinalltests. Thetestswithbackbending(Fig.8aandc)showmorevariation thanthetestswithoutbackbending(Fig.8bandd).Suddenjumps intheangleareobservedinthetestswithbackbending.However, thisdoesnotimplythatthejumpsarecausedbydisturbancesfrom thebackbendingstage.InSection4.6itwillbeshownthatsomeof thesejumpscanbepredictedwiththeforcesfromtheoverbending stage.

4.3. Bendingforce

InFig.9,thebendingforcesofdataset3areshownforallthree flaps.Thedifferencesbetweentheaverageforcecurvesperflapare relatedtotheexacttoolinggeometryandalignmentateach ben-der.Theshapeofthebendingforcecurvehasbeenstudiedwitha finiteelementmodel.Duringthefirstpartofthestroke,free bend-ingoccurs.Ataround485ms,theslopeoftheforcecurveincreases becausethecontactareabetweenthepunchandtheflapstarts moving.Asecondincreaseoftheslopeisobservedafter490ms, whenthetipoftheflaptouchesthedie.Theforcereachesits

(6)

max-Fig.8.Anglesofflap2.(a–c)PreviouslypublishedinVanDenBoogaardetal.[16].(a)Constantbackbending.280␮msheetthickness.Standarddeviation0.326◦.(b)Noback

bending.280␮msheetthickness.Standarddeviation0.176◦.(c)Constantbackbending.300␮msheetthickness.Standarddeviation0.238◦.(d)Nobackbending.300␮m

sheetthickness.Standarddeviation0.135◦.

Fig.9.Bendingforceofsubsetfromdataset3(300␮mwithbackbending),for

bendersone( ),two( )andthree( ).

imumvaluejustbeforethedeepestpointofthepressduetostrain ratesensitivity of thematerial. Theexact length of thebender stronglyinfluencesthemaximumbendingforce.Theincreaseof theforceofbender3around450msiscausedbycontactbetween thebenderandthedieduetomisalignmentofthetooling.Fig.9

alsogivesanimpressionoftheamountofvariationofthe bend-ingforcesduringthetest.InSection5.5itwillbeinvestigatedhow thesevariationsrelatetothevariationofthefinalangleoftheflap. 4.4. Deepdrawingvariation

Thehydraulicsystemfortheblankholdersofthedeep draw-ingstagehasastrongeffectonthestabilityofthewholeprocess. Thestabilityofthehydraulicsystemispoorduetoseveralissues, suchas thepositioningofthevalvesand sensors,thelengthof thetubesandthelimitedsizeoftheoilreservoir.Therefore,the completesystemisre-pressurizedeveryfewseconds,causing a periodicvariationintheblankholderpressure.Thesystemis re-pressurizedtopmaxwhenthepressuredropsbelowpmin.Mosttest

runswereperformedwithapressurerangeof102–130bar,causing thesystemtore-pressurizeaftereveryeightproducts.Thepressure

Fig.10.Pressurefromblankholder2for100subsequentproductswithdifferent

settingsforthehydraulicsystem.(a)Dataset2,pmin/pmax=102/130bar.(b)Dataset

4,pmin/pmax=100/105bar.

Fig.11.Autocorrelationofmaximumpressureofblankholder2( ),maximum

forgingforce( )andmaximumforceofbender2( )fordataset2(280␮m

withoutbackbending).

ofoneblankholderofdataset2isshowninFig.10a.Less varia-tionwasobservedintestnumber4duetothenarrowerrangeof 100–105bar,whichcausedthesystemtore-pressurizesafterevery twoproducts(Fig.10b).

InFig.11,theautocorrelationoftheblankholderpressureof dataset2isshown.Theperiodof8productsforpressurizingthe systemcanbeclearlyobserved.Inthesamefigure,itcanbeseen thatotherprocessstepsarealsoaffectedbythevariationofthe

(7)

Fig.12.Scaledcross-correlationbetweenthicknessandforcesforallfourdatasets.

(a)Cross-correlationbetweenthicknessandmaximumcuttingforce.(b)

Cross-correlationbetweenthicknessandmaximumforceofbender2.

hydraulic system:the autocorrelation of the maximum forging forceandofthemaximumbendingforcehavethesame periodic-ityof8products.Onecausefortheinteractionbetweentheprocess stepsisthecomplianceofthestampingpress.Variationoftheforce atonepositioninthepressaffectsthedeformationofthetooling andconsequentlyaffectstheotherstagesofproduction.Thiscan beverifiedwiththecross-correlationplotsbetweenthemaximum deepdrawing,forgingandbendingforces.

InFig.11,theautocorrelationoftheblankholderpressureof dataset2isshown.Theperiodofeightproductsforpressurizing thesystemcanbeclearlyobserved.Inthesamefigure,itcanbe seenthatotherprocessstepsarealsoaffectedbythevariationof thehydraulicsystem:theautocorrelationofthemaximumforging forceandofthemaximumbendingforcehavethesameperiodicity ofeightproducts.Acausefortheinteractionbetweentheprocess stepsisthecomplianceofthestampingpress.Variationoftheforce atonepositioninthepressaffectsthedeformationofthetooling andconsequentlyaffectstheotherstagesofproduction.Thiscan beverifiedwiththecross-correlationplotsbetweenthemaximum deepdrawing,forgingandbendingforces[17].

4.5. Thicknessvariation

In the demonstratorprocess, the thickness of the incoming sheetismeasuredfor everyproduct.Hence,theeffect ofsheet thicknessontheprocessforcescanbeinvestigated.First,the cross-correlationbetweenthethicknessandthemaximumcuttingforce isshowninFig.12aforalldatasets.Asexpected,thecorrelation betweenthicknessandmaximumcuttingforceispositive:athicker sheetrequiresahighercuttingforce.Thecross-correlationbetween bendingforceandthicknessgivesasimilarresult(Fig.12b).Hence, partofthevariationoftheprocessforcescanbeattributedto vari-ationofthethicknessofthesheet.However,thecorrelationvalue oflessthan0.4showsthattheeffectofthethicknessonthe cut-tingandbendingislimitedwithrespecttothetotalvariationinthe process.

4.6. Correlationbetweenforcesandangle

Theobjectiveofthisworkistoinvestigatetheuseofforce mea-surementsforcontrolofthebendingstage.Todetecttherelations betweensmallvariationsintheprocessforces andtheangleof theflap,thecorrelationsshouldbeidentifiedusinglargedatasets. Twoexamplesofweakbutclearcorrelationsbetweenforcesand theanglecanbefoundinFig.13.Thesecorrelationshaveavalue of−0.32and0.18.Thesizeofthedatasetsenablesidentification ofthesecorrelationswithstatisticalsignificance:thep-valuesare 2·10−85and6·10−27respectively.

5. Processestimator

Severalrelationsinthemeasurementdatahavebeendiscussed inSection4.Althoughthecorrelationsbetweenmeasurementdata

Fig.13.Angleversusforcedatafordataset4.(a)Angleversusdeepdrawingforce

at445ms,withcorrelationvalue−0.32.(b)Angleversusbender2forceat505ms

withcorrelationvalue0.18.

andthefinalangleareweak,theycanbeusedinafeedforward esti-mator.Inthissection,theeffectoffeedforwardcontrolwithforce measurementsisestimatedbasedonprocesscontrolsimulations whichhavebeenperformedusingexperimentaldataobtainedfrom thedemonstratorprocess.Agenerallinearizedmodelofametal formingprocessisgiveninSection5.1.Followingthismodel,the equationsforfittingaregressionmodelbasedonhistoricaldataare giveninSection5.2,andtheregressionmethodusedforfittingis discussedinSection5.3.Theassumptionsandprocedurefor sim-ulatingprocesscontrolbasedonexperimentallyobtainedprocess dataaregiveninSection5.4andtheresultsarepresentedinSection

5.5.

5.1. Processcontrol

Asystemdiagramforcontrolofmetalformingprocessesisgiven inFig.14.Theprocessmayberegardedasadiscretesystem,where everyproductisonesample.Theprocessisdividedintotwoparts, whereP(1)isthepartoftheprocesswhichprovidesmeasurements

forfeedforwardcontrolandP(2)isthepartoftheprocesswhichis

affectedbythecontrolsystem.Bothpartsconsistofoneormore processstages.Thepropertiesoftheproductafterthefirstpart oftheprocessaredenotedbyy1 ∈Ry1.Thecontrolparameters u∈Ruactonthesecondpartoftheprocess.Thefinalproperties

oftheproductaredenotedwithy2 ∈Ry2andtheerrorinproduct

propertieswithe ∈Ry2.Thefirstpartoftheprocessdeliversaset ofmeasurementsm ∈Rmtobeusedinafeedforwardloop.The

disturbancesd1 ∈Rd1andd2 ∈Rd2actonbothpartsoftheprocess

P(1)andP(2)respectively.

The sourcesof variation canbe seen asdisturbances tothe system.Some important sources of variation in metal forming arevariation ofmaterialproperties, sheetthickness,lubrication propertiesandtoolwear.Thesesourcesarerecognizedbymany researchersinthefieldofrobustoptimizationandcontrolof form-ingprocesses.Anoverviewofdifferentstudiesonthesesources ofvariation is given intheworkof Hazra etal. [18].However, therearemanyothersourcesofvariationwhichreceiveless atten-tionin studiesontheaccuracyofmetalforming processes.Col

[19]gives anoverviewoffactorsaffectingformingprocessesin anindustrialenvironmentbasedonhisprofessionalexperience. Henamesalargenumberofinfluencingfactorssuchasvariation ofblankholderforces,guidanceoftherams,theeffectof tempera-tureonlubrication,localizationoflubricant,toolingpositioningand pressstiffness.Inmanycases,itisunfeasibletoperformthe exten-sivemeasurementsneededtoquantifythesesourcesofvariation andtheireffectontheformingprocess.

Variationsintheformingprocessevolve overtime,although differentsourcesofvariation mayhavedifferentdynamics:tool wearincreasesslowlyduringlifetimeofthetooling,whereasthe temperatureofthetoolingincreasesrapidlyduringrunning-in.For controlofformingprocesses,itisessentialtohavedirectorindirect measurementsofthedisturbancestothesystem.Inotherwords, importantsourcesofvariationshouldbeobservable.

(8)

Fig.14.Systemdiagramforcontrolofametalformingprocess.Thecomponentsofthefeedforwardsystemareshowningray.The ˆhat representsestimatedvalues.

Duetoelasticspringback,thefinalstateoftheproductisonly reachedafterreleaseoftheproduct.Consequently,thefinalstate canonlybedirectlymeasuredwhentheproductisfinishedandno controlactionscanbeappliedanymore.Inthecontroldiagramthis isindicatedwiththedelayblockz−N,whereNisthemeasurement delayinnumberofproducts.Themeasurementdelayisatleastone product,butitmaybeseveralproducts,dependingonthespeedand positionofthemeasurementsystem.

Whencompensatingforlong-termvariationsinamass produc-tionprocess,it maybesufficienttomeasurethefinalstateofa productandcompensatetheerrorfortheupcomingproductswith afeedbackloop.Thefeedbackloopisshowninblackinthecontrol diagram.However,product-to-productvariationscannotbe elim-inatedinsuchanapproach.Othermeasurementsshouldbeused toestimatetheeffectofproduct-to-productvariationsonthefinal stateoftheproduct.Thesemaybeeitherdirectmeasurementson theintermediatestateoftheproduct,orindirectmeasurements whichcarryinformationabouttheprocessandtheproduct,such asforcemeasurements.Thesemeasurementscanbeusedina feed-forwardlooptocontroltheprocess.

Todeterminetherelationbetweenthemeasurementsmand thefinalpropertiesoftheproducty2,themathematicalequations

oftheprocessaredeterminedandlinearized.Firstly,theprocess isdescribed withtheunknownfunctionsf,g,and h,which are functionsofthedisturbancesd1andd2andthecontrolparameters u:

m=f(d1) (4)

y1=g(d1) (5)

y2=h(y1,d2,u) (6)

Theseequationsarelinearizedaroundtheirnominalvaluesd1, d2anduusingTaylorexpansion:

mf(d1)+(d1−d1)·

f(d1) (7) y1g(d1)+(d1−d1)·

g(d1) (8) y2≈ h(g(d 1),d2,u) +((d1−d1)·

g(d  1))·

y1h(g(d  1)) +(d2−d2)·

d2h(d  2) +(uu)·

uh(u) (9)

Thederivativesintheequationsabovearerenamedto:

P(1)m =

f(d1) (10) P(1)y1 =

g(d  1) (11) P(2)y1 =

y1h(g(d  1)) (12) P(2)d 2 =

d2h(d  2) (13) P(2)u =

uh(u) (14)

Thechangesofthemeasurementsmandthefinalproduct prop-ertiesy2withrespecttotheirnominalvaluescannowbewritten

as:

m=P(1)md1 (15)

y2=P(2)y1P(1)y1d1+P(2)d2d2+P(2)u u (16)

Thetargetpropertiesy2areinfluencedbythreecomponents:

twoarerelatedtothedisturbancesd1andd2,andoneisrelated

tothecontrolparametersu.ThecomponentP(2)d

2d2 cannotbe estimatedinthefeedforwardloopbecausethereareno measure-mentsavailablefromP(2).Hence,thegoalofthefeedforwardloopis

toestimatethecomponentP(2)y1P

(1)

y1d1fromEq.(16)basedonthe measurementsm.UsingEq.(15)andassumingthatP(1)m

−1 exists,it follows: P(2)y1P (1) y1d1=P (2) y1P (1) y1P (1) m −1 m (17)

Hence,therelationbetweenthevariationinthemeasurements mandthevariationofthefinalpropertiesoftheproducty2

duetothedisturbanced1isgivenbythematrixP(2)y1P

(1) y1P (1) m −1 .This matrixhastobeestimatedtobeabletousefeedforwardcontrol basedonthemeasurementsm.

Different approaches may be used to determinethe matrix

P(2)y1P (1) y1P (1) m −1

.Thismaybedoneeitheroffline(e.g.usinga numer-ical or analytical model) or online based on historical data of theprocess.Thelatteroptionisindicatedinthecontroldiagram (Fig.14)by thedashedlines,indicating which data isrequired toestimatetherelationbetweenthemeasurementsandthefinal propertiesoftheproduct.

5.2. Modelfitting

In this work, it is proposed to usehistorical data from the manufacturingprocesstodeterminetherelationsbetween pro-cessmeasurementsandfinalpropertiesoftheproducts.Atevery momentduringproduction,itisexpectedthatthemostrecent pro-ducedproductshavethehighestresemblancewiththecurrently producedproducts.Hence,itispreferabletousethemostrecent datafortheprocessestimator.Todoso,amovingwindowprocess estimatorisproposed,whichiscontinuouslyupdatedbasedonthe npmostrecentlyproducedproducts.Twodifferentcasesare

con-sidered:thecasethatthematrixP(2)u fortheeffectofthecontrol

parametersonthefinalproductpropertiesisknown,andthecase thatitisunknown.Inthelattercase,estimationofP(2)u isincluded

(9)

intheprocedure.Fortheformercase,startwithcombiningEqs. (16)and(15)to: y2−P(2)u u=P(2)y1P (1) y1P (1) m −1 m+P(2)d 2d2 (18)

Inthisequation,y2 arethefinalpropertiesoftheproduct,u

thecontrol parameters, m the forcemeasurements and d2 the

unobservabledisturbances.Themeanvaluesinthedatasetwith npproductsaresubtractedfromthedatatodeterminethe

varia-tions.Theaboveequationholdsforasingleproduct.Expandingthe equationtoallnpproductsgives:

Y2−P(2)u U=P(2)y1P (1) y1P (1) m −1 M+P(2)d 2D2 (19)

ThedatasetofhistoricaldatacontainsY2,UandM.Itis

assumedthatP(2)d

2D2actsasGaussianwhitenoiseonthesystem. Thesystemofequationscanberewrittentoaregressionproblem intheformZ=ˇ1M+



1,with:

Z=Y2−P(2)u U (20) ˇ1=P(2)y1P (1) y1P (1) m −1 (21)



1=P(2)d2D2 (22)

Regressionmethodscanbeusedtodeterminethecoefficient matrixˇ1,establishingtheprocessestimator.Thereafter,the

pro-cessestimatorcanbeusedinthecontrolsystemtointerpretnew measurementsm.Notethatitisnotneededtoknowthesizeofthe disturbancevectord1toestablishtherelationbetweenZandM.

Inthecasethatthetransfermatrixfromcontrolparameterto targetpropertiesP(2)u isunknown,Eq.(19)iswrittenas:

Y2=



P(2)y1P (1) y1P (1) m −1 P(2)u

 

M U



+P(2)d 2D2 (23)

ThisequationcanberewrittentotheformY2=ˇ2X+



2and ˇ2canbedetermined,with:

ˇ2=



P(2)y1P (1) y1P (1) m −1 P(2)u



(24) X=



M U



(25)



2=P(2)d2D2 (26)

Theseequationsarebasedonthefollowingassumptions. Vio-lationsoftheseassumptionsmayaffectthequalityoftheprocess estimator.

1.Thesystemislinearintherangeofvariationofd1andu.

2.Theinverse mapping P(1)m −1

exists. Different disturbances d1

resultindifferentmeasurementsm.

3.TheknowntransfermatrixP(2)u valueiscorrect.

4.Thereisenoughdataavailableforestimationofthecoefficient matrixˇ1orˇ2.Therequiredamountofdataalsodependson

themeasurementnoiseandthemagnitudeoftheunobservable disturbancesd2withrespecttotheobservabledisturbancesd1.

5.Disturbances d1 and d2 are uncorrelated. Violation of this

assumption implies that the variations of d2 can be partly

observedinthemeasurementsm,leadingtoanimprovement ofthefeedforwardcontrolsystem.

6.Disturbanced2actsasGaussianwhitenoiseonthesystem.This

maybeincorrectbecausethevariationofdisturbanced2may

becorrelatedintimeordeterminedbyadifferentprobability distribution.

Theseassumptionsdonotrestrictthefittingprocedureofthe linearregressionmodelwiththedatasetofY2,UandM.Itis

pro-posedtousetheLASSOregressionmethodforfittingthelinear model.TheLASSOmethodisdiscussedinthefollowingsection. 5.3. LASSOregression

The derivation in this section follows the case that P(2)u is known(Eqs.(19)–(22)),whereasthecasethatP(2)u isunknown(Eqs.

(23)–(26))canbederivedequivalently.Inthedatasetwhichisused tofitthemodel,npisthenumberofproducts,nmthenumberof

measurementsperproduct,ny2 thenumberofoutputproperties perproductandnuthenumberofcontrolparameters.Theny2rows oftheoutputmatrixZfromEq.(20)canbefittedseparately.Hence, thesystemtobesolvedhastheformz=ˇ1M,wherezhassize

(1×np),ˇ1hassize(1×nm)andMhassize(nm×np).

EveryrowoftheinputmatrixMstandsforoneofthe mea-surementsminusthemeanvalueofthatmeasurementoverthe fittingdataset.Forthedemonstratorprocess,theseare measure-mentsfromoneforcesensoratdifferentsamplingpointsofthe forcecurves.Thisisdifferentthanwhathasbeendoneinthestudies discussedinSection1.Theusualapproachistoextractoneorfew characteristicsfromtheforcecurves.However,weproposetouse thedatafromthefullforcecurvetomaximizetheinformation gath-eredduringproduction.MatrixMisexpectedtobemulticollinear becausedifferentmeasurementsareexpectedtocorrelate.

Whenthenumberofmeasurementsperproductismuchsmaller thanthenumberofproductsin thedataset(nmnp), the

coef-ficientsˇ1 maybesolvedwiththeOrdinaryLeastSquares(OLS)

method.However,whenusingdatafromforcemeasurementsina processestimator,nmmayeasilyexceednp.Inthatcase,nounique

solutioncanbefoundwithOLS.Hence,otherregression meth-odsshouldbeusedtofindasolutionwithoutoverfittingthedata. Severalmethodshavebeendevelopedforfittingdatawithmore independentvariablesthandatapoints,suchasstepwise regres-sionmethods,whereasubsetofthedataisselectedtofitthemodel. Othermethods,suchasridgeregression,LASSOregression[20]and leastangleregression[21],restrictthemagnitudeofthecoefficient matrixˇ1topreventoverfitting.

Inthiswork,theLASSOregressionmethodisusedforfitting theprocessestimator.Thefirststepofthefittingprocedureis nor-malizationofthedata.Theoutputvectorzandeverycolumnof theinputmatrixMisnormalizedinsuchawaythatitsmean becomeszeroanditsstandarddeviationbecomesone.Thereafter, thecoefficientvectorˇ1isfoundbasedonthefollowing

minimiza-tion: min ˇ1∈Rm

1 2np np



i=1

zi−ˇ1mi

2 + nm



j=1

ˇ1j

(27)

Theparameterrestrictsthemagnitudeofthecoefficientsˇ1.

Ifiszero,Eq.(27)reducestoOLS.Eq.(27)isaconvexproblemand canbesolvedwithstandardoptimizationtechniques.Anefficient solverfortheLASSOmethodhasbeendevelopedbyEfronetal.

[21].Afterfittingtheregressionmodel,itcanbeusedtopredict thevariationintheoutputpropertiesy2ofanewproductgiven

itsmeasurementm.Forthedemonstratorprocess,theforce mea-surementisusedtopredictthevariationinthefinalangleofthe flap.

5.4. Simulationofcontrolwithforcemeasurements

Inordertoestimatetheeffectivenessofacontrolsystemfor thebendingstageofthedemonstratorprocess,itisessentialto useexperimentaldatawhichisobtainedfromthedemonstrator

(10)

Fig.15.Simulationflowchart.

processitself.Therefore,asimulationisperformedwhichusesall relevantexperimentaldatafromatest(i.e.variationsinprocess forces as wellas anglemeasurements)to estimatehow differ-entcontrollerswould haveperformediftheywould havebeen usedforthatspecifictest.Theonlyassumptionswhichhavebeen madeinthesimulationsarerelatedtotheactuationsystem.Itis assumedthattheactuationsystemisperfectlylinearandperfectly known.Obviously,theexactperformanceoftherealactuation sys-tem(adjustmentofthebackbendingpunchpositioninstage18,see

Fig.5b)shouldbeinvestigatedinordertodefinetheexactcontroller performance.Anoverviewofthesimulationprocedureisgivenin

Fig.15.ThesimulationshavebeenperformedusingMATLAB. Itmustbenotedthatthetraditionalapproachforvalidation, wherethedataissplitinafittingandavalidationfraction, can-notbeappliedwiththeproposedapproach.Themovingwindow processestimatorimpliesthattherelationbetweenmeasurements andfinalpropertiesoftheproductisestimatedbasedonthedata fromthenpmostrecentlyproducedproducts.Hence,thechange

infinalproductpropertiesofasingleproductispredictedwitha modelwhichneverincludesdatafromthatproductitself. There-fore,theessentialconditionthatdatashouldnotbeusedforfitting andpredictionsimultaneouslyisnotviolatedwithinthese simula-tionruns.

Thefirststepsofthesimulationarerelatedtopost-processingof themeasureddatafromthedemonstratorprocess.Datafromthe testrunswithbackbendingareusedforthesimulation(datasets 1and3fromTable3).Thesensordataisalignedandfiltered[14]

andthereafterresampled.Eachsensorsignalisresampledwithin

angleinthedataset.

ThedisturbancesfromEq. (28)aretransferredtosimulation runsofthecontrolsystem.Furthermore,itis assumedthat the effectofthecontrolparameterontheangleP(2)u isconstant(i.e.

independentofu,d1andd2)andperfectlyknown.Another

assump-tionisthatthecontrolsystemiffastenoughtoadjustthecontrol parameterutoanypositionwithinonestrokeofthepress.These aretheonlyassumptionsneededtodeterminetheeffectofa con-trolsystemontheaccuracyoftheprocess.TheexactvalueofP(2)u

isnotrelevantforthesimulations,becausetheeffectofPu(2)can

becompensatedwithscalingofthecontrollerparameters.Inother words,simulationswithdifferentvaluesforPu(2)cangiveexactly

equalresultsifthecontrollerparametersarescaledaccordingly. Therefore,avalueof1istakenforPu(2).Theprocessequationsfor thesimulationrunscanbefoundbyrewritingEq.(9)usingEq.(28)

to: ˆ ˛i=˛

u,d 1,d2

+P(2) u ui+P(2)y1P (1) y1d1 +P (2) d2d2= ¯˛+P(2) u ui+ (˛i−¯˛) (29) where ˛ˆi is the predicted angle withcontrol, and ˛i is the

measuredanglefromtherealtest.Thecontrolparameteruiis

determinedwiththecontrolsystemandhasafeedbackcomponent uFB

i aswellasafeedforwardcomponentuFFi .Forthefeedback

loop,aPIcontrollerisusedwiththefollowingformulation: uFB i =Kpei−N+Ki i−N



j=1 ej (30)

ThemeasurementdelayNisthreeproducts.Thegainfactorsfor theproportionalandintegralactionareKpandKirespectively.The

errorofthei-thproductisdenotedbyei,with¯˛astargetangle.

Forthefeedforwardloop,theprocessestimatorisfitbasedon thedatasetofmostrecentnpproductsfollowingtheapproach

dis-cussedinSection5.2.Theforcemeasurementsaregatheredinthe measurementmatrixM.Forproducti,themeasurementvectormi

containsitsforcemeasurementsfromallprocessstages.The pro-cessestimatoriscontinuouslyupdatedaftereveryfiveproducts andthefeedforwardcomponentuFFi isdeterminedforeach prod-uctusingtheLASSOregressionmodelandtheforcemeasurements

mifromthatspecificproduct.Ifnpischosentoolow,thedataset

sizeisnotsufficienttodetectthecorrelationsbetweenthe mea-surementsandthefinalangle.Ontheotherhand,onlydatawhich isrelevantforthecurrentstateoftheprocessshouldbeincluded inthemodel.Someofthedisturbancesind1andd2maychange

slowlyovertime.Hence,itisexpectedthatrecentdatahasmore resemblancewiththecurrentstateoftheprocess.Therefore,itis expectedthatthequalityofthemodelwilldecreaseifnpischosen

toolarge.

Toperformasimulationrun,fourparametershavetobechosen: thedatasetsizenp,theLASSOparameter(Eq.(27))andthegain

factorsKpandKi.Differentdatasetsizesnphavebeenused,

vary-ingfrom100to1000.Theparameterhasbeenvariedinbetween 0.005and0.5.Foreverycombinationofnpand,thegainfactors

(11)

Fig.16. RMSEoftheangleinthesimulationrunsforalldatasets,withoutcontrol,

withfeedback(FB)andwithfeedbackandfeedforward(FB+FF).

Kp andKihavebeenoptimizedbasedontheRMSEoftheresult.

Obviously,thisisanunfeasibleapproachforimplementationina productionline,becausetheRMSEcanonlybedetermined after-wards.Therefore,furtherstudyisneededtodevelopaprocedure forselectionofthegainfactorsandthemodelparametersnpand

.Itisexpectedthattheseparameterscanbeselectedandupdated onlinewithalearningalgorithm.

5.5. Results

Theprocedurefromtheprevioussectionisappliedtothetwo datasetswithconstantbackbending.TheRMSEfortherun with-outcontrol,thesimulationrunwithfeedbackcontrolandthebest simulationrunwithfeedforwardcontrolbasedonforce measure-mentsisgiveninTable4andvisualizedinFig.16.Thefirst1002 productsarenotusedintheRMSEcalculationbecausethe feedfor-wardloopisactivatedatproduct1003inthecasewiththelargest datasetsizenp.Fortherunswithcontrol,thegainfactorsofthePI

controllerhavebeenoptimized.AsignificantreductionoftheRMSE isachievedwithfeedbackcontrol:34%and26%fordatasets1and 3respectively.Thatisexpected,becausethelong-termvariationin thesedatasetsisstrong,ascanbeseeninFig.8aandc.

Theeffectoffeedforwardcontrolbasedonforcemeasurements isverydifferentforthetwodatasets.Fordataset1withasheet thicknessof280␮m,thereductionofRMSEwithrespecttotherun withfeedbackcontrolisonly2%.Theimprovementfortherunwith asheetthicknessof300␮m(dataset3)is24%.Thatindicatesthat theforcemeasurementscarryinformationwhichcanbeusedto controltheprocess.However,insufficientcorrelationbetweenthe forcemeasurementsandtheflapanglecouldbefoundfordataset1 (280␮m)tobeabletoreachasignificantimprovementwith feed-forwardcontrol.Apossiblecauseisthatthetoolingisdesignedfor asheetthicknessof300␮m,andusinganominalsheetthicknessof 280␮mleadstoadditionalinstabilityoftheprocessandaweaker correlationbetweenprocessforcesandfinalgeometry.

Toillustratetheeffectoftheprocessestimatorontheprocess accuracy,a zoomoftheresultsofdataset3isshowninFig.17. Aroundproduct2810,aseveredropintheangleisobservedin thedatasetwithoutcontrol.Thefeedbackcontrollerreactstothe disturbancewithadelay.Aroundproduct2840,theanglereturns totheoriginalvalue,causinganovershootintheresponseofthe feedbackcontroller.Incontrast,thefeedforwardcontrollerisable tointerpret thechanges intheprocessforces andpredictspart ofthevariationsin thefinal angle.Whenthedropintheangle occursaroundproduct2810,theimprovementduetothe feed-forwardestimatorisweak.However,duetothemovingwindow forfittingtheprocessestimator,thisdataisaddedtothemodel, increasingthepredictiveabilityofthemodel.Whentheangleof theuncontrolledrunreturnstotheoriginalvaluearoundproduct 2840,thefeedforwardestimatorisabletopredictthisbasedon theforcemeasurements,preventingtheovershootwhichoccursif onlyfeedbackcontrolisused.Severalproductslater,around prod-uct2885,theanglesuddenlydropsfortwosubsequentproducts.

Fig.17. Zoomofresultsofdataset3(300␮m).Theblackdashedlineindicatesthe

targetangle.Theprocessestimatorisupdatedaftereveryproductindicatedwitha

blackmarker.

Fig.18.RMSEofsimulationrunswithfeedforwardandoptimizedPIcontrollerasa

functionofmodelparameters.

Thefeedforwardestimatorpredictsthedropintheanglebasedon theforcemeasurementandcompensatesforit.

InFig.18,theRMSEofthesimulationrunswithdifferentmodel parametersnpandandoptimizedPIcontrollerareshown.Only

thepartoftheparameterspacewhichgivesanimprovementwith respecttotherunwithonlyfeedbackcontrolisshown.Thebest parameter setis marked witha white diamond. For dataset 1 (Fig. 18a), onlya small regionofthe parameterspacegives an improvementwithrespecttofeedbackcontrol.Asmall improve-ment withrespectto only feedbackcontrol is achieved witha processestimatorwhichisfittedwithalargedataset(np=1000)

andwithastrongconstraintontheregressionparameters(=0.3). Incontrasttotheresultsfromdataset1,itcanbeseenthata largepartoftheparameterspaceresultsin animprovementin accuracyfordataset3(Fig.18b).Hence,thesensitivityofthe feed-forwardsystemtothemodelparametersnpandisnotstrong.That

isimportant,becausetheseparametershavetobechosenbefore runningthecontrolsystemonarealproductionprocess.Thebest resultsarefoundwithnp=600and=0.01.Itisnoticeablethatthe

bestresultsarenotfoundwiththemaximumvalueforthedataset size(np=1000).Itisexpectedthatrecentdatahasmore

resem-blancewiththecurrentstateoftheprocess,leadingtoadecrease inaccuracyoftheprocessestimatoriftoooldproductsareincluded inthemodelfitting.However,theaccuracydecreasewith increas-ingdatasetsizeissmallandnoclearconclusionscanbedrawn basedonthecurrentresults.

Thescraprateresultsfordataset3areshowninFig.19.The per-centageofproductsthatdonotmeetthespecificationsisshown asafunctionoftheanglespecification.Atightanglespecification resultsinhighprocessscraprate.AsobservedinFigs.8cand17, themaximumerrorsmaybewellover2◦ forshortperiods dur-ingproduction.However,themostsignificantimprovementsofthe controlsystemsarereachedforanglespecificationsunder0.5◦.The improvementduetofeedbackcontrolwithrespecttonocontrolis mainlyvisibleinthedecreaseofthescraprateatlargevaluesof theanglespecification.Ontheotherhand,thescraprateforthe

(12)

Fig.19.Scraprateplotfordataset3(300␮m).

feedforwardcontrolrunissignificantlylowerthanthescraprate forthefeedbackcontrolrunforallvaluesoftheanglespecification. Therelevanceoftheuseofafeedforwardcontrolsystemdepends ontheactual process specification.For example,if theprocess specificationis0.3◦,thescraprateswithoutcontrol,withfeedback controlandwithcombinedfeedforwardandfeedbackcontrolare estimatedtobe9.7%,8.4%and3.8%respectively.Inthatcase,the useoffeedforwardcontrolreducesthescrapratewithmorethan halfwithrespecttotheuseoffeedbackcontrolonly.

6. Conclusion

In this work,largeexperimentaldatasets froman industrial demonstratorprocesshavebeenusedtoinvestigatethefeasibility ofcontrolofasheetbendingprocessbasedonforcemeasurements. Thedemonstratorprocesshascutting,deepdrawing,forgingand bendingstages.InSection4,itwasshownthatweakcorrelations canbefoundbetweentheforcemeasurementsandthefinalangle ofoneoftheflapsofthedemonstratorproduct.Basedonthese observations,aprocedureisproposedforimplementing feedfor-wardcontrolwithanestimatorwhichusesforcemeasurementsto predicttheeffectoftheprocessdisturbancesonthefinalangleof theflap.TheLASSOregressionmethodisusedtofitprocessmodels basedonexperimentaldatawithmoremodelparametersthan dat-apoints.Amovingwindowisusedforfittingtheregressionmodel basedonthesetofnpmostrecentlyproducedproducts.The

pro-posedcontrollerhasafeedbackloopwithPIcontrol.Theeffectof theproposedapproachisestimatedbasedonsimulationruns.The angleandforcemeasurementsoftheexperimentaldatasetsare usedasinputforthesimulationruns.Basedonfewassumptions, thisdataisusedtomimicaproductionprocesswithacontrol sys-tem.Forthedatasetwithanominalsheetthicknessof300␮m,a reductionoftheRMSEof24%isestimatedduetothefeedforward loop.Hence,itisshownthatforcemeasurementscarryvaluable informationwhichcanbeusedtoincreasetheaccuracyofmetal formingprocessesandcontroltheeffectofshorttermvariationsin theprocess.

Theuseofforcemeasurementsincontrolisoneofthepaths towardsmoreaccuratemetalformingprocesses.Feedforward

con-tageoftheinformationwhichishiddenintheforcemeasurements. Weforeseethatfurtherstepsmaybetakenthroughthe develop-mentofself-learningcontrolsystemsformetalforming,leadingto robustcontrolwhiletakingmaximumadvantageofthedatawhich becomesavailableduringproduction.

Acknowledgements

Theworkleadingtotheseresultshasreceivedfundingfrom theEuropeanCommunity’sSeventhFrameworkProgrammeunder grantagreementnoFP7-285030.WethanktheMEGaFiTteamfor allthecontributionswhichhaveledtotheseresults.

References

[1]AllwoodJ,DuncanS,CaoJ,GrocheP,HirtG,KinseyB,KubokiT,LiewaldM, Sterz-ingA,TekkayaA.Closed-loopcontrolofproductpropertiesinmetalforming. CIRPAnn.Manuf.Technol2016;65(2):573–96.

[2]PolyblankJ,Allwood J,DuncanS.Closed-loopcontrolofproduct proper-tiesinmetalforming:areviewandprospectus.J.Mater.Process.Technol 2014;214(11):2333–48.

[3]MEGaFiTproject,http://cordis.europa.eu/result/rcn/141323en.html(accessed

01.10.17),2014.

[4]HardtD,HaleM,CookN.Closedloopcontrolofarollstraighteningprocess. CIRPAnn.Manuf.Technol1984;33(1):137–40.

[5]Müller-DuysingM.DieBerechnungundadaptiveSteuerungdes Drei-Punkt-Biegens,Diss.Techn.Wiss.ETHZürich,Nr.9989;1993.

[6]YangM,KojimaN,ManabeK-I,NishimuraH.HighaccuracyV-bendingprocess controlwithanon-linedatabaseandmodifiedfuzzymodels.JSMEInt.J.Ser.C: Dyn.ControlRobot.Des.Manuf1997;40(1):157–62.

[7]ForcelleseA,GabrielliF,RuffiniR.Effectofthetrainingsetsizeonspringback controlbyneuralnetworkinanairbendingprocess.J.Mater.Process.Technol 1998;80–81:493–500.

[8]NastranM,KuzmanK.Stabilisationofmechanicalpropertiesofthewireby rollerstraightening.J.Mater.Process.Technol2002;125–126:711–9.

[9]ViswanathanV,KinseyB,CaoJ.Experimentalimplementationofneural net-workspringbackcontrolforsheetmetalforming.J.Eng.Mater.Technol.Trans. ASME2003;125(2):141–7.

[10]HellerB,ChattiS,RidaneN,KleinerM.Online-processcontrolofairbending forthinandthicksheetmetal.J.Mech.Behav.Mater2004;15(6):455–62.

[11]LongoM,MaccariniG.Controlsystemalgorithmforthepredictionof spring-backinairbending.KeyEng.Mater2013;554–557:1382–7.

[12]GrocheP,HoppeF, HesseD, CalmanoS.Blanking-bendingprocesschain withdisturbancefeed-forward andclosed-loop control.J. Manuf.Process 2016;24(1):62–70.

[13]StellinT,vanTijumR,EngelU.Modellingandexperimentalstudyofa micro-forgingprocessfrommetalstripforthereductionofdefectsinmassproduction. Prod.Eng2016;10(2):103–12.

[14]HavingaG.Optimizationandcontrolofmetalformingprocesses(Ph.D.thesis). UniversityofTwente;2016.

[15]Nikoli ´cD,Mures¸anR,FengW,SingerW.Scaledcorrelationanalysis:abetter waytocomputeacross-correlogram.Eur.J.Neurosci2012;35(5):742–62.

[16]VanDenBoogaardT,HavingaJ,VanTijumR.Model-basedcontrolofstrip bendinginmassproduction.CIRPAnn.Manuf.Technol2015;64(1):297–300.

[17]HavingaJ,vandenBoogaardT.Theeffectoftoolingdeformationonprocess controlinmultistagemetalforming.AIPConf.Proc2016;1769:060010.

[18]HazraS,WilliamsD,RoyR,AylmoreR,SmithA.Effectofmaterialandprocess variabilityontheformabilityofaluminiumalloys.J.Mater.Process.Technol 2011;211(9):1516–26.

[19]ColA.Investigationonpressformingscatterorigin.SixthESAFORMconference onmaterialforming2003:183–6.

[20]TibshiraniR.Regressionshrinkageandselectionviathelasso.J.R.Stat.Soc.Ser. B1996;58(1):267–88.

[21]EfronB,HastieT,JohnstoneI,TibshiraniR.Leastangleregression.Ann.Stat 2004;32(2):407–99.

Referenties

GERELATEERDE DOCUMENTEN

Export van konijnenpelzen vanuit China naar EU-landen van 2000 tot en met 2005 voor ongelooide, gelooide niet verwerkte en gelooide deels verwerkte pelzen, uitgedrukt in

Als we kijken naar de gebieden in ons land waar jaarrond- begrazing wordt toegepast, dan blijkt volgens de Alterra- database van begraasde terreinen het gemiddelde areaal niet meer

Als behandeling van chronische lymfatische leukemie bij niet fitte patiënten die geen del(17p) of TP53-mutatie hebben en die niet in aanmerking komen voor anti-CD20

lopende projecten van het RIZA op het gebied van internationaal integraal waterbeheer waarin natuur en natuurbeheer een belangrijke rol spelen. De internationale activiteiten van

Samenvattend stellen we dat tussen snijmaïs van het dry-down of stay-green type, wanneer deze zijn geoogst bij hetzelfde drogestofgehalte, verschil kan bestaan in de afbreekbaarheid

As both operations and data elements are represented by transactions in models generated with algorithm Delta, deleting a data element, will result in removing the

Keywords: Appreciative Inquiry; Generative Change Process; Alteration of Social Reality; Participation; Collective Experience and Action; Cognitive and Affective Readiness