• No results found

AN ASSESSM ENT OF ROAD NETWORK OPTIMALITY IN TIGRAY, ETHIOPIA

N/A
N/A
Protected

Academic year: 2021

Share "AN ASSESSM ENT OF ROAD NETWORK OPTIMALITY IN TIGRAY, ETHIOPIA"

Copied!
34
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

   

 

AN  ASSESSMENT  OF  ROAD  

 

NETWORK  OPTIMALITY  IN  

TIGRAY,  ETHIOPIA  

 

Geographic  remoteness  and  poverty  connected  

 

 

 

INTERDISCIPLINARY  PROJECT  

By  Axel  Hirschel  (10656146),  Wai  Kee  Man  (10580514)  &  Claudia  Schwennen  (10655808)  

Date:  8  May  2016   Words:  6585  

(2)

Abstract  

In  recent  years  major  public  investments  have  been  made  in  infrastructure  development  in  Ethiopia.   The   Ethiopian   Roads   Authority   (ERA)   has   expressed   its   goal   for   this   road   development,   which   is   mainly   poverty   alleviation.    This   study   is   focused   on   evaluating   the   optimality   of   the   current   road   network   regarding   this   goal   by   taking   geographic   remoteness   and   poverty   per   woreda,   which   is   a   part   of   a   province,   into   consideration.   There   are   just   a   few   towns   in   Tigray   that   are   not   geographically  remote.  Poverty  is  also  not  evenly  distributed  throughout  the  province.  The  poverty   rate   is   generally   higher   in   areas   with   higher   population   density.   With   the   use   of   Geographic   Information   System   (GIS)   data   files   and   a   self-­‐made   algorithm,   it   is   concluded   that   the   current   network  is  not  optimal  yet.

                                                   

(3)

Table  of  Contents  

1.  Introduction  ...  3  

2.  Theoretical  framework  ...  5  

2.1  Impact  of  roads  on  poverty  ...  5  

2.2  Network  optimality  ...  6  

2.3  Geographic  remoteness  ...  8  

2.4  Integration  of  the  different  concepts  and  theories  ...  8  

3.  Methodology  ...  10  

3.1  Design  of  the  optimality  algorithm  ...  10  

3.3  Poverty  assessment  ...  12  

3.3  Geographic  remoteness  assessment  ...  13  

4.  Results  ...  14  

4.1  Results  of  the  poverty  assessment  ...  15  

4.2  Results  of  the  geographic  remoteness  assessment  ...  16  

4.3  Results  of  the  optimality  algorithm  ...  17  

5.  Discussion  ...  18  

6.  Conclusion  ...  20  

References  ...  21  

Appendix  A.  ArcGIS  data  used  in  the  geographic  remoteness  assessment  ...  23  

Appendix  B.  Woreda  information  used  in  the  poverty  assessment  ...  25  

Appendix  C:  Roads  in  current  network  and  optimal  network  and  algorithm  codes  ...  27                            

(4)

1.  Introduction  

 

Ethiopia   is   one   of   the   least   developed   and   poorest   countries   in   the   world.   It   has   gone   through  various  types  of  regimes  and  disasters  such  as  drought,  famine  and  civil  war.  As  it  is   an  agrarian  economy,  81%  of  the  population  in  2014  lives  in  rural  areas  (World  Bank,  n.d.)   where   the   poverty   rate   is   exceptionally   high.   Therefore,   strategies   focused   on   developing   agricultural   growth   are   essential   in   reducing   the   country’s   poverty   (Diao   &   Pratt   2007;   Easterly,  2002).  

Road  development  is  one  of  the  status  quo  strategies  to  tackle  these  problems.  According  to   World  Bank  (2009),  they  are  the  fundament  of  a  country’s  infrastructure,  support  growth  in   agriculture   and   industry   and   they   provide   access   to   internal   markets   and   social   infrastructure.   Various   studies   support   this   theory   as   they   have   showed   that   better   road   quality  and  more  access  to  rural  areas  have  a  positive  impact  on  poverty  reduction  (Dercon,   Gilligan,  Hoddinott  &  Woldehanna,  2009;  Khandker,  Bakht  &  Koolwal,  2009).  

Ethiopia’s   government   tackles   problems   with   road   development,   because   most   research   suggests  that  roads  have  a  significant  influence  on  poverty  reduction.  Still,  parts  of  Ethiopia   are  unconnected  and/or  reliant  on  economic  policy  of  the  government.  As  a  lot  of  money  is   invested   in   Ethiopia’s   road   development   plans   (World   Bank,   2009)   and   it   holds   great   potential  to  reduce  poverty,  it  is  essential  that  these  roads  are  allocated  optimally  within   Ethiopia.  This  means  that  the  plans  should  have  an  impact  on  what  it  is  meant  to  be  for,  in   this   case   poverty   reduction.   Especially   impoverished   regions   should   have   some   priority,   while  also  keeping  in  mind  the  investments  that  need  to  be  put  into  the  project.  A  factor   that  greatly  determines  the  investments  is  the  geographic  remoteness  of  regions.  This  could   significantly  increase  the  investments,  which  might  not  be  feasible  (Bird  et  al.,  2010).  If  the   network  is  not  optimal,  it  means  millions  of  dollars  are  gone  to  waste  and  an  unnecessary   amount  of  people  still  suffer  in  poverty.  This  research  will  assess  both  this  factor  and  the   poverty   rate   in   order   to   conduct   an   assessment   of   the   optimality   of   the   current   road   network  in  Ethiopia.  Moreover,  only  asphalt  road  will  be  considered  in  this  research,  due  to   the   available   resources   of   this   research   and   because   these   form   a   stronger   factor   in   the   accessibility  to  large  urban  centres  (Hearn,  2011).  

Optimality  within  infrastructure  design  is  often  defined  as  network  reliability.  The  general   idea   within   the   multiple   forms   of   network   reliability   is   that   the   network   can   perform   its   proposed   service   level   adequately   for   the   period   of   time   intended   under   the   operating   conditions   encountered   (Billington   &   Allan,   1992).   This   implies   a   pragmatic   approach   in   which  the  results  of  a  network  are  most  important  and  should  fulfill  the  wishes  of  the  users.   Within  most  research,  the  proposed  service  level  is  a  directly  measurable  unit.  However,  the   intended  service  of  a  network  is  subjective  and  is  therefore  reliant  on  interpretations  of  its   function.  

Within   the   context   of   Ethiopian   road   development,   the   government   had   specified   the   services  that  roads  were  to  perform.  The  two  large-­‐scale  road  sector  development  programs   (RSDP)   during   the   period   between   1997   and   2009   had   selection   criteria   of   the   Ethiopian   Roads   Authority   (ERA),   shown   in   table   1.   These   criteria   and   their   weighting   indicate   the  

(5)

goals   of   RSDPs:   economic   development   and   the   provision   of   access   to   remote   regions   to   alleviate  poverty  (Shiferaw,  Soederbom,  Siba  &  Alemu,  2012).  

 

  Table  1  ERA’s  weight  for  Road  Placements  (Shiferaw,  Soederbom,  Siba  &  Alemu,  2012)  

 

So  within  this  paper  the  optimality  of  Ethiopian  province  Tigray’s  current  road  network  is   used  as  a  case  study.  It  should  be  noted  that  this  assessment  will  prove  that  poverty  can  be   alleviated.  The  current  placement  of  roads  is  analyzed  on  basis  of  poverty  and  remoteness.   Tigray   was   suitable   since   a   lot   of   data   was   available   for   this   province,   and   the   province   contains  a  variety  of  remote  locations.  It  is  therefore  possible  to  see  which  areas  have  been   prioritized,  and  evaluate  whether  this  was  optimal.    

The   research   question   is:   “To   what   extent   can   the   road   network   in   Tigray,   Ethiopia,   be   optimized  to  lessen  poverty  based  on  poverty  rates  and  geographic  remoteness?”  The  sub   questions  are  listed  below.

●              How  is  the  degree  of  geographic  remoteness  distributed  in  Tigray? ●              How  is  the  degree  of  poverty  distributed  in  Tigray?

●              How  optimal  is  the  current  road  network  in  Tigray?  

Since  Ethiopia  has  limited  budgets  for  road  network  development,  not  every  town  can  be   connected.   This   means   that   certain   towns   have   been   prioritized   within   the   government.   Using  a  self-­‐made  algorithm  and  Geographic  Information  System  (GIS)  data,  it  is  possible  to   assess  this  prioritization  on  basis  of  the  services  roads  should  provide  according  to  the  ERA.     Firstly,   the   theoretical   framework   of   the   research   is   explained   further   in   this   report.   The   integration   of   the   various   disciplines   is   also   mentioned   within   this   chapter.   Secondly,   the   methodological   approach   is   explained,   and   the   choices   within   the   algorithm   are   clarified.   Thirdly,  the  results  of  the  research  is  presented.  Fourthly,  the  results  and  the  limitations  of   the  research  are  discussed.  Lastly,  a  few  clear  recommendations  for  network  improvement   and  the  overall  consequences  of  the  research  are  given.  

(6)

2.  Theoretical  framework  

 

2.1  Impact  of  roads  on  poverty  

Numerous  researches  have  been  conducted,  but  overall  several  factors  can  be  identified  of   the  impact  of  roads  on  poverty  in  the  scientific  literature.  First,  roads  facilitate  the  provision   of  basic  needs,  such  as  health  and  education.  Second,  roads  give  access  to  markets  and  with   a  greater  input,  prices  will  be  reduced  due  to  lower  transport  costs.  High  transport  costs  can   be   partially   explained   by   geographic   disadvantages,   such   as   being   landlocked   and   the   remoteness   of   a   region.   Local   economies   do   not   have   access   to   and   from   global   market   centers.  Thirdly,  transport  infrastructure  is  able  to  reduce  poverty  by  creating  employment   and  new  job  opportunities  (Calderón  &  Servén,  2008;  Beuran,  Gachassin  &  Raballand,  2015;   Porter,  2002).  

Dercon   et   al.   (2009)   used   longitudinal   household   data   for   their   quantitative   research   and   showed  that  public  investment  in  road  quality  and  increased  access  to  agricultural  extension   services  led  to  faster  consumption  growth  rates  and  lower  poverty  rates.  Roads  indirectly   provide  benefits  for  the  economy  by  supplying  access  to  opportunities.  

Ali  and  Pernia  (2003)  compiled  several  results  from  studies  that  point  to  a  significant  impact   of  roads  on  poverty  reduction  through  economic  growth.  They  conclude  that  roads  cause   this   impact   through   agricultural   productivity,   nonfarm   employment,   and   an   increase   in   consumption   expenditure   and   time   savings.   The   two   authors   have   summarized   the   links   from   infrastructure   investments   to   eventually   poverty   reduction   in   figure   1.   For   example,   when  investments  are  made  into  the  building  of  roads,  employees  are  needed  and  new  job   opportunities   that   are   non-­‐agricultural   will   arise.   This   influences   the   poor’s   wages   and,   hence,   stimulates   economic   growth.   Higher   productivity   and   expanded   employment   then   affect  the  supply  and  prices  of  goods  and  thus,  the  poor’s  well-­‐being  (Ali  &  Pernia,  2003).  

(7)

 

Figure  1.  Simple  analytical  framework  with  links  between  Infrastructure  and  Poverty  Reduction  (Ali  &  Pernia,   2003)  

 

Poverty  is  a  complex  concept  that  can  be  defined  and  measured  in  many  ways.  One  of  the   reasons  why  this  concept  is  complicated  is  because  it  is  socially  constructed,  thus  a  range  of   variables   are   correlated   (Bevan   &   Joireman,   1997).   When   looking   at   what   to   measure,   measures  can  be  objective  or  subjective.  Bevan  and  Joireman  (1997)  define  ‘objective’  as  a   measure  that  is  relatively  simple  to  administer  and  one  that  the  observer  has  decided  on  to   measure.   Subjective   measures   are   thus   locally   defined   or   by   the   person   who   is   being   researched   and   who   usually   combines   a   number   of   indicator   that   are   locally   regarded   as   important.   For   instance,   a   subjective   measure   of   poverty   would   be   how   poor   the   local   observer   ranks   himself.   For   this   research,   we   aim   to   find   data   that   is   suitable   within   the   scope   of   this   research.   Objective   measurements   also   tend   to   be   quantitative   which   complements  our  analysis  as  these  data  can  be  easily  converted  into  the  programs  that  will   be  used.  

 

2.2  Network  optimality  

Within   the   rural   provinces   in   Ethiopia   the   poverty   rate   is   exceptionally   high.   Since   road   development  is  a  major  strategy  to  combat  poverty  within  Ethiopia,  it  is  necessary  to  assess   whether  the  limited  means  are  spent  optimally.  However,  optimality  needs  to  be  defined  in   order  to  assess  it.  

(8)

As   stated   in   the   introduction,   optimality   is   often   defined   as   reliability.   The   reliability   of   a   network  is  the  probability  of  the  network  performing  its  proposed  service  level  adequately   for  the  period  of  time  intended  under  the  operating  conditions  encountered  (Billington  &   Allan,  1992).  Wakabayashi  and  Lida  (1992)  propose  a  similar  definition  for  network  reliability.   Since   the   road   infrastructure   of   Tigray   is   a   network,   it   is   possible   to   use   this   definition.   Wakabayashi  and  Iida  (1992)  have  linked  the  definition  of  reliability  to  road  networks;  road   network  reliability  is  the  probability  that  two  nodes  are  connected  for  traffic.  

 

To   assure   the   positive   impacts   of   roads   on   poverty   alleviation,   the   roads   need   to   be   accessible  for  the  population  within  the  woredas,  which  are  the  second  administrative  units   above  the  smallest  unit  of  local  government  in  rural  communities  in  Ethiopia.  The  effects  are   namely  bound  to  the  location  of  the  road.  Since  these  positive  effects  of  roads  are  vital  for   economic  development  for  impoverished  regions  and  since  the  ERA  has  placed  these  roads   with  the  intention  to  combat  poverty,  the  required  service  of  the  road  is  to  tackle  poverty.   Chen,  Yang,  Lo  and  Tangs  (2002)  explicate  three  categories  in  reliability  namely  connectivity   reliability,  capacity  reliability,  and  travel  time  reliability.  Connectivity  reliability  is  concerned   with   the   nodes   being   connected.   A   path   between   two   nodes   always   needs   to   be   present   (Wakabayashi   &   Iida,   1989).   The   network   can   work   in   only   two   states,   either   there   is   a   connection  between  the  nodes,  or  there  is  none.    The  binary  state  approach  can  be  suitable   for  extreme  situations,  such  as  natural  disasters  (Chen  et  al.,  2002).    

 

Travel  time  reliability  is  applied  when  evaluating  whether  all  nodes  can  be  reached  within   certain   time   intervals   (Asakura   &   Kashiwadani,   1991).   The   travel   time   between   nodes   is   influenced   by   differences   in   traffic   flows,   such   as   the   occurrence   of   daily   traffic   jams.   Asakura  (1999)  later  included  that  degradation  of  roads  can  also  influence  the  travel  time.   He  defined  a  ratio  in  which  the  more  degraded  a  road  is,  the  less  reliable  it  is.  This  is  in  line   with   connectivity   reliability,   as   severely   degraded   and   therefore   inaccessible   roads   are   under  both  definitions  unreliable.  

 

Capacity  reliability  is  concerned  whether  the  capacity  of  a  road  is  great  enough  for  a  specific   demand  at  all  times  (Chen  et  al.,  2002).  The  maximum  road  capacity  therefore  always  need   to   be   equal   or   greater   to   the   specific   demand   at   that   time.   In   capacity   reliability   the   everyday  disturbances  are  also  accounted  for.  

 

Most   network   reliability   research   had   been   done   to   developed   infrastructure   networks   in   Western  countries.  These  papers  focused  on  optimizing  transportation  flows  and  preventing   traffic  jams  using  both  the  definitions  of  travel  time  reliability  and  capacity  reliability.  These   interpretations  of  reliability  are  unsuited  for  this  research  though.  First  of  all,  while  traffic   jams  may  exist  within  Ethiopia,  the  RSDPs  were  not  intended  to  combat  these.  Moreover,   most  variables  used  within  both  fields  are  inaccessible.  

 

However,   the   concept   of   reliability   can   still   be   used   within   the   current   road   network   in   Ethiopia.  Within  connectivity  reliability,  one  of  the  major  challenges  is  to  connect  as  much   nodes  as  possible.  The  ERA  has  also  specifically  aimed  to  connect  yet  unconnected  regions   and  therefore  one  road  is  sufficient.  The  critique  on  the  binary  state  of  connectivity  is  also   less  impactful  in  this  case  study;  although  a  town  can  benefit  from  extra  links  when  already  

(9)

connected,  the  effects  of  one  connection  already  provide  the  benefits  mentioned  within  the   previous  paragraph.      

 

In  conclusion,  the  optimality  of  an  infrastructure  networks  can  be  evaluated  on  basis  of  its   reliability  of  its  connectivity.  Tigray’s  network  should  combat  poverty  and  therefore  it  needs   to  connect  towns  to  the  current  network  in  order  for  the  roads  to  have  a  positive  impact.   The  network  is  therefore  optimal  if  it  connects  as  many  impoverished  people  as  possible.      

2.3  Geographic  remoteness  

The   concept   geographic   remoteness   is   very   much   related   to   the   connectivity   between   certain  communities  and  large  towns,  as  it  describes  how  large  the  access  is  to  large  towns.   The  Australian  Institute  of  Health  and  Welfare  (AIHW,  n.d.)  also  describes  this  concept  as   “the  level  of  access  to  certain  services  and  goods”.  It  is  an  important  concept  that  needs  to   be   considered,   as   it   also   describes   what   the   socioeconomic   impacts   could   have   on   unconnected   communities,   as   suggested   by   the   AIHW.   This   is   for   example   supported   by   Sunderlin  et  al.  (2008),  who  specifically  found  a  correlation  between  poverty  rate  and  forest   cover,  although  the  poverty  density  is  quite  low  in  densely  vegetated  areas.  Epprecht  et  al.   (2011)   conducted   a   study   in   Vietnam   in   order   to   observe   whether   poverty   is   related   to   physical  accessibility  or  to  the  fact  that  some  groups  are  ethnic  minorities.  They  found  that   the  physical  accessibility  is  a  strong  predictor  of  poverty.  However,  they  also  found  that  the   accessibility  to  small  urban  centres  are  of  greater  importance  than  large  urban  centres.  Bird   et   al.   (2010)   also   found   that   higher   poverty   rates   exist   in   remote   areas   and   that   poor   infrastructure  is  especially  a  problem,  as  this  increases  the  travel  costs  as  well.  As  it  might  be   difficult  to  put  large  investments  into  road  development  in  remote  areas  and  especially  in   mountainous   areas,   it   might   be   interesting   to   determine   whether   the   location   of   political   and  administrative  centres,  so  that  small  urban  centres  can  develop  in  these  areas  (ibid.).     The   geographic   remoteness   greatly   depends   on   the   physical   distance   between   certain   communities  and  larger  towns  (AIHW,  n.d.).  Physical  features  in  the  landscape  are  crucial  for   the   determination   of   the   geographic   remoteness   of   certain   locations,   as   the   physical   distance  is  greatly  dependent  on  these  physical  features  (Pugh  &  Cheers,  2010).  The  physical   features  that  will  be  focused  on  in  this  research  are  mountainous  areas,  rivers  and  forests.   The   physical   distance   is   also   significantly   related   to   socioeconomic   developments.   An   example   of   this   is   the   privatization   of   public   services,   and   in   combination   with   large   distances,   this   will   increase   the   transport   costs   for   the   citizens   of   the   communities   of   interest,  which  indirectly  increases  the  physical  distance  and  also  the  distance  to  markets   (Huskey,  2005;  Pugh  &  Cheers,  2010).  This  demonstrates  how  the  geographic  remoteness   could   have   an   impact   on   socioeconomic   developments   and   therefore   also   on   poverty   reduction.

 

2.4  Integration  of  the  different  concepts  and  theories  

In   order   to   find   common   ground   between   the   different   concepts   and   theories   from   the   three  disciplines,  one  concept  was  used  as  an  overarching  concept,  which  is  optimality.  The   concepts   and   theories   have   been   reorganized   into   one   system   where   optimality   is   the   overarching   concept.   This   type   of   integration   was   introduced   by   Repko   (2012),   which   is   called   the   technique   of   (re)organization.   Essentially,   commonalities   between   different  

(10)

concepts   and   theories   are   determined,   after   which   they   are   linked   together   and   (re)organized  into  one  system.  

As   described   earlier,   optimality   is   defined   as   that   something   can   perform   its   proposed   service   level   adequately   for   the   period   of   time   intended   under   the   operating   conditions   encountered.  For  this  study,  this  can  be  described  through  the  geographic  remoteness  and   poverty  reduction  of  the  communities  of  interest.  As  described  in  the  previous  section,  the   geographic   remoteness   gives   an   indication   of   the   connectivity   between   the   communities   and   towns,   which   in   turn   also   describes   the   access   to   certain   goods   and   services   of   the   inhabitants.   It   affects   the   travel   time,   the   travel   distance   and   the   travel   costs,   but   it   also   determines  the  road  construction  costs  when  road  development  plans  are  considered.  This   in   turn   could   determine   whether   investments   should   be   put   into   certain   projects   and,   because   these   might   not   be   feasible   in   geographically   remote   areas.   In   cases   like   this,   it   might  be  difficult  to  combat  poverty  and  the  proposed  service  level  of  road  development,   namely  poverty  reduction,  might  not  be  possible  to  be  reached.  In  short,  it  indirectly  affects   the  possibilities  for  poverty  reduction  at  certain  locations.  However,  in  non-­‐geographically   remote   areas,   road   development   could   have   a   great   impact   on   poverty   reduction   as   explained   before.   Roads   cause   this   impact   through   agricultural   productivity,   nonfarm   employment,  and  an  increase  in  consumption  expenditure  and  time  savings.  These  will  all   increase  the  economic  welfare  of  the  poor  (Ali  &  Pernia,  2003).  

The   geographic   remoteness   will   be   assessed   by   mapping   the   physical   features   in   the   landscape.   As   reducing   poverty   is   the   ultimate   goal   of   road   development,   poverty   will   be   assessed  by  mapping  poverty  rates.  This  is  of  importance,  because  the  placement  of  asphalt   roads  will  also  be  mapped  in  order  to  do  the  optimization  analysis  and  see  whether  there   are  any  general  connections  that  can  be  made.

 

  Figure  2.  Integrated  concepts  and  theories  

(11)

3.  Methodology  

 

As  stated  in  the  introduction,  for  the  assessment  of  the  geographic  remoteness  and  poverty   rates  in  Tigray,  ArcGIS  will  be  used  to  map  these  variables.  Four  different  situations  can  be   defined,   which   will   determine   whether   a   road   should   be   placed   in   the   optimal   network.   Figure  3  gives  a  quick  overview  of  these  four  situations  along  an  x-­‐axis  and  y-­‐axis  together   with  the  two  variables.  The  first  situation  is  when  the  poverty  rate  is  high,  but  the  degree  of   geographic  remoteness  is  low.  As  stated  before,  impoverished  regions  should  be  connected   to  the  current  network  in  order  to  possibly  alleviate  poverty.  As  the  degree  of  geographic   remoteness   is   low,   a   road   will   be   placed   in   this   situation   for   the   optimal   network.   The   second  situation  is  when  both  the  poverty  rate  and  the  degree  of  geographic  remoteness   are  high.  In  this  case,  it  might  not  be  feasible  to  invest  into  road  development,  especially   since  the  region  is  very  poor,  which  might  not  bring  about  the  expected  economic  returns.   As  explained  earlier,  alternatives  could  be  considered  in  future  research.  The  third  situation   is  when  both  the  poverty  rate  and  the  degree  of  geographic  remoteness  are  low.  For  this   situation  a  road  can  be  placed,  as  it  might  be  likely  that  road  development  in  regions  like   these  will  bring  about  the  economic  returns.  Lastly,  the  fourth  situation  is  when  the  poverty   rate  is  low,  but  the  degree  of  geographic  remoteness  is  high.  Again,  in  this  case  it  might  not   be  feasible  to  invest  into  road  development.

 

Figure  3.  Different  situations  regarding  the  economic  potential  and  poverty    

3.1  Design  of  the  optimality  algorithm  

Within  the  research  it  is  most  important  that  the  produced  roads  are  optimal.  As  described   within  the  theoretical  framework,  the  network  is  optimal  if  it  connects  as  many  poor  people   as   possible.   It   is   essential   to   base   the   optimality   of   the   network   on   the   currently   existing   roads,  since  Ethiopia  cannot  spend  more  money  on  roads  than  it  did.  So  firstly,  all  current   connections  between  2  towns  have  been  entered  in  a  database.  The  length  of  each  road  has  

(12)

been  calculated  by  the  Euclidean  distance  between  the  coordinates  of  different  towns.  The   real  length  of  a  road  will  be  larger  than  the  calculated  length.  However,  since  both  existing   and  suggested  links’  lengths  will  be  based  on  this  distance,  and  many  of  these  links  will  be   calculated,  it  can  be  assumed  that  the  deviation  of  the  Euclidean  distance  is  not  problematic.   The  total  length  of  all  roads  combined  is  the  maximum  length  of  the  network.

The   optimality   of   a   network   can   be   calculated   by   designing   a   suited   algorithm   for   the   problem.  For  the  optimality  implementation,  an  algorithm  in  Python  3  was  written,  which  is   included  in  appendix  C.  The  basis  for  the  algorithm  was  the  database  with  the  information   of   certain   woredas   and   towns.   The   information   in   the   database   includes   the   coordinates,   names,  poverty-­‐indicators  and  remoteness  of  all  the  used  towns.  Since  not  all  specific  data   on  every  town  is  present,  we  chose  to  use  the  information  of  the  town’s  woreda.  This  is  a   fair  assumption,  since  woredas  are  pretty  small  and  because  asphalt  roads  to  the  specific   towns  are  also  important  for  the  surrounding  region.  How  the  information  of  this  database   is   gathered   will   be   explained   in   section   3.3   and   3.4.   It   should   be   noted   though   that   this   means  there  is  not  actual  information  about  the  regions  in  between  the  towns  and  that  this   is  not  included  in  the  algorithm,  but  rather  the  information  about  the  landscape  is  included   in  the  score  of  the  town.

The   central   idea   of   optimal   road   placement   is   connecting   large   groups   of   people   within   Tigray,   and   prioritizing   impoverished   regions.   The   score   of   every   town   is   based   on   its   poverty  and  inhabitants  and  portrayed  as  a  number,  as  well  as  for  the  degree  of  geographic   remoteness.  Towns  that  are  geographically  remote  are  not  considered  further.  The  number   is  calculated  by  multiplying  the  poverty  rate  of  the  town  by  the  inhabitants  of  it.  This  way   we  get  the  amount  of  poor  people  within  the  town.  The  network  optimality  is  then  the  sum   of   scores   of   every   connected   town,   so   the   total   of   poor   people   connected.   Within   the   calculation  multiple  roads  to  one  town  do  not  increase  the  score,  but  it  might  be  beneficial   when  from  that  specific  point  roads  can  be  created  to  unconnected  towns  nearby.

The   optimal   networks   can   be   created   using   a   recursive   function   to   create   possible   links   between   nodes.   The   input   for   this   function   is   a   list   of   nodes,   a   list   of   roads   and   the   maximum   length   of   the   total   road.   Every   node   within   a   possible   optimal   network   is   evaluated  whether  they  are  connected.  If  the  node  is  unconnected,  it  will  go  on  to  the  next   node.  If  the  node  is  connected,  it  will  check  all  nodes  again  whether  they  are  connected  and   if  a  node  is  not  connected,  it  will  make  a  connection  between  the  connected  node  and  the   unconnected   node.   For   every   connection   the   distance   between   both   nodes   is   subtracted   from  the  maximum  road.  Every  time  a  connection  has  been  made,  it  will  enter  the  updated   list   of   nodes   and   whether   these   are   connected,   the   updated   list   of   roads   and   the   new   available  road  length  in  this  function.  If  every  node  is  connected  or  if  the  available  road  is   fully  used,  that  network  will  be  given  as  output  of  the  function.  It  will  now  continue  with  the   for-­‐loops.  This  way  every  possible  optimal  network  can  be  created.

A  possibility  for  the  creation  of  the  most  optimal  network  is  to  calculate  the  optimality-­‐score   of  every  possible  network  with  the  length  of  the  current  network  and  then  choose  the  one   with  the  highest  score.  This  is  not  possible  though,  since  the  information  that  needs  to  be   remembered  to  both  create  and  compare  the  various  networks  will  exceed  the  amount  of  

(13)

atoms  on  earth.  It  is  therefore  necessary  to  eliminate  bad  suggestions  beforehand  to  adhere   to  reasonable  computer  power  and  memory.

The  algorithm  will  step-­‐by-­‐step  calculate  possible  networks.  Where  normally  the  recursive   function  will  call  upon  itself  until  every  network  is  fully  created,  this  algorithm  will  stop  after   connecting  3  roads.  All  networks  are  now  within  a  long  list.  The  optimality  of  all  the  created   3-­‐road-­‐networks   and   the   length   of   these   networks   are   compared   on   the   basis   of   score   divided  by  unit  road  placed.  The  list  is  sorted  on  this  criteria  and  the  first  network  in  the  list   is  now  the  most  optimal  network.    From  the  most  optimal  network,  the  first  of  the  three   roads  is  saved.  Now  the  program  again  calls  upon  the  algorithm,  but  with  the  input  including   the   roads   previously   formed.   The   program   continues   creating   new   roads   until   all   of   the   available   road   is   placed,   by   constantly   creating   3-­‐road-­‐networks   and   evaluating   these   networks.    Besides  the  maximum  depth,  the  maximum  amount  of  roads  placed  can  also  be   entered   as   input.   With   this   function   possible   extensions   to   the   current   network   can   be   created.

   

3.3  Poverty  assessment  

As  stated  earlier,  the  poorest  people  in  Ethiopia  live  in  rural  areas.  For  this  reason  we  will   focus  on  a  woreda  level  in  our  research.  A  woreda  is  the  second  administrative  unit  above   the  smallest  unit  of  local  government  in  rural  communities  in  Ethiopia.  Furthermore,  data  on   woreda-­‐level  is  broadly  more  available.  Consequently,  when  data  on  woreda  level  is  being   used,  data  about  towns  will  be  very  contrasting  and  hard  to  visualize  in  a  map.  For  these   reasons  and  the  limited  time  we  have  for  this  research,  urban  poverty  will  not  be  taken  into   our   research   and   only   rural   poverty   by   woreda   will   be   mapped,   unless   stated   otherwise.   However,  towns  will  be  displayed  on  the  maps,  this  allows  us  to  see  if  there  may  be  any   remarkable  connections  between  the  rural  poverty  rate  of  woredas  and  placement  of  roads   and  towns.  

 

As  economic  data  was  not  available,  we  opted  for  the  food  poverty  line  as  our  measure  of   poverty.   Households   which   are   below   the   poverty   line   are   households   who   could   not   consume  enough  to  get  the  minimum  calorie  requirement  of  2200  Kcal  per  day  (Nega  et  al.,   2011).  The  head  count  ratio  of  rural  poverty  per  woreda  will  eventually  be  mapped  in  ArcGIS.   The   food   security   will   also   be   visualized   in   ArcGIS   in   order   to   see   if   there   is   a   connection   between   food   security   and   poverty.   If   this   is   present,   it   suggests   that   the   theory   that   agriculture  has  a  big  influence  on  poverty  is  positive.  

 

Firstly,   the   current   asphalt   road   network   needs   to   be   visualized.   Next,   the   population   density  will  be  mapped  in  order  to  see  which  areas  are  most  rural  and  urban.  Hereafter,  a   map  with  the  poverty  rate  per  woreda  will  be  made.  Once  again,  these  maps  will  be  made   using  ArcGIS.  This  data  and  information  about  which  towns  are  present  in  which  woreda  will   be   clearly   ordered   as   it   is   needed   for   the   poverty   assessment   and   the   making   of   the   algorithm.      

(14)

 

3.3  Geographic  remoteness  assessment  

A  dataset  provided  by  Dr.  Crelis  Rammelt  contains  most  of  the  data  that  was  used  in  this   research.  Other  missing  data  was  found  either  through  ArcGIS  online  or  through  literature.   Appendix  A  contains  the  complete  metadata  of  all  the  data  that  was  used  in  ArcGIS.  

For  the  geographic  remoteness  mountainous  areas,  rivers  and  forests  were  mapped.  More   divisions  of  physical  features  could  be  used,  but  the  scale  of  this  research  is  too  large  to  do   this,  which  is  why  the  focus  was  on  three  physical  features  only.  Firstly,  a  Digital  Elevation   Model  (DEM)  was  used  to  construct  the  slopes  of  Tigray.  The  DEM  is  visualized  in  figure  4.   Since  no  exact  definition  could  be  found  for  lowlands  regarding  the  corresponding  slopes,   lowlands  were  estimated  at  slopes  between  0°  and  10°.  Data  that  included  the  rivers  and   forests  were  found  through  ArcGIS  online.  Ideally,  rivers  could  be  constructed  using  satellite   imagery  and  by  drawing  polygons  or  lines  in  ArcGIS.  Also,  forests  could  be  mapped  through   ERDAS  by  using  Remote  Sensing  (RS).  However,  due  to  limited  time,  the  data  from  ArcGIS   online  was  used  in  this  research.  

 

  Figure  4.  Digital  Elevation  Model  (DEM)  of  Tigray  

Larger   weight   was   given   to   mountain   ranges   than   to   rivers.   Hearn   (2011)   studied   the   construction  and  maintenance  of  roads  in  lowlands  and  mountainous  areas  and  concluded   that  the  construction  costs  in  mountainous  areas  can  be  two  to  three  times  higher  than  the   construction   costs   in   lowlands.   An   example   of   a   project   that   he   studied   was   a   project   in   Ethiopia   where   a   road   was   built   across   the   Blue   Nile   gorge   in   2010.   The   costs   of   the   construction   on   the   plateau   were   approximately   $300   000.   In   contrast,   the   construction   costs   in   the   gorge   were   approximately   $900   000.   In   comparison,   the   United   States   Department   of   Agriculture   (2011)   estimated   the   construction   costs   of   bridges   between   $2100  and  $3350  per  feet  and  on  top  of  that  $30  000  -­‐  $40  000  for  deep  spread  footings.  

(15)

This   is   why   larger   weight   was   given   to   mountainous   areas.   In   addition,   Hearn   (2011)   also   found   that   the   lowest   construction   costs   possible   in   mountainous   areas   are   often   part   of   unsustainable  construction  strategies.  He  stresses  that  there  is  a  significant  need  in  efficient   planning  of  the  costs  and  that  there  is  a  need  of  the  right  technical  resources.

The  geographic  remoteness  will  be  clarified  through  two  scores,  namely  that  a  region  is  not   or  slightly  geographically  remote  or  that  a  region  is  geographically  remote.  The  regions  that   are   geographically   remote   will   automatically   not   be   connected   to   the   current   network.   Furthermore,   coordinates   of   specific   areas   will   also   be   retrieved   for   the   making   of   the   algorithm.   These   scores   and   coordinates   are   put   into   a   table,   which   are   needed   for   the   algorithm.

   

4.  Results  

  Figure  5.  The  road  network  of  Tigray  in  2007  

 

Figure  5  shows  the  road  network  of  Tigray  as  it  was  in  2007.    

(16)

 

4.1  Results  of  the  poverty  assessment  

Figure  6  shows  the  map  of  Tigray  with  the  different  rural  poverty  rates  per  woreda.  Tigray   counts  32  woredas.  The  mean  poverty  level  is  44%.  The  highest  head  count  ratio  with  75%  is   in  Irob  and  Mereb  Hele.  The  woreda  with  the  lowest  rural  poverty  is  Kafta  Humera  with  just   10%  (Nega  et  al.,  2011).  It  is  remarkable  that  high  and  low  poverty  woredas  are  bordering   each  other  but  overall,  it  seems  like  poverty  rates  are  higher  in  the  Eastern  part  of  Tigray   and  lower  in  the  West.  The  exact  poverty  rate  per  woreda  can  be  found  in  Appendix  B  with   additional  information.          

 

Based   off   of   figure   7,   it   can   be   assumed   that   the   population   density   in   Western   Tigray   is   sparse:  less  than  50  inhabitants  per  square  kilometer.  Lower  population  density  in  an  area   with  enough  successful  agricultural  practices  may  explain  why  the  West  of  this  province  has   lower  poverty  headcount  ratio.    

       

 

Figure   6.   Poverty   percentage   per   woreda   in   Tigray,   Irob   and   Mereb   Hele   selected   in   North-­‐East   and   Kafta   Humera  selected  on  the  West  side  

     

(17)

   

Figure  7.  Population  density  per  woreda  in  Tigray    

4.2  Results  of  the  geographic  remoteness  assessment  

Figure  9  shows  the  results  of  the  geographic  remoteness  assessment.  It  contains  the  slope   of  the  hills  and  mountains,  rivers  and  the  woody  biomass/forests.  Furthermore,  it  visualizes   the   towns   and   woredas   of   interest   and   the   asphalt   roads   as   well.   The   towns   and   their   woredas  that  are  not  or  slightly  geographically  remote  are  selected  with  a  bright  blue  color.   The  selected  towns  are  Chercher  in  Raya  Azebo  in  the  south  of  Tigray,  Haiqmeshal  in  Atsbi   Wenberta  in  the  East  and  Mai  Gaba  in  Welkait  in  the  West.  Raya  Azebo  and  Mai  Gaba  are   the  towns  that  are  slightly  remote,  as  bridge  costs  need  to  be  taken  into  account.  The  other   towns  are  geographically  remote  due  to  the  mountain  ranges,  and  construction  costs  will  be   substantially  high  in  this  case  as  explained  earlier.  Because  the  forests  were  mainly  situated   on  the  mountain  ranges,  they  did  not  need  to  be  considered  further.    

(18)

  Figure  8.  Map  showing  the  geographic  remoteness  of  towns  in  Tigray,  through  mountainous  areas,  rivers  and   forests  

 

4.3  Results  of  the  optimality  algorithm  

The   current   network   has   a   total   length   of   1.121.423   units,   and   consists   of   44   roads.   It   connects  42  of  the  60  towns  within  Tigray.  The  total  population  connected  to  the  current   network   is   2.008.277.   It   has   connected   1.059.973   impoverished   inhabitants.   The   optimal   network  created  by  the  algorithm  has  a  total  length  of  1.047.961,  and  consists  of  37  roads.  It   connects   38   of   the   60   towns   in   Tigray.   The   total   population   connected   to   the   current   network  is  2.865.350.  It  has  connected  1.530.680  poor  inhabitants.  Both  networks  are  listed   in  Appendix  C.  

12  roads  occur  in  both  networks,  which  is  relatively  few.  25  towns  have  been  connected  in   both  networks.  Within  the  optimal  network,  towns  far  in  the  west  have  not  been  connected,   whereas   they   have   been   connected   in   current   network.   This   is   due   to   the   relatively   low   poverty   rates   in   western   Tigray.   The   optimal   network   scores   especially   better   in   the   connection  of  all  places  near  other  nodes,  since  it  prefers  these  links  over  long  connections.   The  current  network  connects  31%  less  impoverished  people  and  30%  less  people  overall.   A  possible  explanation  for  the  differences  between  the  two  networks  might  be  that  some   towns  have  been  connected  multiple  times  and  that  this  does  not  reflect  within  the  score.   However,  the  optimal  network  uses  0.97  road  per  town  and  the  current  network  1.05  road   per  town.  This  does  not  explain  the  major  difference  in  optimality  though.  Most  probable  is   that  the  ERA  prefers  asphalt  roads  throughout  Tigray  and  connecting  adjacent  villages  with   rural  roads.

(19)

Current  Network • 44  roads  

• 42  out  of  60  towns   • 2.0  million  people  

• 1.1  million  people  beneath  the  poverty   line  

Optimal  Network • 37  roads  

• 38  out  of  60  towns   • 2.9  million  people  

• 1.5  million  people  beneath  the  poverty   line  

Overall • 12  roads  exactly  the  same  

• 25  towns  connected  in  both  networks   • 31  %  less  people  in  current  network  

• 30  %  less  impoverished  people  in  current  network   Table  2.  Optimality  assessment  summary  results

 

Since  the  current  network  cannot  be  revised,  it  is  also  interesting  to  see  which  connections   can  improve  the  current  network  the  most.  Firstly,  Rama  should  be  connected,  since  a  lot  of   people  live  in  Rama.  This  connection  can  best  be  established  from  Axum.  Also,  Semema  can   be   linked   rather   easily,   since   it   is   nearby   Shire   Endalase.   Lastly,   Mahbre   Degue   has   a   relatively  high  amount  of  people  as  well,  yet  it  is  currently  unconnected.  This  link  can  also   be  established  from  Axum.

 

5.  Discussion  

 

As   stated   in   the   introduction,   the   model   presented   here   is   still   quite   simplistic.   Due   to   limited  resources,  the  focus  of  this  research  was  narrowed  down  to  a  few  factors.  Moreover,   due  to  limited  availability  of  data  of  Ethiopia,  the  focus  needed  to  be  narrowed  down  even   further.  Even  though  the  model  is  quite  simplistic,  it  can  serve  as  a  base  or  starting  point  for   future  research  and  it  offers  great  possibilities  for  automatic  road  planning,  as  manual  road   planning   can   be   quite   intensive   (Mohammadi   Samani   et   al.,   2010).   This   has   also   been   recognized   by   others   and   this   has   resulted   in   the   recent   development   of   automatic   road   planning.  Again,  it  should  be  noted  that  actual  poverty  reduction  was  not  assessed  in  this   research,  but  rather  new  roads  are  proposed  that  are  part  of  the  most  optimal  road  network   that  resulted  from  this  research.

Another  similar  research  was  conducted  by  Mohammadi  Samani  et  al.  (2010).  They  used  GIS   and  AHP  (Analytical  Hierarchy  Process)  for  the  planning  of  forest  roads  and  compared  this  to   the  traditional  way  of  road  planning.  Although  they  did  not  look  at  socioeconomic  factors,   they  took  into  account  more  geographical  and  ecological  factors,  such  as  hydrology,  slope,   geology,  soil,  tree  volume,  tree  type.  They  classified  areas  of  the  research  area  into  5  classes   of  suitability  for  forest  roads.  They  found  that  this  way  of  planning  showed  better  results   than   the   traditional   way   of   road   planning.   This   also   suggests   that   in   future   research   a   baseline  is  needed  in  order  to  compare  the  result  and  determine  the  performance  of  the   model.  A  research  that  did  include  socioeconomic  factors  was  conducted  by  Yang  and  Bell   (2007).  They  presented  new  developments  concerning  the  Network  Design  Problem  (NDP),   which  means  that  the  travel  demand  is  growing  at  higher  rates  than  that  the  network  can  

(20)

grow.  At  the  same  time,  resources  to  expand  this  network  are  limited.  They  developed  an   economic  based  function  for  the  optimization  of  the  road  network  by  including  the  elasticity   of   the   travel   demand,   but   they   also   included   the   preferential   routes   and   capacity   improvements.  Both  studies  give  some  indication  of  how  different  factors  can  be  included   into  optimization  models  and  how  the  model  in  this  research  can  be  improved.  

What  also  need  to  be  taken  into  further  consideration  is  the  fact  that  only  rural  data  and   asphalt  roads  have  been  assessed  in  this  research.    Even  though  most  people  live  in  rural   areas,   the   urban   population   also   matters   and   may   even   be   even   taken   into   more   consideration  than  rural  poverty  heads  when  road  placement  is  being  planned.  Urban  areas   ultimately  also  produce  and  involve  economic  development.  In  our  case  study  we  focus  on   Ethiopia   while   the   first   two   RSDPs   were   running   from   1997   to   2009.   In   these   two   RSDPs   trunk   roads   and   link   roads   were   constructed   and   upgraded.   The   RSDPs   do   not   focus   on   unpaved  rural  roads  while  rural  roads  also  have  potential  to  lead  to  economic  growth  and   poverty   reduction   (Escobal   &   Ponce,   2002).   The   inclusion   of   travel   time   reliability   as   definition  for  optimality  could  be  useful  for  the  assessment  of  the  network  including  rural   roads,  since  it  allows  differences  between  roads.

Another  factor  that  could  be  considered  is  that  not  only  the  physical  distance  plays  a  role  in   poverty.  As  explained  earlier,  Epprecht  et  al.  (2011)  showed  that  the  geographic  remoteness   is   a   strong   predictor   of   poverty.   However,   they   show   that   the   socio-­‐cultural   distance   is   probably   a   stronger   predictor.   In   this   perspective,   barriers   include   the   language   and   the   cultural  differences.  It  could  be  interesting  to  focus  on  this  aspect  as  well  in  future  research.   Moreover,  as  stated  earlier,  it  might  be  difficult  for  governments  to  decide  whether  large   investments  should  be  put  into  the  road  development  in  remote  areas  (Bird  et  al.,  2010).   Epprecht  et  al.  (2011)  stated  that  small  urban  centres  might  be  of  greater  importance  than   large   urban   centres   in   the   poverty   distribution   in   a   country.   Therefore,   it   might   be   interesting  to  look  into  the  alternative  to  invest  into  the  development  of  small  urban  centres,   by  locating  small  political  and  administrative  centres  into  these  areas.  This  should  be  done   in  future  research.

The   result   presented   in   this   research   only   represents   one   moment   in   time.   However,   it   might   be   interesting   to   conduct   a   long   term   research   of   the   past   and   see   whether   the   optimality   of   the   network   was   better   or   worse   in   the   past,   since   the   poverty   distribution   might  have  been  different  in  the  past.  

Concerning   the   geographic   remoteness   assessment,   there   are   some   points   that   could   be   improved   in   future   research.   Ideally   the   rivers   and   forests   are   determined   using   recent   satellite  imagery  when  there  are  enough  resources  to  do  this.  Furthermore,  it  is  difficult  to   get   a   quick   idea   of   at   which   point   the   road   construction   costs   substantially   increase   for   mountainous   areas.   Collaborations   with   road   engineers   is   particularly   important   for   this   type   of   research   to   get   a   clearer   idea   of   how   the   construction   costs   increase.   Finally,   depending  on  which  scale  is  being  used,  it  might  be  interesting  to  look  at  other  subdivisions   of  physical  features,  which  should  be  done  at  lower  scales.  

(21)

6.  Conclusion  

 

Since   roads   are   capable   of   empowering   and   developing   areas,   it   is   needed   to   create   connection  to  these  towns.  The  socioeconomic  benefits  of  roads,  such  as  access  to  larger   markets,   education   and   job   opportunities,   need   to   be   available   for   as   many   people   as   possible.  Most  importantly,  these  effects  directly  benefit  the  poor  within  the  woredas  that   are  dependent  on  help  from  the  government.  

One  of  the  problems  in  connecting  all  regions  across  Tigray  is  their  geographical  remoteness.   Mountain  ranges  and  the  forest  across  them  make  the  design  and  engineering  of  roads  to   these  towns  that  are  geographically  remote  more  expensive  in  construction.  However,  also   some  reasonably  not-­‐remote  towns  have  not  been  connected.  Furthermore,  poverty  is  not   evenly  distributed  through  Tigray.  The  poverty  rate  is  generally  higher  in  areas  with  higher   population  density  and  of  course,  in  areas  with  higher  food  stress.  With  the  algorithm  it  can   be  concluded  that  the  current  network  is  not  optimal,  since  with  the  total  length  of  roads  in   the  current  network  more  people  could  have  been  linked  to  the  current  road  network.  This   difference  in  optimality  between  the  current  and  the  optimal  network  can  for  some  extent   be  explained  by  the  inclusion  of  other  data.  However,  the  difference  needs  to  be  researched   further  as  the  suggested  optimal  network  scores  30%  better.  For  further  road  development,   suggestions  within  this  research  need  to  be  considered  as  they  improve  the  optimality.    

 

Referenties

GERELATEERDE DOCUMENTEN

Information about the internal, location and external factors was gathered in the last chapter based on interviews with the management team of Latexfalt. It is now time to

Similar as in the linear model, when α = 1 the costs do no longer depend on distance, which means that location of each facility in unimportant and every strategy vector is

Warehouse Scenario 5 scores better than the current situation in terms of costs in the process between factory and final customer, and CO 2 emission caused by transportation

This masterplan should contain the information about location identity, the target group, the planned place branding activities, the tasks and responsibilities of the parties

It is a representative location. Availability of subsidy for locating at the Freeport of Riga. Thank you very much for your time me to fill out this questionnaire. The

Voor sommige lokalisatie technieken zijn extra hardware benodigd, deze moet dan ook verkrijgbaar zijn voor het in gebruik nemen van Lisa.. Het gebruiksgemak moet ook

We find that, when financial costs dominate the reduction in benefits from the shock, prices in both central locations show regional spatial dependency by internal- izing the price

To analyze the WLAN performance, measurements are performed between a mobile service provider in the WLAN and the surrogate host in the fixed network.. The measure- ments should give