• No results found

From peptide chains to chains of peptides: multiscale modelling of self-assembling fibril-forming polypeptides - Bibliography

N/A
N/A
Protected

Academic year: 2021

Share "From peptide chains to chains of peptides: multiscale modelling of self-assembling fibril-forming polypeptides - Bibliography"

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

From peptide chains to chains of peptides: multiscale modelling of

self-assembling fibril-forming polypeptides

Schor, M.

Publication date

2011

Link to publication

Citation for published version (APA):

Schor, M. (2011). From peptide chains to chains of peptides: multiscale modelling of

self-assembling fibril-forming polypeptides. Ipskamp Drukkers B.V.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

Bibliography

[1] Service, R. F. (2005) How far can we push chemical self-assembly? Science 309, 95.

[2] Zhang, S. (2003) Fabrication of novel biomaterials through molecular self-assembly Nature Biotech-nology 21, 1171–1178.

[3] http://en.wikipedia.org/wiki.

[4] Cherny, I. and Gazit, E. (2008) Amyloids: not only pathological agents but also ordered nanomate-rials Angew. Chem. Int. Ed. 47, 4062–4069.

[5] Channon, K. and MacPhee, C. E. (2008) Possibilities for smart materials exploiting the self-assembly of polypeptide fibrils Soft Matter 4, 647–652.

[6] K ¨onig, H. M. and Kilbinger, A. F. M. (2007) Learning from nature: β-sheet mimicking copolymers get organized Angew. Chem. Int. Ed. 46, 8334–8340.

[7] Smith, J. F., Knowles, T. P., Dobson, C. M., Macphee, C. E., and Welland, M. E. (2006) Charac-terization of the nanoscale properties of individual amyloid fibrils Proc. Natl. Acad. Sci. USA 103, 15806–15811.

[8] Selkoe, D. J. (2003) Folding proteins in fatal ways Nature 426, 900–904. [9] Dobson, C. M. (2003) Protein folding and misfolding Nature 426, 884–890.

[10] Alzheimer, A. (1907) Uber eine eigenartige Erkrankung der Hirnrinde Allgemeine Zeitschrift f ¨ur Psy-chiatrie Psychisch-Gerichtliche Medizin 64, 146–148.

[11] Uversky, V. N. and Fink, A. L. (2004) Conformational constraints for amyloid fibrillation: the im-portance of being unfolded Biochim. Biophys. Acta 1698, 131–153.

[12] Chiti, F. and Dobson, C. M. (2006) Protein misfolding, functional amyloid and disease Annu. Rev. Biochem. 75, 333–366.

[13] Brera, B., Serrano, A., and deCeballos, M. L. (2000) β-amyloid peptides are cytotoxic to astrocytes in culture: a role for oxidative stress Neurobiology of Disease 7, 395–405.

[14] Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., and Cotman, C. W. (1993) Neurodegener-ation induced by β-amyloid peptides in vitro: the role of the peptide assembly state J. Neurosc. 13, 1676–1687.

[15] Simmons, L. K., May, P. C., Tomaselli, L. J., Rydel, R. E., Fuson, K. S., Brigham, E. F., Wright, S., Lieberburg, I., Becker, G. W., and Brems, D. N. (1994) Secondary structure of amyloid β peptide correlates with neurotoxic activity in vitro Mol. Pharmacology 45, 373–379.

[16] Kirkitadze, M. D., Bitan, G., and Teplow, D. B. (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies J. Neurosc. Res. 69, 567–577.

(3)

[17] Ono, K., Condron, M. M., and Teplow, D. B. (2009) Structure-neurotoxicity relationships of amyloid β-protein oligomers Proc. Natl. Acad. Sci. USA 106, 14745–14750.

[18] Selkoe, D. J. (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and be-havior Behav. Brain Res. 192, 106–113.

[19] Watson, D., Castano, E., Kokjohn, T. A., Kuo, Y. M., Lyubchenko, Y., Pinsky, D., Connolly, E. S., Esh, C., L ¨uhrs, D. C., Stine, W. B., Rowse, L. M., Emmerling, M. R., and Roher, A. E. (2005) Physico-chemical characteristics of soluble oligomeric Aβ and their pathological role in Alzheimer’s disease Neurol. Res. 27, 869–881.

[20] Badtke, M. P., Hammer, N. D., and Chapman, M. R. (2009) Functional amyloids signal their arrival Sci. Signal. 2, pe43.

[21] Greenwald, J. and Riek, R. (2010) Biology of amyloid: structure, function amd regulation Structure

18, 1244–1260.

[22] Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Normark, S., and Hultgren, S. J. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation Science 295, 851–855.

[23] Barnhart, M. M. and Chapman, M. R. (2006) Curli biogenesis and function Annu. Rev. Microbiol. 60, 131–147.

[24] Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1999) Bacterial biofilms: a common cause of persistent infections Science 284, 1318–1322.

[25] Eaglestone, S. S., Cox, B. S., and Tuite, M. F. (1999) Translation termination efficiency can be reg-ulated in saccharomyces cerevisiea by environmental stress through a prion-mediated mechanism EMBO J. 18, 1974–1981.

[26] Giaever, G., Chu, A. M., Ni, L., Connelly, C., and etal., L. R. (2002) Functional profiling of the saccharomyces cerevisiea genome Nature 418, 387–391.

[27] True, H. L. and Lindquist, S. L. (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity Nature 407, 477–483.

[28] True, H. L., Berlin, I., and Lindquist, S. L. (2004) Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits Nature 431, 184–187.

[29] Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., and etal., K. V. (2009) Functional amyloids as natural storage of peptide hormones in pituitory secretory granules Science 325, 328–332. [30] Dicko, C., Kenney, J. M., and Vollrath, F. (2006) β-Silks: enhancing and controlling aggregation Adv.

Prot. Chem. 73, 17–53.

[31] Vepari, C. and Kaplan, D. L. (2007) Silk as a biomaterial Prog. Polym. Sci 32, 991–1007.

[32] Du, N., Liu, X. Y., Narayanan, J., Lim, M. L. M., and Li, D. (2006) Design of superior spider silk: from nanostructure to mechanical properties Biophys. J. 91, 4528–4535.

[33] Lee, S. M., Pippel, E., G ¨osele, U., Dresbach, C., Qin, Y., Chandran, V., Br¨auniger, T., Hause, G., and Knez, M. (2009) Greatly increased toughness of infiltrated spider silk Science 324, 488–492.

[34] Shao, Z. Z. and Vollrath, F. (1999) The effect of solvents on the contraction and mechanical proper-ties of spider silk Polymer 40, 1799–1806.

(4)

[35] Sawaya., M., Sambashivan, S., Nelson, R., Ivanova, M. I., Sievers, S. A., Apostol, M., Thompson, M., Balbirnie, M., McFarlane, J. W. H., Madsen, A., Riekel, C., and Eisenberg, D. (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers Nature 447, 453–457.

[36] Serpell, L. C., Sunde, M., Benson, M. D., Tennent, G., Pepys, M. B., and Fraser, P. E. (2000) The protofilament substructure of amyloid fibrils J. Mol. Biol. 300, 1033–1039.

[37] Sunde, M. and Blake, C. (1997) The structure of amyloid fibrils by electron microscopy and x-ray diffraction Adv. Protein Chem. 50, 123–159.

[38] Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., and Tycko, R. (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state nmr Proc. Natl. Acad. Sci. USA 99, 16742–16747.

[39] T. Luhrs, C. Ritter, M. A., Riek-Loher, D., Bohrmann, B., Dbell, H., Schbert, D., and Riek, R. (2005) 3d-structure of the alzheimer’s amyloid-β(1-42) fibrils Proc. Natl. Acad. Sci. USA 102, 17342–17347. [40] Wasmer, C., Lange, A., vanMelckebeke, H., Siemer, A. B., Riek, R., and Meier, B. H. (2008) Amyloid

fibrils of the HET-s(218-289) prion form a β-solenoid with a triangular hydrophobic core Science

319, 1523–1526.

[41] Makin, O. S., Atkins, E., Sikorski, P., Johansson, J., and Serpell, L. C. (2005) Molecular basis for amyloid fibril formation and stability Proc. Natl. Acad. Sci. USA 102, 315–320.

[42] Nelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A. O., Riekel, C., Grothe, R., and Eisenberg, D. (2005) Structure of the cross-β spine of amyloid-like fibrils Nature 435, 773–778.

[43] Park, J., Kahng, B., and Hwang, W. (2009) Thermodynamic selection of steric zipper patterns in the amyloid cross β-spine PLoS Comp. Biol. 5, e1000492.

[44] Petkova, A. T., Yau, W. M., and Tycko, R. (2006) Experimental constraints on quarternary structures in Alzheimer’s β-amyloid fibrils Biochemistry 45, 498–512.

[45] vanMelckebeke, H., Wasmer, C., Lange, A., Ab, E., Loquet, A., and Meier, B. H. (2010) High resolu-tion structure of the HET-s(218-289) prion in its amyloid form obtained by solid state NMR J. Am. Chem. Soc. 132, 13765–13775.

[46] Davies, P. L., Baardsnes, J., Kuiper, M. J., and Walker, V. K. (2002) Structure and function of an-tifreeze proteins Phil. Trans. R. Soc. London B. 357, 927–935.

[47] Graham, L. A., Liou, Y. C., Walker, V. K., and Davies, P. L. (1997) Hyperactive antifreeze protein from beetles Nature 388, 727–728.

[48] Astbury, W. T., Dickinson, S., and Bailey, K. (1935) The X-ray interpretation of denaturation and the structure of the seed globulins Biochem. J. 10, 2351–2360.

[49] Jahn, T. R. and Radford, S. E. (2008) Folding versus aggregation: polypeptide conformations on competing pathways Arch. Biochem. Biophys. 469, 100–117.

[50] Levinthal, C. (1968) Are there pathways for protein folding? J. Chem. Phys. 65, 44–45.

[51] Dinner, A. R., Sali, A., Smith, L. J., Dobson, C. M., and Karplus, M. (2000) Understanding protein folding via free-energy surfaces from theory and experiment Trends Biochem. Sci. 25, 331–339. [52] Wolynes, P. G., Onuchic, J. N., and Thirumalai, D. (1995) Navigating the folding routes Science 267,

1619–1620.

(5)

[54] Gianni, S., Guydosh, N. R., Khan, F., Caldas, T. D., Mayir, U., White, G. W. N., Marco, M. L. D., Daggett, V., and Fersht, A. R. (2003) Unifying features in protein-folding mechanisms Proc. Natl. Acad. Sci. USA 100, 13286–13291.

[55] Uversky, V. N. (2008) Amyloidogenesis of natively unfolded proteins Curr. Alzheimer Res. 5, 260– 287.

[56] Bouchard, M., Zurdo, J., Nettleton, E. J., Dobson, C. M., and Robinson, C. V. (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy Protein Sci. 9, 960–967.

[57] Serio, T. R., Cashikar, A. G., Kowal, A. S., Sawicki, G. J., Moslehi, J. J., Serpell, L., Arnsdorf, M. F., and Lindquist, S. L. (2000) Nucleated conformational conversion and the replication of conforma-tional information by a prion determinant Science 289, 1317–1321.

[58] Collins, S. R., Douglass, A., Vale, R. D., and Weissman, J. S. (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition PLOS Biol. 2, 1582–1590.

[59] Cannon, M. J., Williams, A. D., Wetzel, R., and Myszka, D. G. (2004) Kinetic analysis of β-amyloid fibril elongation Anal. Biochem. 328, 67–75.

[60] Esler, W. P., Stimson, E. R., Jennings, J. M., Vinters, H. V., Ghilardi, J. R., Lee, J. P., Mantyh, P. W., and Maggio, J. E. (2000) Alzheimer’s disease amyloid propagation by a template dependent dock-lock mechanism Biochem. 39, 6288–6295.

[61] Nguyen, P. H., Li, M. S., Stock, G., Straub, J. E., and Thirumalai, D. (2007) Monomer adds to pre-formed structured oligomers of Aβ-peptides by a two-stage dock-lock mechanism Proc. Natl. Acad. Sci. USA 104, 111–116.

[62] Scheibel, T., Parthasarathy, R., Sawicki, G., Lin, X. M., Jaeger, H., and Lindquist, S. L. (2003) Con-ducting nanowires built by controled self-assembly of amyloid fibers and selectve metal deposition Proc. Natl. Acad. Sci. USA 100, 4527–4532.

[63] Channon, K. J., Devlin, G. L., and MacPhee, C. E. (2009) Efficient energy transfer within self-assembling peptide fibers: a route to light-harvesting nanomaterials J. Am. Chem. Soc. 131, 12520– 12521.

[64] Schneider, J. P., Pochan, D. J., Ozbas, B., Rajagopal, K., Pakstis, L., and Kretsinger, J. (2002) Re-sponsive hydrogels from the intramolecular folding and self-assembly of a designed peptide J. Am. Chem. Soc. 124, 15030–15037.

[65] Ozbas, B., Ketsinger, J., Rajagopal, K., Schneider, J. P., and Pochan, D. J. (2004) Salt-triggered pep-tide folding and consequent self-assembly into hydrogels with tunable modulus Macromolecules 37, 7331–7337.

[66] Haines, L. A., Rajagopal, K., Ozbas, B., Salick, D. A., Pochan, D. J., and Schneider, J. P. (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide J. Am. Chem. Soc. 127, 17025–17029.

[67] Pochan, D. J., Schneider, J. P., Kretsinger, J., Ozbas, B., Rajagopal, K., and Haines, L. (2003) Ther-mally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide J. Am. Chem. Soc. 125, 11802–11803.

[68] Burkoth, T. S., Benzinger, T. L. S., Urban, V., Lynn, D. G., Meredith, S. C., and Thiyagarajan, P. (1999) Self-assembly of Aβ-PEG block copolymer fibrils J. Am. Chem. Soc. 121, 7429–7430.

[69] Hardy, J. G. and Scheibel, T. R. (2009) Silk-inspired polymers and proteins Biochem. Soc. Trans. 37, 677–681.

(6)

[70] Smeenk, J. M., Otten, M. B. J., Thies, J., Tirrell, D. A., Stunnenberg, H. G., and vanHest, J. C. M. (2005) Controlled assembly of macromolecular β-sheet fibrils Angew. Chem. Int. Ed. 44, 1968–1971. [71] Martens, A. A., Portale, G., Werten, M. W. T., deVries, R. J., Eggingk, G., Stuart, M. A. C., and

deWolf, F. A. (2009) Triblock protein copolymers forming supramolecular nanotapes and pH-responsive gels Macromolecules 42, 1002–1009.

[72] Topilina, N. I., Ermolenkov, V. V., Higashiya, S., Welch, J. T., and Lednev, I. K. (2007) β-sheet folding of 11-kda fibrillogenic polypeptide is completely aggregation driven Biopolymers 86, 261–264. [73] Buehler, M. J. (2010) Computational and theoretical materiomics: properties of biological and de

novo bioinspired materials J. Comput. Theor. Nanosci. 7, 1203–1209.

[74] Nielsen, S. O., Bulo, R. E., Moore, P. B., and Ensing, B. (2010) Recent progress in adaptive multiscale molecular dynamics simulations of soft matter Phys. Chem. Chem. Phys. 12, 12401–12414.

[75] Schor, M., Martens, A. A., deWolf, F. A., Stuart, M. A. C., and Bolhuis, P. G. (2009) Prediction of solvent-dependent β-roll formation of a self-assembling silk-like protein domain Soft Matter 5, 2658–2665.

[76] Hockney, R. W. and Eastwood, J. W. (1981) Computer simulations using particles, McGraw-Hill, . [77] Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R. (1982) A computer

simula-tion method for the calculasimula-tion of equilibrium constants for the formasimula-tion of physical clusters of molecules: application to small water clusters J. Chem. Phys. 76, 637–649.

[78] van derSpoel, D., Lindahl, E., Hess, B., Groenhof, G., and Mark, A. E. (2005) GROMACS: Fast, flexible and free J. Comput. Chem. 26, 1701–1718.

[79] Hess, B., Kutzner, C., van derSpoel, D., and Lindahl, E. (2008) Gromacs 4: Algorithms for highly efficient, load-balanced and scalable molecular dynamics J. Chem. Theory Comput. 4, 435–447. [80] http://www.cmm.upenn.edu/resources/indexsoft.html.

[81] Hoover, W. (1985) Canonical dynamics: equilibrium phase-space distributions Phys. Rev. A 31, 1695–1697.

[82] Nos´e, S. (1984) A molecular dynamics method for simulations in the canonical ensemble Mol. Phys.

52, 255–268.

[83] Andersen, H. C. (1980) Molecular dynamics simulations at constant pressure and/or temperature J. Chem. Phys. 72, 2384–2389.

[84] Parrinello, M. and Rahman, A. (1981) Polymorphic transitions in single crystals: a new molecular dynamics method J. Appl. Phys. 52, 7182.

[85] Frenkel, D. and Smit, B. (2002) Understanding molecular simulation: from algorithms to applica-tions, Academic Press, San Diego.

[86] Cornell, W., Cieplak, P., Bayly, C. I., and Gould, I. R. (1995) A 2nd generation force-field for simu-lation of proteins, nucleic acids and organic molecules J. Am. Chem. Soc. 117, 5179–5197.

[87] Jr, A. D. M., Bashford, D., Bellott, M., Jr, R. L. D., Evanseck, J. D., Field, M. J., Fisher, S., Gao, J., Guo, H., and Ha, S. (1998) All-atom emperical potential for molecular modeling and dynamics studies of proteins J. Phys. Chem. B 102, 3586–3616.

[88] Scott, W. R. P., H ¨unenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Kr ¨uger, P., and vanGusteren, W. F. (1999) The gromos biomolecular simulation program package J. Phys. Chem. 103, 3596–3607.

(7)

[89] Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J. (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of anorganic liquids. J. Am. Chem. Soc. 118, 11235–11236.

[90] MacKerell, A. D. (2004) Emperical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 25, 1584–1604.

[91] Darden, T. A., York, D. M., and Pedersen, L. (1993) Particle Mesh Ewald: An Nlog(N) method for ewald sums in large systems. J. Chem. Phys. 98, 10089–10092.

[92] Essman, U., Perera, L., Berkowitz, M., Daren, T., Lee, H., and Pedersen, L. (1995) A smooth particle mesh Ewald method J. Chem. Phys. 103, 8577–8592.

[93] Berendsen, H. J. C., Postma, J. P. M., vanGunsteren, W. F., and Hermans, J. (1981) Interaction models for water in relation to protein hydration Interaction Forces , 331–342.

[94] Jorgensen, W. L., Chandrasekhar, J., Madura, J., Impey, R., and Klein, M. (1983) Comparison of simple potential functions for simulating liquid water J. Chem. Phys. 79, 926–935.

[95] Jorgensen, W. L., Blake, J. F., and Buckner, J. K. (1989) Free-energy of TIP4P water and the free energies of hydration of CH4 and CL- from the statistical perturbation theory J. Chem. Phys. 129, 193–200.

[96] Miyamoto, S. and Kollman, P. A. (2001) SETTLE: An analytical version of the SHAKE and RATTLE algorithms for rigid water molecules J. Comp. Chem. 13, 952–962.

[97] Allen, M. P. and Tildesley, D. J. (1987) Computer simulations of liquids, Clarendon Press, Oxford. [98] Andersen, H. C. (1983) Rattle: a velocity version of the shake algorithm for molecular dynamics

simulations J. Comput. Phys. 52, 24–34.

[99] Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M. (1997) LINCS: A linear constraint solver for molecular simulations J. Comp. Chem. 18, 1463–1472.

[100] Tuckerman, M., Berne, B. J., and Martyna, G. J. (1990) Reversible multiple time scale molecular dynamics J. Phys. Chem 97, 1990–2001.

[101] H. Taketomi, Y. U. and Go, N. (1975) Studies on protein folding, unfolding and fluctuations by computer simulation Int. J. Pept. Protein Res. 7, 445–459.

[102] Hinsen, K. (1998) Analysis of domain motions by approximate normal mode calculations Proteins

33, 417–429.

[103] Levitt, M. (1976) A simplified representation of protein conformations for rapid simulations of protein folding J. Mol. Biol. 104, 59–107.

[104] Brown, S., Fawzi, N. J., and Head-Gordon, T. (2003) Coarse grained sequences for protein folding and design Proc. Natl. Acad. Sci. USA 100, 10712–10717.

[105] Honeycutt, J. D. and Thirumalai, D. (1992) The nature of folded states of globular proteins Biopoly-mers 32, 695–709.

[106] Monticelli, L., Kandasamy, S., Periole, X., Larson, R., Tieleman, D., and Marrink, S. (2008) The MARTINI coarse grained force field: extension to proteins J. Chem. Theory Comput. 4, 819–834. [107] Smith, A. V. and Hall, C. K. (2001) Protein refolding versus aggregation: computer simulations on

an intermediate-resolution protein model J. Mol. Biol. 132, 187–202.

[108] Bereau, T. and Deserno, M. (2009) Generic coarse-grained model for protein folding and aggrega-tion. J. Chem. Phys. 130, 235106.

(8)

[109] Derreumaux, P. and Mousseau, N. (2007) Coarse-grained protein molecular dynamics simulations J. Chem. Phys. 126, 025101.

[110] Das, P., Matysiak, S., and Clementi, C. (2005) Balancing energy and entropy: a minimalist model for the characterization of protein folding landscapes Proc. Natl. Acad. Sci. USA 102, 10141–10146. [111] Liwo, A., Khalili, M., and Scheraga, H. A. (2005) Ab initio simulations of protein folding pathways

by molecular dynamics with the united-residue model of polypeptide chains Proc. Natl. Acad. Sci. USA 102, 2362–2367.

[112] Bolhuis, P. G. and Louis, A. A. (2002) How to derive and parameterize effective potentials in colloid-polymer mixtures Macromolecules 35, 1860–1869.

[113] Izvekov, S. and Voth, G. A. (2005) A multiscale coarse graining method for biomolecular systems J. Phys. Chem. B 109, 2469–2473.

[114] Marrink, S., Risselada, H., Yefimov, S., Tieleman, D. P., and deVries, A. H. (2007) The MARTINI coarse grained model for biomolecular simulations J. Chem. Phys. B 111, 7812–7824.

[115] Ding, F., Buldyrev, S. V., and Dokholyan, N. V. (2005) Folding Trp-cage to NMR resolution native structure using a coarse grained protein model Biophys. J. 88, 147–155.

[116] Fawzi, N. J., Yap, E.-H., Okabe, Y., Kohlstedt, K. L., Brown, S. P., and Head-Gordon, T. (2008) Contrasting disease and non-disease protein aggregation by molecular simulation Acc. Chem. Res.

41, 1037–1047.

[117] Ayton, G. S., Lyman, E., and Voth, G. A. (2010) Hierarchical coarse graining strategy for protein-membrane systems to access mesoscopic scales Faraday Diss. 144, 347–358.

[118] Sengupta, D. and Marrink, S. J. (2010) Lipid-mediated interactions tune the association of gly-cophorin a helix and its disruptive mutants in membranes Phys. Chem. Chem. Phys. 12, 12987–12996. [119] Skolnick, J., Jaroszewski, L., Kolinski, A., and Godzik, A. (1997) Derivation and testing of pair potentials for protein folding: when is the quasichemical approximation correct? Protein Sci. 6, 676–688.

[120] Betancourt, M. R. and Thirumalai, D. (1999) Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes Protein Sci.

8, 361–369.

[121] Jernigan, R. L. and Babar, I. (1996) Structure-derived potentials and protein simulations Curr. Opin. Struct. Biol. 6, 195–209.

[122] Dima, R. I. and Thirumalai, D. (2002) Exploring protein aggregation and self-propagation using lattice models: phase diagrams and kinetics Protein Sci. 11, 1036–1049.

[123] Sali, A., Shakhnovich, E., and Karplus, M. (1994) Kinetics of protein folding: a lattice model study of the requirements for folding to the native state J. Mol. Biol. 235, 1614–1636.

[124] Leonhard, K., Prausnitz, J. M., and Radke, C. J. (2003) Solvent-amino acid interaction energies in 3-D-lattice MC simulations of model proteins. Aggregation thermodynamics and kinetics Phys. Chem. Chem. Phys. 5, 5291–5299.

[125] Li, M. S., Klimov, D. K., Straub, J. E., and Thirumalai, D. (2008) Probing the mechanism of fibril formation using lattice models J. Chem. Phys. 129, 175101.

[126] Torrie, G. M. and Valleau, J. P. (1977) Nonphysical sampling in monte carlo free-energy estimation: Umbrella sampling J. Comp. Phys. 23, 141–151.

(9)

[127] Voter, A. F. (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events Phys. Rev. Lett. 78, 3908–3911.

[128] Laio, A. and Parrinello, M. (2002) Escaping free energy minima Proc. Natl. Acad. Sci. USA 99, 12562– 12566.

[129] Gr ¨ubmuller, H. (1995) Predicting slow structural transitions in macromolecular systems: confor-mational flooding Phys. Rev. E 52, 2893–2906.

[130] Isralewitz, B., Gao, M., and Schulten, K. (2001) Steered molecular dynamics and mechanical func-tion of proteins Curr. Opin. Struct. Biol. 11, 224–230.

[131] Sugita, Y. and Okamoto, Y. (1999) Replica-exchange molecular dynamics method for protein fold-ing Chem. Phys. Lett. 314, 141–151.

[132] Souaille, M. and Roux, B. (2001) Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations Comp. Phys. Comm. 135, 40–57.

[133] Le, L., Lee, E. H., Hardy, D. J., Truong, T. N., and Schulten, K. (2010) Molecular dynamics simu-lations suggest that electrostatic funnel directs binding of tamiflu to influenza N1 neuramidases PLoS Comput. Biol. 6, e1000939.

[134] Gr ¨ubmuller, H., Heytmann, B., and Tavan, P. (1996) Ligand binding: molecular mechanics calcula-tion of streptavidin-biotin complex Science 270, 997–999.

[135] Baldauf, C., Schneppenheim, R., Stacklies, W., Obster, T., Pieconka, A., Schneppenheim, S., Budde, U., Zhou, J., and Gr¨ater, F. (2009) Shear-induced unfolding activates von willebrand factor a2 do-main for proteolysis J. Thromb. Heamost. 7, 2096–2105.

[136] Lu, H., Isralewitz, B., Krammer, A., Vogel, V., and Schulten, K. (1998) Unfolding of titin im-munoglobulin domains by steered molecular dynamics simulation Biophys. J. 75, 662–671.

[137] Xiao, S., Stacklies, W., Cetinkaya, M., Markert, B., and Gr¨ater, F. (2009) Mechanical response of silk crystalline units from force-distribution analysis Biophys. J. 96, 3997–4005.

[138] Keten, S., Xu, Z., Ihle, B., and Buehler, M. J. (2010) nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk Nature materials 9, 359–367.

[139] Jarzynski, C. (1997) Nonequilibrium equality for free energy differences Phys. Rev. Lett. 78, 2690– 2693.

[140] Hummer, G. and Szabo, A. (2001) Free energy reconstruction from non-equilibrium single molecule pulling experiments Proc. Natl. Acad. Sci. USA 98, 3658–3661.

[141] Park, S., Khalili-Araghi, F., Tajkhorsid, E., and Schulten, K. (2003) Free energy calculation from steered molecular dynmics simulations using jarzynski’s equality J. Chem. Phys. 119, 3559–3566. [142] Park, S. and Schulten, K. (2003) Calculating potentials of mean force from steered molecular

dy-namics simulations J. Chem. Phys 120, 5946–5961.

[143] Earl, D. J. and Deem, M. W. (2005) Parallel tempering: Theory, applications and new perspectives Phys. Chem. Chem. Phys. 7, 3910–3916.

[144] Rathore, N., Chopra, M., and dePablo, J. J. (2005) Optimal allocation of replicas in parallel temper-ing simulations J. Chem. Phys. 122, 024111.

[145] Nadler, W. and Hansmann, U. H. E. (2008) Optimized explicit-solvent replica exchange molecular dynamics from scratch J. Phys. Chem. B 112, 10386–10387.

(10)

[146] Vreede, J., Crielaard, W., Hellingwerf, K., and Bolhuis, P. G. (2005) Predicting the signaling state of photoactive yellow protein Biophys. J. 88, 7762–7774.

[147] Lei, H., Wu, C., Liu, H., and Duan, Y. (2007) Folding free energy landscape of villin headpiece subdomain from molecular dynamics simulations Proc. Natl. Acad. Sc. USA 104, 4925–4930. [148] Kim, S., Takeda, T., and Klimov, D. K. (2010) Mapping conformational ensembles of Aβ oligomers

in molecular dynamics simulations Biophys. J. 99, 1949–1958.

[149] Jang, S. and Shin, S. (2008) Computational study on the structural diversity of amyloid β peptide Aβ10−35J. Phys. Chem. B 112, 3479–3484.

[150] Fukunishi, H., Watanabe, O., and Takada, S. (2002) On the hamiltonian replica-exchange method for efficient sampling of biomolecular systems: application to protein structure prediction J. Chem. Phys. 116, 9058–9067.

[151] Vreede, J., Wolf, M. G., deLeeuw, S. W., and Bolhuis, P. G. (2009) Reordering hydrogen bonds using hamiltonian replica echange enhances sampling of conformational changes in biomolecular systems J. Phys. Chem. 113, 6484–6494.

[152] Dellago, C., Bolhuis, P. G., and Geissler, P. L. (2002) Transition path sampling Adv. Chem. Phys. 123, 1–78.

[153] Bolhuis, P. G. and Dellago, C. (2010) Trajectory based rare event simulations Rev. Comp. Chem. 27, 111.

[154] Bolhuis, P. G. (2003) Transition path sampling on diffusive barriers J. Phys. Condens. Matter 15, 5113–5120.

[155] Juraszek, J. and Bolhuis, P. G. (2006) Sampling the multiple folding mechanisms of trp-cage in explicit solvent Proc. Natl. Acad. Sci. USA 103, 15859.

[156] Vreede, J., Juraszek, J., and Bolhuis, P. G. (2010) Predicting the reaction coordinates of millisecond light-induced conformational changes in photoactive yellow protein Proc. Natl. Acad. Sc. USA 107, 2397–2402.

[157] Peters, B. and Trout, B. L. (2006) Obtaining reaction coordinates by likelihood maximization ap-proach for finding reaction coordinates J. Chem. Phys. 125, 054108.

[158] Peters, B., Beckham, G. T., and Trout, B. L. (2007) Extension to the likelihood maximization ap-proach for finding reaction coordinates J. Chem. Phys. 127, 034109.

[159] Krejchi, M. T., Atkins, E. D., Waddon, A. J., Fournier, M. J., Mason, T. L., and Tirrell, D. A. (1994) Chemical sequence control of β-sheet assembly in macromolecular crystals of periodic polypep-tides Science 265, 1427–1432.

[160] Krejchi, M. T., Cooper, S. J., Deguchi, Y., Atkins, E. D., Fournier, M. J., Mason, T. L., and Tirrell, D. A. (1997) Crystal structures of chain-folded antiparallel β-sheet assemblies from sequence designed periodic polypeptides Macromolecules 30, 5012–5024.

[161] Topilina, N. I., Higashiya, S., Rana, N., Ermolenkov, V. V., Kossow, C., Carlsen, A., Ngo, S. C., Wells, C. C., Eisenbraun, E. T., and Dunn, K. A. (2006) Bilayer fibril formation by genetically engineered polypeptides: preparation and characterization Biomacromolecules 7, 1104–1111.

[162] Werten, M. W. T., Moers, A. P. H. A., Vong, T. H., Zuilhof, H., vanHest, J. C. M., and deWolf, F. A. (2008) Biosynthesis of amphiphilic silk-like polymer Biomacromolecules 9, 1705–1711.

(11)

[163] Werten, M. W. T., Wisselink, W. H., van denBosch, T. J., deBruin, E. C., and deWolf, F. A. (2001) Secreted production of a custom-degigned, highly hydrophilic gelatin in Pichia pastoris Protein Eng. 14, 447–454.

[164] Chen, C. C., Krejchi, M. T., Tirrell, D. A., and Hsu, S. L. (1995) Effect of water on the structure of a model polypeptide Macromolecules 25, 1464–1469.

[165] Fossey, S. A., Nemethy, G., Gibson, K. D., and Sheraga, H. A. (1991) Conformational energy studies of β-sheets of model silk fibroin peptides. i. sheets of poly(ala-gly) chains Biopolymers 31, 1529–1541. [166] Yoder, M. D. and Jurnak, F. (1995) Protein motifs. 3. The parallel beta helix and other coiled folds

FASEB J. 9, 335–342.

[167] Rhee, Y. M. and Pande, V. S. (2003) Multiplexed-replica exchange molecular dynamics method for protein folding simulation Biophys. J. 84, 775–786.

[168] Chandler, D. (2005) Interfaces and the driving force of hydrophobic assembly Nature 437, 640–647. [169] Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., and Jorgensen, W. L. (2001) Evaluation and reparametrization of the opls-aa force field for proteins via comparison with accurate quantum chemical calculations on peptides J. Phys. Chem. B 105, 6474–6487.

[170] Oostenbrink, C., Villa, A., Mark, A. E., and vanGunsteren, W. F. (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force field parameter sets 53A5 and 53A6 J. Comput. Chem. 25, 1656–1676.

[171] Koradi, R., Billeter, M., and Wuthrich, K. (1996) Molmol: a program for display and analysis of macromolecular structures J. Mol. Graphics 14, 51–55.

[172] Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: Visual molecular dynamics J. Mol. Graphics

14, 33–38.

[173] Pohl, G., Beke, T., Borbely, J., and Perczel, A. (2006) Prediction of folding preference of 10kDa silk-like proteins using a LEGO approach and ab inition calculations J. Am. Chem. Soc. 128, 14548–14559. [174] Asakura, T., Sato, H., Moro, F., Nakazawa, Y., and Aoki, A. (2007) Lamellar structure in poly(ala-gly) determined by solid-state nmr and statistical mechanical calculations J. Am. Chem. Soc. 129, 5703–5709.

[175] Baumann, U., Wu, S., Flaherty, K. M., and McKay, D. B. (1993) 3-dimensional structure of the al-kaline protease of pseudomonas aeruginosa - a 2-domain protein with a calcium-binding parallel β-roll motif EMBO J. 12, 3357–3364.

[176] Ritter, C., Maddelein, M. L., Siemer, A. B., Luhrs, T., Ernst, M., Meier, B. H., Saupe, S. J., and Riek, R. (2005) Correlation of structural elements and infectivity of the HET-s prion Nature 435, 844–848. [177] Jewett, A. I., Baumketner, A., and Shea, J.-E. (2004) Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway Proc. Natl. Acad. Sci. USA 102, 13192–13197.

[178] Huber, T., Torda, A., and vanGunsteren, W. (1994) Local elevation: a method for improving the searching properties of molecular dynamics simulation J. Comput. Aided Mol. Des. 8, 695–708. [179] Doi, M. and Edwards, S. F. (1988) The Theory of Polymer dynamics, Oxford University Press, New

York.

(12)

[181] Schor, M., Ensing, B., and Bolhuis, P. G. (2010) A simple coarse grained model for self-assembling silk-like protein fibers Faraday Discuss. 144, 127–142.

[182] Jorgensen, W. L., Maxwell, D. S., and Tirado-Rives, J. (1996) Development and testing of the OPLS all atom force field on conformational energetics and properties of organic liquids J. Am. Chem. Soc.

118, 11225–11236.

[183] Russel, W. B., Saville, D. A., and Schowalter, W. R. (1989) Colloidal dispersions, Cambridge Uni-versity Press, Cambridge.

[184] Abeln, S. and Frenkel, D. (2008) Disordered flanks prevent peptide aggregation PLoS Comput Biol.

12, e1000241.

[185] Shakhnovich, E. I. (1994) Proteins with selected sequences fold into unique native conformation Phys. Rev. Lett. 72, 3907–3910.

[186] Coluzza, I., Muller, H. G., and Frenkel, D. (2003) Designing refoldable model molecules Phys. Rev. E 68, 46703.

[187] Miyazawa, S. and Jernigan, R. L. (1985) Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation Macromolecules 18, 534–552.

[188] Abeln, S. and Frenkel, D. (2011) Accounting for protein-solvent contacts facilitates design of nonag-gregating lattice proteins Biophys. J. 100, 1–8.

[189] Abeln, S. and Frenkel, D. to be published to be published (2011).

[190] Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera - a visualization system for exploratory research and analysis J. Comput. Chem. 25, 1605–1612.

[191] O’Brien, E. P., Okamoto, Y., Straub, J. E., Brooks, B. R., and Tirumalai, D. (2009) Thermodynamic perspective on the dock-lock growth mechanism of amyloid fibrils J. Phys. Chem. B 113, 14421– 14430.

[192] Reddy, G., Straub, J. E., and Thirumalai, D. (2009) Dynamics of locking peptides onto the growing amyloid fibrils Proc. Natl. Acad. Sci. USA 106, 11948–11953.

[193] Massi, F. and Straub, J. E. (2001) Energy landscape theory for Alzheimer’s amyloid β-peptide fibril elongation Proteins 42, 217–226.

[194] Brange, J., Andersen, L., Laursen, E. D., Meyn, G., and Rasmussen, E. (1997) Toward understanding insulin fibrillation J. Pharm. Sci. 86, 517–525.

[195] Ahmad, A., Uversky, V. N., Hong, D., and Fink, A. L. (2005) Early events in the fibrillation of monomeric insulin J. Biol. Chem. 280, 42669–42675.

[196] Nielsen, L., an dA. Coats, R. K., Frokjear, S., Brange, J., Vyas, S., Uversky, V. N., and Fink, A. L. (2001) Effect of environmental factors on the kinetics of insulin fibril formation” elucidation of the molecular mechanism Biochemistry 40, 6036–6046.

[197] Hong, D.-P., Ahmad, A., and Fink, A. L. (2006) Fibrillation of human insulin A and B chains Bio-chemistry 45, 9342–9353.

[198] Dische, F. E., Wernstedt, C., Westermark, G. T., Westermark, P., Pepys, M. B., Rennie, J. A., Gilbey, S. G., and Watkins, P. J. (1988) Insulin as an amyloid-fibril protein at sites of repeated insulin injec-tions in a diabetic patient Diabetologica 31, 158–161.

(13)

[199] Storkel, S., Schneider, H. M., Muntefering, H., and Kashiwagi, S. (1983) Latrogenic, insulin-dependent, local amyloidosis Lab. Invest. 48, 108–111.

[200] Ivanova, M. I., Sievers, S. A., Sawaya, M. R., Wall, J. S., and Eisenberg, D. (2009) Molecular basis for insulin fibril assembly Proc. Natl. Acad. Sci. USA 106, 18990–18995.

[201] Reddy, A. S., Chopra, M., and dePablo, J. J. (2010) GNNQQNY-investigation of early steps during amyloid formation Biophys. J. 98, 1038–1045.

[202] Todorova, N., Legge, F. S., Treutlein, H., and Yarovsky, I. (2008) Systematic comparison of emperical forcefields for molecular dynamics simulation of insulin J. Phys. Chem. B 112, 11137–11146.

[203] Bussi, G., Donadio, D., and Parrinello, M. (2007) Canonical sampling through velocity-rescaling J. Chem. Phys. 126, 014101.

[204] Wolf, M. G., Jongejan, J. A., Laman, J. D., and deLeeuw, S. W. (2008) Quantitative assessment of amyloid fibril growth of short peptides from simulations: calculating association constants to dis-sect side chain importance J. Am. Chem. Soc. 130, 13493–13498.

[205] Wolf, M. G., Jongejan, J. A., Laman, J. D., and deLeeuw, S. W. (2008) Rapid free energy calculation of peptide self-assembly by REMD umbrella sampling J. Phys. Chem. B 112, 13493–13498.

[206] Vanden-Eijnden, E. (2006) Towards a theory of transition paths J. Stat. Phys. 123, 503–523.

[207] Metzer, P., Sch ¨utte, C., and Vanden-Eijnden, E. (2006) Illustration of transition path theory on a collection of simple examples J. Chem. Phys. 125, 084110.

Referenties

GERELATEERDE DOCUMENTEN

Voordat in een volgende paragraaf nader wordt ingezoomd op de vraag in welke mate bewoners van de regio amsterdam kunnen worden bestempeld als regiogebruikers, is het van belang om

Wanneer uitsluitend onderscheid wordt gemaakt naar niet werken, werken binnen de woongemeente en buiten de woongemeente is het gedrag van de bevolking van Haarlemmermeer

een polycentrische stedeling maakt niet alleen gebruik van zijn of haar woonplaats maar benut in het dagelijkse leven een aantal verschillende plekken voor verschillende

de Wijs-Mulkens (1983), Het dagelijks leven in een stadsgewest; Een onderzoek onder bewoners van 13 woonmilieus in het stadsgewest Amsterdam naar de invloed van de woonsituatie op

Tijdsbestedingsonderzoek 1975 Sociaal Cultureel Planbureau 1309 76% Tijdsbestedingsonderzoek 1980 Sociaal Cultureel Planbureau 2730 54% Tijdsbestedingsonderzoek 1985 Sociaal

Is het aandeel bewoners in de regio Amsterdam dat een divers palet van plekken bezoekt – de polycentrische stedelingen – toegenomen en in hoeverre kan deze verande- ring

the findings of this study will add to the academic debate on the rise of polycentric urban regions and boost academic and public discussions on spatial organisation, trends in

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of