• No results found

Strong supersymmetry: A search for squarks and gluinos in hadronic channels using the ATLAS detector - Bibliography

N/A
N/A
Protected

Academic year: 2021

Share "Strong supersymmetry: A search for squarks and gluinos in hadronic channels using the ATLAS detector - Bibliography"

Copied!
19
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Strong supersymmetry: A search for squarks and gluinos in hadronic channels

using the ATLAS detector

van der Leeuw, R.H.L.

Publication date

2014

Link to publication

Citation for published version (APA):

van der Leeuw, R. H. L. (2014). Strong supersymmetry: A search for squarks and gluinos in

hadronic channels using the ATLAS detector. Boxpress.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

[1] S. Glashow. Partial Symmetries of Weak Interactions. Nucl.Phys. 22 (1961). [2] S. Weinberg. A Model of Leptons. Phys.Rev.Lett. 19 (1967).

[3] A. Salam. Weak and Electromagnetic Interactions. Conf.Proc. C680519 (1968). [4] G. ’t Hooft and M. Veltman. Regularization and Renormalization of Gauge

Fields. Nucl.Phys. B44 (1972).

[5] E. Rutherford. The scattering of alpha and beta particles by matter and the structure of the atom. Phil.Mag. 21 (1911).

[6] J. Chadwick. The existence of a neutron. Proc. of the Royal Society of London A136(830) (1932).

[7] B. Fernandez and G. Ripka. Unravelling the Mystery of the Atomic Nucleus: A Sixty Year Journey 1896-1956. Springer (2012).

[8] M. Gell-Mann. A Schematic Model of Baryons and Mesons. Phys.Lett. 8 (1964). [9] G. Zweig. An SU(3) model for strong interaction symmetry and its breaking;

Part II. Tech. Rep. CERN-TH-412 (1964).

[10] Standard Model image. https://en.wikipedia.org/wiki/File:Standard_ Model_of_Elementary_Particles.svg.

[11] D. Hanneke, S. Fogwell Hoogerheide and G. Gabrielse. Cavity control of a single-electron quantum cyclotron: Measuring the single-electron magnetic moment. Phys. Rev. (5) (2011).

[12] I. V. Anicin. The Neutrino - Its Past, Present and Future. arXiv:physics/0503172.

[13] A. Lesov. The Weak Force: From Fermi to Feynman. arXiv:0911.0058. [14] E. Fermi. Versuch einer Theorie der β-Strahlen: I. Zeitschrift für Physik 88

(1934).

[15] F. Englert and R. Brout. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13 (1964).

(3)

[16] P. W. Higgs. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13 (1964).

[17] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble. Global conservation laws and massless particles. Phys. Rev. Lett. 13 (1964).

[18] C. Amsler et al. Review of particle physics. Phys.Lett. B667(1) (2008). [19] J. Beringer et al. (Particle Data Group). Review of particle physics. Phys. Rev.

D 86 (2012).

[20] G. Aad et al. (ATLAS Collaboration). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys.Lett. B716 (2012).

[21] S. Chatrchyan et al. (CMS Collaboration). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys.Lett. B716 (2012). [22] G. Aad et al. (ATLAS Collaboration). Measurements of Higgs boson production

and gs in diboson final states with the ATLAS detector at the LHC. Phys.Lett. B726 (2013).

[23] Y. Fukuda et al. (Super-Kamiokande Collaboration). Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81 (1998).

[24] D. J. Gross and F. Wilczek. Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30 (1973).

[25] H. D. Politzer. Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30 (1973).

[26] R. P. Feynman. The theory of positrons. Phys. Rev. 76 (1949).

[27] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory. Perseus Books, Cambridge, Massachusetts (1995).

[28] D. Griffiths. Introduction to Elementary Particles. Physics Textbook. Wiley (2008).

[29] J. C. Collins, D. E. Soper and G. F. Sterman. Factorization of Hard Processes in QCD. Adv.Ser.Direct.High Energy Phys. 5 (1988).

[30] M. Luty. Lecture note on renormalization. http://www.physics.umd.edu/ courses/Phys851/Luty/notes/renorm.pdf.

[31] D. Green. High PT Physics at Hadron Colliders. Cambridge Monographs on

Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press (2009).

[32] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt. Parton distributions for the LHC. Eur. Phys. J. C63 (2009).

(4)

[33] P. M. Nadolsky et al. Implications of CTEQ global analysis for collider observ-ables. Phys. Rev. D78 (2008).

[34] F. Demartin et al. The impact of PDF and alphas uncertainties on Higgs Pro-duction in gluon fusion at hadron colliders. Phys.Rev. D82 (2010).

[35] V. Gribov and L. Lipatov. e+ e- pair annihilation and deep inelastic e p scattering in perturbation theory. Soviet Journal for Nuclear Physics 15 (1972).

[36] Y. L. Dokshitzer. Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromo-dynamics. Sov.Phys.JETP 46 (1977).

[37] G. Altarelli and G. Parisi. Asymptotic freedom in parton language. Nuclear Physics B 126(2) (1977).

[38] V. Abazov et al. (D0 Collaboration). Measurement of the muon charge asym-metry from W boson decays. Phys.Rev. D77 (2008).

[39] V. Abazov et al. (D0 Collaboration). Measurement of the electron charge asym-metry in p¯p→ W + X → eν + X events at √s = 1.96 TeV. Phys.Rev.Lett. 101 (2008).

[40] D. Acosta et al. (CDF Collaboration). Measurement of the forward-backward charge asymmetry from W → eν production in p¯p collisions at√s = 1.96 TeV. Phys.Rev. D71 (2005).

[41] V. Abazov et al. (D0 Collaboration). Measurement of the shape of the boson rapidity distribution for p¯p → Z/gamma→ e+e+ X events produced at

s of 1.96 TeV. Phys.Rev. D76 (2007).

[42] J. Pumplin et al. Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys.Rev. D65 (2001).

[43] T. Gleisberg et al. Event generation with SHERPA 1.1. Journal of High Energy Physics 0902 (2009).

[44] M. Gosselink. Radiating Top Quarks. Ph.D. thesis, Nikhef, UvA (2010). [45] B. W. Lee, C. Quigg and H. Thacker. Weak Interactions at Very High-Energies:

The Role of the Higgs Boson Mass. Phys.Rev. D16 (1977).

[46] J. H. Oort. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bulletin of the Astronomical Institutes of the Netherlands 4 (1932).

[47] F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 6 (1933).

(5)

[48] T. S. van Albada, J. N. Bahcall, K. Begeman and R. Sancisi. Distribution of dark matter in the spiral galaxy NGC 3198. Astrophys. J. 295 (1985).

[49] G. Hinshaw et al. (WMAP). Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys.J.Suppl. 208 (2013).

[50] P. Ade et al. (Planck Collaboration). Planck 2013 results. XVI. Cosmological parameters. arXiv:1303.5076.

[51] P. Ade et al. (Planck Collaboration). Planck 2013 results. I. Overview of products and scientific results. arXiv:1303.5062.

[52] D. Reeb. Quantum Gravity Effects through Running of Newton’s Constant. arXiv:0901.2963.

[53] G. Bennett et al. (Muon G-2 Collaboration). Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL. Phys.Rev. D73 (2006). [54] S. P. Martin. A Supersymmetry primer. arXiv:hep-ph/9709356.

[55] I. J. Aitchison. Supersymmetry and the MSSM: An Elementary introduction. arXiv:hep-ph/0505105.

[56] S. Dawson. SUSY and such. NATO Adv.Study Inst.Ser.B Phys. 365 (1997). [57] H. Miyazawa. Spinor currents and symmetries of baryons and mesons. Phys.

Rev. 170 (1968).

[58] S. Catto. Talk at CUNY: “Miyazawa Supersymmetry". http://nucl.phys.s. u-tokyo.ac.jp/FM50/talk/Catto_Sultan.pdf.

[59] Y. Golfand and E. Likhtman. Extension of the Algebra of Poincare Group Gen-erators and Violation of p Invariance. Sov.Phys.JETP Lett. 13 (1971).

[60] D. Volkov and V. Akulov. Is the Neutrino a Goldstone Particle? Phys.Lett. B46 (1973).

[61] J. Wess and B. Zumino. Supergauge Transformations in Four-Dimensions. Nucl.Phys. B70 (1974).

[62] J. Wess and B. Zumino. A Lagrangian Model Invariant Under Supergauge Transformations. Phys.Lett. B49 (1974).

[63] J. Wess and B. Zumino. Supergauge Invariant Extension of Quantum Electro-dynamics. Nucl.Phys. B78 (1974).

[64] C. Aulakh and R. N. Mohapatra. Neutrino as the Supersymmetric Partner of the Majoron. Phys.Lett. B119 (1982).

(6)

[65] L. J. Hall and M. Suzuki. Explicit R-Parity Breaking in Supersymmetric Models. Nucl.Phys. B231 (1984).

[66] S. Coleman and J. Mandula. All possible symmetries of the s matrix. Phys. Rev. 159 (1967).

[67] R. Haag, J. T. Łopuszański and M. Sohnius. All possible generators of super-symmetries of the S-matrix. Nuclear Physics B 88(2) (1975).

[68] M. Drees, R. Godbole and P. Roy. Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics. World Scientific Publishing Company (2004).

[69] H. E. Haber and G. L. Kane. The Search for Supersymmetry: Probing Physics Beyond the Standard Model. Phys.Rept. 117 (1985).

[70] J. R. Ellis et al. Supersymmetric Relics from the Big Bang. Nucl.Phys. B238 (1984).

[71] E. Cremmer, P. Fayet and L. Girardello. Gravity Induced Supersymmetry Break-ing and Low-Energy Mass Spectrum. Phys.Lett. B122 (1983).

[72] G. Giudice and R. Rattazzi. Theories with gauge mediated supersymmetry break-ing. Phys.Rept. 322 (1999).

[73] J. L. Feng and T. Moroi. Supernatural supersymmetry: Phenomenological impli-cations of anomaly mediated supersymmetry breaking. Phys.Rev. D61 (2000). [74] Prospino. Publicly available from. http://www.thphys.uni-heidelberg.

de/~plehn/index.php?show=prospino&visible=tools.

[75] A. H. Chamseddine, R. Arnowitt and P. Nath. Locally supersymmetric grand unification. Phys. Rev. Lett. 49 (1982).

[76] P. Nath. Twenty years of SUGRA. hep-ph/0307123.

[77] G. L. Kane, C. F. Kolda, L. Roszkowski and J. D. Wells. Study of constrained minimal supersymmetry. Phys.Rev. D49 (1994).

[78] E. van der Kraaij. First top quark physics with ATLAS - a prospect. Ph.D. thesis, Nikhef, UvA (2009).

[79] D. S. Alves, E. Izaguirre and J. G. Wacker. Where the Sidewalk Ends: Jets and Missing Energy Search Strategies for the 7 TeV LHC. Journal of High Energy Physics 1110 (2011).

[80] D. Alves et al. (LHC New Physics Working Group). Simplified Models for LHC New Physics Searches. J.Phys. G39 (2012).

[81] C. Gutschow and Z. Marshall. Setting limits on supersymmetry using simplified models. arXiv:1202.2662.

(7)

[82] J. Alwall, P. Schuster and N. Toro. Simplified Models for a First Characterization of New Physics at the LHC. Phys.Rev. D79 (2009).

[83] W. Beenakker, R. Hopker, M. Spira and P. M. Zerwas. Squark and gluino production at hadron colliders. Nucl. Phys. B492 (1997).

[84] T. Aaltonen et al. (CDF Collaboration). Inclusive search for squark and gluino production in pp collisions at √s = 1.96 TeV. Phys. Rev. Lett. 102 (2009). [85] V. Abazov et al. Search for squarks and gluinos in events with jets and missing

transverse energy using 2.1 fb−1of collision data ats = 1.96 TeV. Phys.Lett.

B660(5) (2008).

[86] ALEPH, DELPHI, L3 and OPAL. Tech. Rep. LEPSUSYWG/01-03.1. http://lepsusy.web.cern.ch/lepsusy/www/inos_moriond01/ charginos_pub.html.

[87] ALEPH, DELPHI, L3 and OPAL. Tech. Rep. LEPSUSYWG/02-04.1. http://lepsusy.web.cern.ch/lepsusy/www/inoslowdmsummer02/ charginolowdm_pub.html.

[88] R. Aaij et al. (LHCb collaboration). Measurement of the B0 s → µ

+µbranching

fraction and search for B0

→ µ+µdecays at the LHCb experiment. Phys. Rev.

Lett. 111 101805 (2013).

[89] A. J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori. On the Standard Model prediction for BR(Bs,d to mu+ mu-). Eur.Phys.J. C72 (2012).

[90] A. Arbey, M. Battaglia, F. Mahmoudi and D. Martinez Santos. Supersymmetry confronts Bs→ µ+µ−: Present and future status. Phys.Rev. D87 (2013).

[91] C. Boehm, P. S. B. Dev, A. Mazumdar and E. Pukartas. Naturalness of Light Neutralino Dark Matter in pMSSM after LHC, XENON100 and Planck Data. Journal of High Energy Physics 1306 (2013).

[92] J. L. Feng and K. T. Matchev. Supersymmetry and the anomalous magnetic moment of the muon. Phys.Rev.Lett. 86 (2001).

[93] C. Beskidt et al. Constraints on Supersymmetry from Relic Density compared with future Higgs Searches at the LHC. Phys.Lett. B695 (2011).

[94] R. Bernabei et al. (DAMA Collaboration). First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur.Phys.J. C56 (2008).

[95] C. Aalseth et al. Search for an Annual Modulation in a P-type Point Contact Germanium Dark Matter Detector. Phys.Rev.Lett. 107 (2011).

[96] G. Angloher et al. Results from 730 kg days of the CRESST-II Dark Matter Search. Eur.Phys.J. C72 (2012).

(8)

[97] E. Aprile et al. (XENON100 Collaboration). Dark Matter Results from 225 Live Days of XENON100 Data. Phys.Rev.Lett. 109 (2012).

[98] D. Akerib et al. (LUX Collaboration). First results from the LUX dark matter experiment at the Sanford Underground Research Facility. arXiv:1310.8214. [99] M. S. Carena and H. E. Haber. Higgs boson theory and phenomenology.

Prog.Part.Nucl.Phys. 50 (2003).

[100] P. Draper, P. Meade, M. Reece and D. Shih. Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking. Phys.Rev. D85 (2012).

[101] A. Arbey et al. Implications of a 125 GeV Higgs for supersymmetric models. Phys.Lett. B708 (2012).

[102] J. Cao, Z. Heng, J. M. Yang and J. Zhu. Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data. Journal of High Energy Physics 1210 (2012).

[103] O. Buchmueller et al. Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1. Eur.Phys.J. C64 (2009). [104] L. Evans and P. Bryant. LHC Machine. Journal of Instrumentation 3(08) (2008). [105] K. Hübner. Designing and Building LEP. Phys. Rep.

403-404(CERN-AB-2004-099-ADM) (2004).

[106] LHC: the guide. http://cds.cern.ch/record/1165534/files/ CERN-Brochure-2009-003-Eng.pdf.

[107] G. Aad et al. (ATLAS Collaboration). The ATLAS Experiment at the CERN Large Hadron Collider. Journal of Instrumentation 3(08).

[108] S. Chatrchyan et al. (The CMS Collaboration). The CMS experiment at the CERN LHC. Journal of Instrumentation 3(08).

[109] K. Aamodt et al. (The ALICE Collaboration). The ALICE experiment at the CERN LHC. Journal of Instrumentation 3(08).

[110] A. A. Alves et al. (The LHCb Collaboration). The LHCb Detector at the LHC. Journal of Instrumentation 3(08).

[111] G. Anelli et al. (The TOTEM Collaboration). The TOTEM Experiment at the CERN Large Hadron Collider. Journal of Instrumentation 3(08) (2008). [112] O. Adriani et al. (The LHCf Collaboration). The LHCf detector at the CERN

Large Hadron Collider. Journal of Instrumentation 3(08) (2008). [113] O. S. Brüning et al. LHC Design Report. CERN, Geneva (2004).

(9)

[114] G. Aad et al. (ATLAS Collaboration). Combined coupling measurements of the higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data. Tech. Rep. ATLAS-CONF-2013-034, CERN, Geneva (2013). [115] G. Aad et al. (ATLAS Collaboration). Search for dark matter candidates and

large extra dimensions in events with a photon and missing transverse momen-tum in pp collision data at√s = 7 TeV with the ATLAS detector. Phys.Rev.Lett. 110 (2013).

[116] G. Aad et al. (ATLAS Collaboration). Search for microscopic black holes in multi-jet final states with the ATLAS detector at √s = 7 TeV. Tech. Rep. ATLAS-CONF-2011-068, CERN, Geneva (2011).

[117] G. Aad et al. (ATLAS Collaboration). ATLAS search for a heavy gauge boson decaying to a charged lepton and a neutrino in pp collisions at √s = 7 TeV. Eur.Phys.J. C72 (2012).

[118] G. Aad et al. (ATLAS Collaboration). Measurement of the top quark-pair pro-duction cross section with ATLAS in pp collisions at √s = 7 TeV. Eur.Phys.J. C71 (2011).

[119] G. Aad et al. (ATLAS Collaboration). Measurement of the production cross section for W− bosons in association with jets in pp collisions at√s = 7 TeV with the ATLAS detector. Phys.Lett. B698 (2011).

[120] G. Aad et al. (ATLAS Collaboration). Measurement of inclusive jet and dijet production in pp collisions at√s = 7 TeV using the ATLAS detector. Phys.Rev. D86 (2012).

[121] G. Aad et al. (ATLAS Collaboration). Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at √sN N = 2.77 TeV with the ATLAS

Detector at the LHC. Phys.Rev.Lett. 105 (2010).

[122] G. Aad et al. (ATLAS Collaboration). Time-dependent angular analysis of the decay Bs→ J/ψ φ and extraction of ∆Γsand the CP-violating weak phase φs

by ATLAS. JHEP 1212 (2012).

[123] G. Aad et al. The ATLAS Inner Detector commissioning and calibration. Eur.Phys.J C70(3) (2010).

[124] D. Green. At the leading edge: the ATLAS and CMS LHC experiments. World Scientific, Singapore (2010).

[125] G. Aad et al. (ATLAS Collaboration). ATLAS inner detector: Technical design report. Vol. 1. Tech. Rep. CERN-LHCC-97-16, ATLAS-TDR-4 (1997).

[126] J. Goodson. http://www.jetgoodson.com/thesisGallery.htm.

[127] G. Aad et al. (ATLAS Collaboration). ATLAS inner detector: Technical design report. Vol. 2. Tech. Rep. CERN-LHCC-97-17, ATLAS-TDR-5 (1997).

(10)

[128] M. Capeans et al. ATLAS insertable b-layer technical design report. Tech. Rep. CERN-LHCC-2010-013. ATLAS-TDR-19, CERN, Geneva (2010).

[129] ATLAS Collaboration. ATLAS insertable b-layer technical design report ad-dendum. Tech. Rep. CERN-LHCC-2012-009, ATLAS-TDR-19-ADD-1, CERN, Geneva (2012).

[130] KEK. Photo. http://ATLAS.kek.jp/sub/photos/SCTJ/SCTJModule/ barrel-module.jpg.

[131] A. Abdesselam et al. The ATLAS semiconductor tracker end-cap module. Nu-clear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 575(3) (2007).

[132] Illustration of p− n junction. http://www.optique-ingenieur.org/en/ courses/OPI_ang_M05_C02/co/Contenu_05.html.

[133] C. Magrath. The Heart of ATLAS. Ph.D. thesis, Nikhef, Radboud Universiteit Nijmegen (2009).

[134] J. Formaggio and G. Zeller. From eV to EeV: Neutrino Cross Sections Across Energy Scales. Rev.Mod.Phys. 84 (2012).

[135] D. Schouten and M. Vetterli. In situ jet calibration and the effects of pileup in ATLAS. Tech. Rep. ATL-PHYS-INT-2007-011, CERN, Geneva (2007). [136] J. Wotschack. ATLAS muon chamber construction parameters for csc, mdt, and

rpc chambers. Tech. Rep. ATL-MUON-PUB-2008-006, CERN, Geneva (2008). [137] G. Aielli et al. The rpc first level muon trigger in the barrel of the ATLAS

experiment. Nuclear Physics B - Proceedings Supplements 158(0) (2006). [138] G. Aad et al. (ATLAS Collaboration). Operation and Performance of the ATLAS

Semiconductor Tracker (in preparation). Tech. Rep. ATL-IDET-2013-01-001, CERN, Geneva (2014).

[139] G. Aad et al. (ATLAS Collaboration). Particle identification performance of the ATLAS transition radiation tracker. Tech. Rep. ATLAS-CONF-2011-128, CERN, Geneva (2011).

[140] P. Giraud, C. Amelung, F. Bauer and L. Pontecorvo (ATLAS Collaboration). Update on muon alignment for Rel 17. Tech. Rep. ATLAS-PLOT-MUON-2011-003 (2011).

[141] G. Aad et al. (ATLAS Collaboration). Performance of the ATLAS inner detector track and vertex reconstruction in the high pile-up LHC environment. Tech. Rep. ATLAS-CONF-2012-042, CERN, Geneva (2012).

[142] T. Sjostrand, S. Mrenna and P. Skands. PYTHIA 6.4 physics and manual. Journal of High Energy Physics 0605 (2006).

(11)

[143] G. Antchev et al. First measurement of the total proton-proton cross section at the LHC energy of √s = 7 TeV. Europhys.Lett. 96 (2011).

[144] G. Aad et al. (ATLAS Collaboration). Measurement of the Inelastic Proton-Proton Cross-Section at √s = 7 TeV with the ATLAS Detector. Nature Com-mun. 2 (2011).

[145] W. Beenakker, R. Hopker, M. Spira and P. Zerwas. Squark production at the Tevatron. Phys.Rev.Lett. 74 (1995).

[146] W. Beenakker, R. Hopker, M. Spira and P. Zerwas. Gluino pair production at the Tevatron. Z.Phys. C69 (1995).

[147] W. Beenakker et al. Stop production at hadron colliders. Nucl. Phys. B515 (1998).

[148] I. Niessen. Improving Predictions for SUSY Cross Sections. Ph.D. thesis, Rad-boud Universiteit Nijmegen (2012).

[149] W. Beenakker et al. Soft-gluon resummation for squark and gluino hadropro-duction. Journal of High Energy Physics 0912 (2009).

[150] A. Kulesza and L. Motyka. Threshold resummation for squark-antisquark and gluino-pair production at the LHC. Phys.Rev.Lett. 102 (2009).

[151] A. Kulesza and L. Motyka. Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC. Phys.Rev. D80 (2009). [152] W. Beenakker et al. Supersymmetric top and bottom squark production at

hadron colliders. Journal of High Energy Physics 1008 (2010).

[153] W. Beenakker et al. NNLL resummation for squark-antisquark pair production at the LHC. Journal of High Energy Physics 1201 (2012).

[154] M. Spira. Higgs and SUSY particle production at hadron colliders. hep-ph/0211145.

[155] W. Beenakker et al. The Production of charginos / neutralinos and sleptons at hadron colliders. Phys. Rev. Lett. 83 (1999).

[156] T. Plehn. Measuring the MSSM Lagrangian. Czech. J. Phys. 55 (2005). [157] W. Beenakker et al. Squark and Gluino Hadroproduction. Int.J.Mod.Phys. A26

(2011).

[158] A. Kulesza et al. NLL-Fast description. https://twiki.cern.ch/twiki/ bin/view/LHCPhysics/SUSYCrossSections.

[159] A. Kulesza et al. NLL-Fast publicly available from. http://pauli. uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast.

(12)

[160] S. Albino, B. Kniehl and G. Kramer. Large x resummation in Q2 evolution.

Phys.Rev.Lett. 100 (2008).

[161] S. Bethke. World Summary of αs(2012). arXiv:1210.0325.

[162] H.-L. Lai et al. Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions. Phys.Rev. D82 (2010).

[163] S. Dawson, E. Eichten and C. Quigg. Search for Supersymmetric Particles in Hadron - Hadron Collisions. Phys.Rev. D31 (1985).

[164] E. L. Berger, M. Klasen and T. M. P. Tait. Scale dependence of squark and gluino production cross sections. Phys. Rev. D59 (1999).

[165] G. Aad et al. (ATLAS Collaboration). Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in √s = 7 TeV proton-proton collisions. Phys.Lett. B710 (2012).

[166] G. Aad et al. (ATLAS Collaboration). Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using √s = 7 TeV pp collisions with the ATLAS detector. Journal of High Energy Physics 1111 (2011).

[167] G. Aad et al. (ATLAS Collaboration). Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in√s = 7 TeV pp collisions using 1 f b−1 of ATLAS data. Phys.Rev. D85 (2012).

[168] M. Botje et al. The PDF4LHC Working Group Interim Recommendations. arXiv:1101.0538.

[169] G. Aad et al. (ATLAS Collaboration). Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 ofs = 7 TeV proton-proton collision data. Phys.Rev. D87 (2013).

[170] G. Aad et al. (ATLAS Collaboration). Further search for supersymmetry at √s = 7 TeV in final states with jets, missing transverse momentum and isolated leptons with the ATLAS detector. Phys.Rev. D86 (2012).

[171] G. Aad et al. (ATLAS Collaboration). Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7f b−1 of

s = 7 TeV proton-proton collisions. Journal of High Energy Physics 1207 (2012).

[172] G. Aad et al. (ATLAS Collaboration). Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb−1 of √s=8 TeV proton-proton collision data. Tech. Rep. ATLAS-CONF-2012-109, CERN, Geneva (2012).

[173] M. Kramer et al. (R. van der Leeuw). Supersymmetry production cross sections in pp collisions at√s = 7 TeV. arXiv:1206.2892.

(13)

[174] G. Aad et al. (ATLAS Collaboration). Search for a supersymmetric top-quark partner in final states with two leptons in√s = 8 TeV pp collisions using 13 ifb of ATLAS data. Tech. Rep. ATLAS-CONF-2012-167, CERN, Geneva (2012). [175] G. Aad et al. (ATLAS Collaboration). Search for direct sbottom production in

event with two b-jets using 12.8 fb-1 of pp collisions at √s = 8 TeV with the ATLAS detector. Tech. Rep. ATLAS-CONF-2012-165, CERN, Geneva (2012). [176] The Durham HepData Project. http://hepdata.cedar.ac.uk/pdf/

pdf3.html.

[177] J. Bjorken. Asymptotic Sum Rules at Infinite Momentum. Phys.Rev. 179 (1969). [178] T. Cornelissen et al. The new ATLAS track reconstruction (NEWT). Journal

of Physics: Conference Series 119(3) (2008).

[179] R. Kalman. A new approach to linear filtering and prediction problems. Trans-actions of the ASME–Journal of Basic Engineering 82(Series D) (1960). [180] G. Aad et al. (ATLAS Collaboration). Charged-particle multiplicities in pp

in-teractions measured with the ATLAS detector at the LHC. New J.Phys. 13 (2011).

[181] G. Aad et al. (ATLAS Collaboration). Characterization of Interaction-Point Beam Parameters Using the pp Event-Vertex Distribution Reconstructed in the ATLAS Detector at the LHC. Tech. Rep. ATLAS-CONF-2010-027, CERN, Geneva (2010).

[182] G. Aad et al. (ATLAS Collaboration). Performance of primary vertex recon-struction in proton-proton collisions at√s = 7 TeV in the ATLAS experiment. Tech. Rep. ATLAS-CONF-2010-069, CERN, Geneva (2010).

[183] S. Pagan Griso et al. Vertex reconstruction plots: Collision performance plots for approval. Tech. Rep. ATL-COM-PHYS-2012-474, CERN, Geneva (2012). [184] S. Pagan Griso et al. Vertex reconstruction plots : Collision performance plots

for approval. Tech. Rep. ATL-COM-PHYS-2012-561, CERN, Geneva (2012). [185] M. Cacciari, G. P. Salam and G. Soyez. The Anti-k(t) jet clustering algorithm.

Journal of High Energy Physics 0804 (2008).

[186] M. Cacciari and G. P. Salam. Dispelling the N3 myth for the k

t jet-finder.

Phys.Lett. B641 (2006).

[187] G. Aad et al. (ATLAS Collaboration). Jet energy measurement with the ATLAS detector in proton-proton collisions at √s = 7 TeV. Eur.Phys.J. C73 (2013). [188] W. Lampl et al. Calorimeter clustering algorithms: Description and performance.

(14)

[189] G. Aad et al. (ATLAS Collaboration). Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC. Eur.Phys.J. C73 (2013).

[190] G. Aad et al. (ATLAS Collaboration). Jet energy resolution and selection ef-ficiency relative to track jets from in-situ techniques with the ATLAS detector using proton-proton collisions at a center of mass energy √s = 7 TeV. Tech. Rep. ATLAS-CONF-2010-054, CERN, Geneva (2010).

[191] G. Aad et al. (ATLAS Collaboration). Jet energy resolution in proton-proton collisions at√s = 7 TeV recorded in 2010 with the ATLAS detector. Eur. Phys. J. C 73 (2012).

[192] G. Aad et al. (ATLAS Collaboration). Pile-up subtraction and suppression for jets in ATLAS. Tech. Rep. ATLAS-CONF-2013-083, CERN, Geneva (2013). [193] G. Aad et al. (ATLAS Collaboration). Measurement of the b-tag efficiency in

a sample of jets containing muons with 5 fbâĹŠ1 of data from the ATLAS detector. Tech. Rep. ATLAS-CONF-2012-043, CERN, Geneva (2012).

[194] S. Hassani et al. A muon identification and combined reconstruction procedure for the ATLAS detector at the LHC using the (MUONBOY, STACO, MuTag) reconstruction packages. Nucl.Instrum.Meth. A572 (2007).

[195] T. Lagouri et al. A Muon Identification and Combined Reconstruction Procedure for the ATLAS Detector at the LHC at CERN. IEEE Trans.Nucl.Sci. 51 (2004). [196] G. Aad et al. (ATLAS Collaboration). Preliminary results on the muon recon-struction efficiency, momentum resolution, and momentum scale in ATLAS 2012 pp collision data. Tech. Rep. ATLAS-CONF-2013-088, CERN, Geneva (2013). [197] P. Nason. A New method for combining NLO QCD with shower Monte Carlo

algorithms. Journal of High Energy Physics 0411 (2004).

[198] G. Aad et al. (ATLAS Collaboration). Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data. Eur.Phys.J. C72 (2012).

[199] G. Aad et al. (ATLAS Collaboration). Improved electron reconstruction in AT-LAS using the gaussian sum filter-based model for bremsstrahlung. Tech. Rep. ATLAS-CONF-2012-047, CERN, Geneva (2012).

[200] L. Iconomidou-Fayard, K. Lohwasser, T. Serre and E. Tiouchichine. Electron efficiency measurements in early 2012 data. Tech. Rep. ATL-COM-PHYS-2012-783, CERN, Geneva (2012).

[201] A. Bocci et al. Photon identification efficiency measurements using z → ``γ events in 20.7 fb−1of pp collisions collected by ATLAS at√s = 8 TeV in 2012.

(15)

[202] G. Aad et al. (ATLAS Collaboration). Performance of missing transverse mo-mentum reconstruction in ATLAS studied in proton-proton collisions recorded in 2012 at 8 TeV. Tech. Rep. ATLAS-CONF-2013-082, CERN, Geneva (2013). [203] G. Aad et al. (ATLAS Collaboration). Performance of Missing Transverse Mo-mentum Reconstruction in Proton-Proton Collisions at 7 TeV with ATLAS. Eur.Phys.J. C72 (2012).

[204] G. Aad et al. (ATLAS Collaboration). Performance of missing transverse mo-mentum reconstruction in ATLAS with 2011 proton-proton collisions at √s = 7 TeV. Tech. Rep. ATLAS-CONF-2012-101, CERN, Geneva (2012).

[205] V. Sudakov. Vertex parts at very high-energies in quantum electrodynamics. Sov.Phys.JETP 3 (1956).

[206] B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand. Parton Fragmenta-tion and String Dynamics. Phys.Rept. 97 (1983).

[207] T. Sjostrand and M. van Zijl. A Multiple Interaction Model for the Event Structure in Hadron Collisions. Phys.Rev. D36 (1987).

[208] J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur.Phys.J. C53 (2008). [209] M. L. Mangano, M. Moretti, F. Piccinini and M. Treccani. Matching matrix

elements and shower evolution for top-quark production in hadronic collisions. Journal of High Energy Physics 0701 (2007).

[210] S. Catani, F. Krauss, R. Kuhn and B. Webber. QCD matrix elements + parton showers. Journal of High Energy Physics 0111 (2001).

[211] F. Krauss. Matrix elements and parton showers in hadronic interactions. Journal of High Energy Physics 0208 (2002).

[212] S. Hoeche, F. Krauss, S. Schumann and F. Siegert. QCD matrix elements and truncated showers. Journal of High Energy Physics 0905 (2009).

[213] G. Corcella et al. HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). Journal of High Energy Physics 0101 (2001).

[214] G. Corcella et al. HERWIG 6.5 release note. arXiv:hep-ph/0210213. [215] M. Bahr et al. Herwig++ Physics and Manual. Eur.Phys.J. C58 (2008). [216] J. Butterworth, J. R. Forshaw and M. Seymour. Multiparton interactions in

photoproduction at HERA. Z.Phys. C72 (1996).

[217] M. L. Mangano et al. ALPGEN, a generator for hard multiparton processes in hadronic collisions. Journal of High Energy Physics 07 (2003).

(16)

[218] S. Frixione and B. R. Webber. Matching NLO QCD computations and parton shower simulations. Journal of High Energy Physics 06 (2002).

[219] S. Frixione, P. Nason and B. R. Webber. Matching NLO QCD and parton showers in heavy flavour production. Journal of High Energy Physics 08 (2003). [220] S. Frixione, E. Laenen, P. Motylinski and B. R. Webber. Single-top production

in MC@NLO. Journal of High Energy Physics 03 (2006).

[221] S. Frixione et al. Single-top hadroproduction in association with a W boson. Journal of High Energy Physics 07 (2008).

[222] S. Frixione, P. Nason and C. Oleari. Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. Journal of High Energy Physics 0711 (2007).

[223] S. Alioli, P. Nason, C. Oleari and E. Re. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. Journal of High Energy Physics 1006 (2010).

[224] S. Alioli, S.-O. Moch and P. Uwer. Hadronic top-quark pair-production with one jet and parton showering. Journal of High Energy Physics 1201 (2012). [225] B. P. Kersevan and E. Richter-Was. The Monte Carlo event

genera-tor AcerMC version 2.0 with interfaces to PYTHIA 6.2 and HERWIG 6.5. arXiv:hep-ph/0405247.

[226] J. Alwall et al. MadGraph 5 : Going Beyond. Journal of High Energy Physics 1106 (2011).

[227] S. Agostinelli et al. (GEANT4). GEANT4: A Simulation toolkit. Nucl.Instrum.Meth. A506 (2003).

[228] G. Aad et al. The ATLAS Simulation Infrastructure. Eur.Phys.J. C70 (2010). [229] D. Tovey. Measuring the SUSY mass scale at the LHC. Phys.Lett. B498 (2001). [230] I. Hinchliffe et al. Precision SUSY measurements at CERN LHC. Phys.Rev.

D55 (1997).

[231] G. Aad et al. (ATLAS Collaboration). Luminosity determination in pp collisions at√s = 7 TeV using the ATLAS detector in 2011. Tech. Rep. ATLAS-CONF-2011-116, CERN, Geneva (2011).

[232] G. Aad et al. (ATLAS Collaboration). Luminosity Determination in pp Collisions at√s = 7 TeV Using the ATLAS Detector at the LHC. Eur.Phys.J. C71 (2011). [233] K. Hamilton and P. Nason. Improving NLO-parton shower matched simulations with higher order matrix elements. Journal of High Energy Physics 1006 (2010).

(17)

[234] S. Hoche, F. Krauss, M. Schonherr and F. Siegert. NLO matrix elements and truncated showers. Journal of High Energy Physics 1108 (2011).

[235] J. Pumplin et al. New generation of parton distributions with uncertainties from global QCD analysis. Journal of High Energy Physics 0207 (2002).

[236] M. Aliev et al. HATHOR: HAdronic Top and Heavy quarks crOss section cal-culatoR. Comput.Phys.Commun. 182 (2011).

[237] T. Sjostrand, S. Mrenna and P. Z. Skands. A Brief Introduction to PYTHIA 8.1. Comput.Phys.Commun. 178 (2008).

[238] G. Aad et al. (ATLAS Collaboration). Further ATLAS tunes of PYTHIA6 and Pythia 8. Tech. Rep. ATL-PHYS-PUB-2011-014, CERN, Geneva (2011). [239] A. Djouadi, M. Muhlleitner and M. Spira. Decays of supersymmetric

par-ticles: The Program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys.Polon. B38 (2007).

[240] S. Gieseke, C. Rohr and A. Siodmok. Colour reconnections in Herwig++. Eur.Phys.J. C72 (2012).

[241] AtlFast II. https://twiki.cern.ch/twiki/bin/viewauth/ATLAS/ AtlfastII.

[242] G. Aad et al. (ATLAS Collaboration). Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS experiment in√s = 8 TeV proton-proton collisions: supporting documentation. Tech. Rep. ATL-PHYS-INT-2012-063, CERN, Geneva (2012).

[243] G. Aad et al. (ATLAS Collaboration). Selection of jets produced in proton-proton collisions with the ATLAS detector using 2011 data. Tech. Rep. ATLAS-CONF-2012-020, CERN, Geneva (2012).

[244] T. J. Khoo. The hunting of the squark: Experimental strategies in the search for supersymmetry at the Large Hadron Collider. Ph.D. thesis, University of Cambridge (2013).

[245] C. Lester and D. Summers. Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders. Phys.Lett. B463 (1999).

[246] A. Barr, C. Lester and P. Stephens. m(T2): The Truth behind the glamour. J.Phys. G29 (2003).

[247] W. S. Cho, K. Choi, Y. G. Kim and C. B. Park. Gluino Stransverse Mass. Phys.Rev.Lett. 100 (2008).

[248] D. R. Tovey. On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders. Journal of High Energy Physics 0804 (2008).

(18)

[249] G. Polesello and D. R. Tovey. Supersymmetric particle mass measurement with the boost-corrected contransverse mass. Journal of High Energy Physics 1003 (2010).

[250] S. Chatrchyan et al. (CMS Collaboration). Data-driven estimation of the invisible z background to the susy met plus jets search. Tech. Rep. CMS-PAS-SUS-08-002, CERN, 2009. Geneva (2009).

[251] S. Ask et al. Using gamma+jets Production to Calibrate the Standard Model Z(nunu)+jets Background to New Physics Processes at the LHC. Journal of High Energy Physics 1110 (2011).

[252] S. Asai et al. Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS experiment in √s = 7 TeV proton-proton collisions: supporting documentation. Tech. Rep. ATL-PHYS-INT-2012-061, CERN, Geneva (2012).

[253] G. Aad et al. (ATLAS Collaboration). Measurement of the inclusive isolated prompt photon cross section in pp collisions at √s = 7 TeV with the ATLAS detector using 4.6 fb-1. arXiv:1311.1440.

[254] S. Owen. Data-driven estimation of the qcd multijet background to susy searches with jets and missing transverse momentum at ATLAS using jet smearing. Tech. Rep. ATL-PHYS-INT-2012-008, CERN, Geneva (2012).

[255] J. M. Campbell and R. Ellis. MCFM for the Tevatron and the LHC. Nucl.Phys.Proc.Suppl. 205-206 (2010).

[256] P. de Jong. Radiation of extra jets in susy 0-lepton simplified models: a mad-graph study. Tech. Rep. ATL-COM-PHYS-2011-1486, CERN, Geneva (2011). [257] K. Cranmer et al. Histfactory: A tool for creating statistical models for use with

roofit and roostats. Tech. Rep. CERN-OPEN-2012-016, New York U., New York (2012).

[258] L. Moneta, K. Cranmer, G. Schott and W. Verkerke. The RooStats project. In Proceedings of the 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, February 22-27, 2010 (2010). arXiv:1009.1003.

[259] R. Bruneliere et al. Setting exclusion limits in ATLAS supersymmetry searches with a likelihood ratio based method. Tech. Rep. ATL-PHYS-INT-2011-032, CERN, Geneva (2011).

[260] G. Cowan, K. Cranmer, E. Gross and O. Vitells. Asymptotic formulae for likelihood-based tests of new physics. Eur.Phys.J. C71 (2011).

[261] A. L. Read. Presentation of search results: the CLstechnique. Journal of Physics

(19)

[262] K. Matchev and R. Remington. Updated templates for the interpretation of LHC results on supersymmetry in the context of mSUGRA. arXiv:1202.6580. [263] G. Aad et al. (ATLAS Collaboration). Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb−1 ofs = 8 TeV proton-proton collision data. Tech. Rep.

ATLAS-CONF-2013-047, CERN, Geneva (2013).

[264] G. Aad et al. (ATLAS Collaboration). Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at √s = 8 TeV with the ATLAS detector. Tech. Rep. ATLAS-CONF-2013-062, CERN, Geneva (2013).

[265] Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb−1 of pp collisions at√s = 8 TeV with the ATLAS Detector. Tech. Rep. ATLAS-CONF-2013-061, CERN, Geneva (2013).

[266] G. Aad et al. Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at√s = 8 TeV proton-proton collisions using the ATLAS experiment. Journal of High Energy Physics 2013(10) (2013). [267] M. Cahill-Rowley, J. Hewett, A. Ismail and T. Rizzo. pMSSM Studies at the 7,

8 and 14 TeV LHC. arXiv:1307.8444.

[268] M. W. Cahill-Rowley et al. The New Look pMSSM with Neutralino and Gravitino LSPs. Eur.Phys.J. C72 (2012).

[269] C. Strege et al. Global Fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints. Journal of Cosmology and Astroparticle Physics 1304 (2013).

[270] P. Bechtle et al. Constrained Supersymmetry after two years of LHC data: a global view with Fittino. Journal of High Energy Physics 1206 (2012).

[271] O. Buchmueller et al. The CMSSM and NUHM1 in Light of 7 TeV LHC, Bs→ µ+µ− and XENON100 Data. Eur.Phys.J. C72 (2012).

[272] A. Fowlie et al. The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs. Phys.Rev. D86 (2012).

Referenties

GERELATEERDE DOCUMENTEN

131 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia 133

Thus, the model for the two body decay is determined from the simulation by using the difference between the reconstructed positron momentum and the mo- mentum of the positron at

Time beam positron One muon, one decay positron overlapping within 100 ns of a beam positron window type 14 or 15 and one or more beam positrons.. Simple beam positron DC overlap

Second, open access is important because it allows researchers in states with scarce funds to have access to research outcomes.. Research funds that can be used to gain access

Research in comparative politics and international relations investigating the resilience of authoritarian regimes in the digital age generally runs parallel to inquiries about

The number of subjects in the Amsterdam study was limited,, yet the results seen in this group were alarming enough to promptt a larger cohort study, supported by a

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

Later childhood effects of perinatal exposure to background levels of dioxins in the Netherlands.. ten