• No results found

Discrete particle simulations of bubble-to-emulsion phase mass transfer in single-bubble fluidized beds

N/A
N/A
Protected

Academic year: 2021

Share "Discrete particle simulations of bubble-to-emulsion phase mass transfer in single-bubble fluidized beds"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Discrete particle simulations of bubble-to-emulsion phase

mass transfer in single-bubble fluidized beds

Citation for published version (APA):

Tan, L., Roghair, I., & van Sint Annaland, M. (2017). Discrete particle simulations of bubble-to-emulsion phase

mass transfer in single-bubble fluidized beds. Particuology, 33, 80-90.

https://doi.org/10.1016/j.partic.2016.09.008

Document license:

TAVERNE

DOI:

10.1016/j.partic.2016.09.008

Document status and date:

Published: 01/08/2017

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

ContentslistsavailableatScienceDirect

Particuology

jou rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / p a r t i c

Discrete

particle

simulations

of

bubble-to-emulsion

phase

mass

transfer

in

single-bubble

fluidized

beds

Lianghui

Tan,

Ivo

Roghair,

Martin

van

Sint

Annaland

ChemicalProcessIntensification,MultiphaseReactorsGroup,DepartmentofChemicalEngineering&Chemistry,EindhovenUniversityofTechnology,P.O. Box513,5600MBEindhoven,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4July2016

Receivedinrevisedform22August2016 Accepted8September2016

Availableonline6February2017 Keywords:

Masstransfer Discreteparticlemodel Fluidizedbed Bubble-to-emulsion

a

b

s

t

r

a

c

t

AclassicalEuler–Lagrangianmodelforgas–solidflowswasextendedwithgascomponentmass conser-vationequationsandusedtoobtainfundamentalinsightsintobubble-to-emulsionphasemasstransferin bubblinggas–solidfluidizedbeds.Simulationsofinjectedsinglerisingbubblesunderincipient fluidiza-tionconditionswerecarriedout,usingGeldart-Aand-Bparticles.Phenomenaobservedinthesimulations andthoseofvarioustheoreticalmodelsusedtoderivephenomenologicalmodelswerecomparedto chal-lengetheassumptionsunderlyingthephenomenologicalmodels.Thebubble-to-emulsionphasemass transfercoefficientscalculatedforthesimulationsusingGeldart-Bparticleswereinagoodagreement withpredictionsmadeusingtheDavidsonandHarrison(1963)model.Thebubble-to-emulsionphase masstransfercoefficientsforGeldart-Aparticleswere,however,muchsmallerthanthepredictions obtainedfromtheoreticalmodels(e.g.ChibaandKobayashi(1970)).Thenewlydevelopedmodelallows adetailedanalysisofvarioushydrodynamicaspectsandtheireffectsonthemasstransfercharacteristics inandaroundrisingbubblesinfluidizedbeds.

©2017ChineseSocietyofParticuologyandInstituteofProcessEngineering,ChineseAcademyof Sciences.PublishedbyElsevierB.V.Allrightsreserved.

Introduction

Gas–solid fluidized bed reactors are often used in process

industriesowingtotheirexcellentmixingandheattransfer char-acteristics.Itiswellknownthatbubblesprevailinthesebedsand theirdynamicsareresponsiblefortheagitationofsolidsandthe accompanyingfavorableheatandmasstransfercharacteristicsof fluidizedbeds.Animportantfoundationforarationaldesignof flu-idizedbedreactorsisathoroughunderstandingofthemasstransfer

processes in fluidized beds,specificallythe bubble-to-emulsion

phasemasstransfer.Thisphenomenonoccursviathecombined

effectsofgasdiffusion,coherentgasflowandsolidsmotion car-ryingadsorbedgasatoms (Davidson& Harrison,1963;Kunii&

Levenspiel,1991).

Single-bubblefluidizedbedsandfreelybubblingfluidizedbeds

havebeenusedinpastdecadestostudythebubble-to-emulsion

phase masstransfer, both experimentally and numerically(a.o.

Dang,Kolkman,Gallucci,&vanSintAnnaland,2013;Deshmukh,

vanSintAnnaland,&Kuipers,2007;Hernández-Jiménez,

Gómez-García,Santana,&Acosta-Iborra,2013;Patil,vanSintAnnaland,&

∗ Correspondingauthor.Fax:+31402475833.

E-mailaddress:M.v.SintAnnaland@tue.nl(M.vanSintAnnaland).

Kuipers,2003;Pavlinetal.,2007).Phenomenologicalmodels,used

forthedesign ofindustrial-scalereactors,canonlyprovide reli-ablepredictionswhenaccuratemasstransfercoefficientsareused. Untilnow,mostcorrelationsforthesecoefficientshavebeenbased on(i)analytical considerationsand(ii)experimentsusing

inva-sivemeasurementtechniques.Severalproblemsarisewhenusing

phenomenologicalmodels.First,variousassumptionsaremadeto

reducethemathematicalanalysis,butthescopeoftheirvalidityhas notyetbeenanalyzedindetail.Second,theinvasiveexperimental

techniquesmaydisturbtheflow andare limitedtopoint

mea-surements.Noninvasiveopticaltechniques(e.g.,Dangetal.,2013;

Mülleretal.,2006;Pavlinetal.,2007Roels&Carmeliet,2006)have

beendevelopedinthemeantime,butdetailedunderstandingofthe

underlyingmechanismsremainsoutofreachparticularlyowing

todifficultiesinmeasuringthegasconcentrationintheemulsion phase(Dangetal.,2013).

Numericalsimulations(i.e.,computationalfluiddynamics)can shedmorelightonthedetailedprocessofinterphasemasstransfer.

Patiletal.(2003)andHernández-Jiménezetal.(2013),forinstance,

employedatwo-fluidmodel(TFM,employingtheEuler–Euler

tech-nique)forfluidizedbedscomprisingGeldart-Bparticles.Patiletal.

(2003)foundthattheDavidsonandHarrison(1963)model

pre-dictedthemasstransferforsingleinjectedbubblesreasonablywell, buttheirresultsgaveabubblesizeevolutionandtracergas

con-http://dx.doi.org/10.1016/j.partic.2016.09.008

(3)

Nomenclature A Area(m2) c Numberofspecies d Particlediameter(m) Db Bubblediameter(m) D Diffusioncoefficient(m2/s) e Coefficientofrestitution f Volumefraction

Fcontact,a Contactforceofparticlea(N)

g Gravitationalacceleration(m/s2)

I Momentofinertia(kgm2)

k Springstiffness(N/m)

K Masstransfercoefficient(s−1)

ma Particlemass(kg)

M Molarmass(kg/mol)

Np Particlenumber

P Pressure(Pa)

R Gasconstant(J/molK)

Sp Particledragsourceterm(N/m3)

t Time(s)

T Temperature(K)

ug,va Gasandsolidvelocities(m/s)

U Velocity(m/s)

V Volume(m3)

x Molefraction

y Massfraction

Greeksymbols

ˇ Inter-phase momentum exchange coefficient

(kg/m3s)

ε Volumefraction

 Dampingcoefficient

 Gasphaseshearviscosity(Pas)

f Frictioncoefficient

 Density(kg/m3)

 Stresstensor(Pa)

Subscripts a,p Particle b Bubble bc Bubble-to-cloud be Bubble-to-emulsion ce Cloud-to-emulsion A,B Gascomponent g Gas i,j Component

mb Minimumbubblingfluidizationcondition

mf Minimumfluidizationcondition

n Normaldirection t Tangentialdirection w Wake inj Injection diff Diffusion Acronyms

CFD Computationalfluiddynamics

DPM Discreteparticlemodel

TFM Two-fluidmodel

centrationthatwereinconsistentwiththeresultsofexperiments conductedbyDangetal.(2013).Hernández-Jiménezetal.(2013), meanwhile,obtainedresultsthatwereingoodagreementwiththe

DavidsonandHarrison(1963)modelforsingle-injectedbubbles

butfoundthatthemasstransfercoefficientsweremorethantwice thosepredictedwhenusingfreelybubblingfluidizedbeds.

Itwillbepossibletoidentifythemostimportantaspectsofthe interphasemasstransferwithmodelsofferinggreaterdetail.While

theTFMmakesvariousassumptions todescribetherheologyof

theemulsion phase,theparticle–particle interactions aretaken intoaccountdeterministicallyinadiscreteparticlemodel(DPM,

employingaEuler–Lagrangetechnique).TheDPMmodelcan

there-foreprovidemoredetailedinsightintotheprevailingphenomena

thantheTFMmodelandallowsthesimulationofsmaller

parti-cles(e.g.,Geldart-Aparticles).Geldart-Aparticlesareoftenusedin industrialfluidizedbeds(typicallyfluidcatalyticcrackingcatalyst) andareofinterestinthedesignofmicrofluidizedbeds(e.g.,Tan,

Roghair,&vanSintAnnaland,2014,2016).

Thepresentworkusesastate-of-the-artDPMmodelextended

withgascomponentconservationequations tocharacterize the

interphasemasstransferprocessesingas–solidfluidizedbeds com-prisingGeldart-BandGeldart-Aparticles.Themodelwillbeused tosimulatesingleinjectedbubblesthatrisethroughanincipiently

fluidizedbed,analogoustotheexperimentscarriedoutbyPatil

etal.(2003)andDangetal.(2013),butwithoutthespecific

lim-itationsinherenttotheirtechniques.Additionally,thetracergas concentrationintheemulsionphaseisnotneglectedbutanalyzed forthecomputationofthemasstransfercoefficient.

Thissectioncontinueswithashortoverviewoftheavailable correlationsforthebubble-to-emulsionphasemasstransfer coeffi-cient,whichwillbeusedinthecomparisonwithsimulationresults.

Inthefollowingthreesections,theDPMmodelisthenoutlined

and a detailed analysisof mass transfer processesin Geldart-B

andsubsequentlyGeldart-Aparticlesisdescribed.Adiscussionand conclusionsarefinallypresented.

Phenomenologicalmodelsforbubble-to-emulsionmasstransfer Severalcorrelationshavebeenreportedintheliteratureforthe predictionofthemasstransfercoefficients.Thederivationofthese correlationsusuallyassumesagascloudbetweenabubbleandthe emulsion(bulk)phase,originallydeemedasathinregion surround-ingthebubblewitharelativelyhighsolidsholdupcomparedwith

thebulkemulsion.Davidsonfirstsuggestedtheexistenceofthe

gascloudingas–solidbubblingfluidizedbeds(Rowe,Partridge,&

Lyall,1964).ThepioneeringmodelofDavidsonandHarrison(1963)

hasbeenwidelyusedinphenomenologicalmodelsforlarge-scale

fluidizedbedreactors.Intheirmodel,thetotalmasstransfer con-sistsofaconvectiveflowfromthebubblestotheemulsionphase anddiffusionfromthebubblestothecloud.KuniiandLevenspiel

(1991)followedtheirapproachandproposedanextension

con-sideringtwoconsecutivetransfersteps,namelythetransferfrom thebubbletothecloudandthatfromthecloudtotheemulsion.

AccordingtothestreamfunctionderivedbyMurray(1965)and

ChibaandKobayashi(1970)assumedthatthegascompositionin

thecloudandbubbleisuniformandthatthemasstransfer limita-tionislargelygovernedbydiffusionthroughthesurfacebetween

thecloudandemulsionphases.Table1summarizestheequations

usedtoestimatethebubble-to-emulsionmasstransfercoefficient

forthemostpopularphenomenologicalmodels,togetherwiththe

mainassumptionsuse

Numericalmethod

Extendeddiscreteparticlemodel

Thesoft-sphereDPMemployedinthisstudyisbasedonthe

pioneeringworkofTsuji,Kawaguchi,andTanaka(1993)andwas

(4)

Table1

Phenomenologicalmodelsforthebubble-to-emulsionmasstransfercoefficientKbe.

Reference Equations Dimension Mainassumptions

DavidsonandHarrison(1963) Kbe=

4 Db



0.6D1/2i



g Db



1/4 +2Umf ␲



2D (1)masstransferfromthebubbletotheemulsionby moleculardiffusionandabulkflowtoandfromthe bubble;(2)perfectmixinginthebubbleandtheemulsion phase;(3)circularorsphericalbubblewithconstantsize; (4)bubblesinalargevolumebed;(5)diffusionfrom sphericalcapbubblesurfacewithanoseangleof100◦ Kbe=4.5



Umf Db



+5.85



D1/2i g1/4 D5/4b



3D

KuniiandLevenspiel(1991)

Kbc=4.5



Umf Db



+5.85



D1/2i g1/4 D5/4 b



3D (1)Davidsonmodelforthebubbleandthegasflowatthe bubble;(2)theemulsionvoidageisobtainedatminimum fluidizingconditions;(3)Higbiepenetrationmodel (Hiegbe,1935)forthecloudtoemulsionmasstransfer coefficient;(4)twoconsecutivesteps:transferfromthe bubbletothecloudandfromthecloudtotheemulsion phase Kce=6.77



DiεmfUb D3 b



1/2 3D Kbe= 1 1 Kbc+ 1 Kce 3D

ChibaandKobayashi(1970)a Kbe=

4.52 1−fw



D iε2mfUb D3 b



1/2

2D (1)uniformgascompositioninthecloudandbubble;(2) constantbubblevolumeandbubblerisevelocity;(3) circularorsphericalcapbubbleandcircularorspherical clouds;(4)gasandparticleflowaroundthebubblefollow theanalysisbyMurray(1965);(5)thegasflowinthe emulsionphaseisinplugflow

Kbe= 6.78 1−fw



D iε2mfUb D3 b



1/2 3D

aIntheliterature,theChibaandKobayashi(1970)modelisoftencitedwiththeexpressionforthemasstransfercoefficientk

gintermsofthesurfaceareaofthecloud.In

thisstudy,forthesakeofconsistency,wedenotethemasstransfercoefficientKbebasedontheunitarea(twodimensions)orvolume(threedimensions)ofthebubble.

(1996)andYe,VanderHoef,andKuipers(2004).Itisapopular

Euler–Lagrangemodelwithadiscretedescriptionoftheparticulate phaseandacontinuousdescriptionofthegasphase,andithasbeen

widelyusedinhydrodynamicstudiesofgas–solidfluidizedbeds.

Asetofthree-dimensionalvolume-averagedNavier–Stokes

equa-tionsforcompressibleflowaresolvedonthecellsofanEuleriangrid forthegas-phasehydrodynamics,assumingidealgasbehavior.For theparticlephase,Newton’ssecondlawofmotionisappliedtoeach individualparticletotraceitspositionandvelocitywhiletaking intoaccountparticle–particleandparticle-wallcollisions.Because theEuleriangridcellsarelargerthantheparticlediameter,the detailsoftheinteractionsbetweenthegasphaseandparticlesare unresolvedandconstitutivecorrelationsarerequiredtocompute

momentumexchangebetweenthetwophases.

Themainequationsofthemodelusedinthisstudyare summa-rizedinTable2.TheclassicdragforcecorrelationfromErgun(1952)

andWenandYu(1966)isusedforthegas–particleinteraction.The

contactforceresultingfromparticle–particleand/orparticle-wall interactionsiscalculatedusingthelinearspringanddashpotmodel proposedbyCundallandStrack(1979).Theparticlespring

stiff-nessconstantisanimportantinputparameteranditiscommon

practicetouseavaluemuchsmallerthanthetruevaluederived frommaterialproperties,becauseitallowsagreatertimestepto

beusedwithoutnoticeablyaffectingthehydrodynamicsandthus

reducestherequiredcomputationaltime(Tsujietal.,1993).Here,

wechoosevaluessuchthatthemaximumoverlapbetween

inter-actingparticlesandparticle-wallatanytimestepislessthan1% oftheparticlediameter.Foramoredetailedexplanationofthis model,wereferthereadertoourpreviouspapers(Tanetal.,2014, 2016)andreviewsbyDeen,vanSintAnnaland,VanderHoef,and

Kuipers(2007),andZhu,Zhou,Yang,andYu(2008).

The transport of chemical components is described using a

nonstationaryconvection–diffusionequationforcomponenti.For binarygassystemswithcomponentsAandB,Fick’slawcanbeused forthemoleculardiffusionmassfluxji=−DAB

yA,usingyAto

denotethemassfractionofcomponentA,whichisemployedinthe gascomponentconservationequationusedinthisstudy(Table2). ThisnovelaspecthasbeenexplainedindetailbyTanetal.(2016).

TheDPMhasbeenextensivelyusedtoexaminethe

hydrody-namiccharacteristicsofgas–solidfluidizedbedsindetail(e.g.,Li

&Kuipers,2007;Tanetal.,2014;Wang,VanderHoef,&Kuipers,

2010;Xu&Yu,1997;Yeetal.,2004).Theextensionforthe

com-ponent conservation calculation has been carefully verified by

carryingoutsimulationsforsimplifiedsystemsandcomparingthe resultswiththeoreticalsolutions,aspresentedbyTanetal.(2016). Simulationconfiguration

Bubble-to-emulsionphasemasstransferisinvestigatedby sim-ulatingsingle-bubbleinjectionsofCO2 tracergasintoafluidized

Table2

Maingoverningequationsofthesoft-sphereDPMextendedwithgascomponent conservationequations.

Gasphasecontinuityequation: ∂(εgg)

∂t + (∇·εggug)=0 Gasphasemomentumequation:

∂(εggug)

∂t +∇· (εggugug)=−εg∇Pg−Sp−∇·(εgg)+εggg Gasphaseequationofstate:

g=MRTgPgwithMg=



yi Mi



−1 Gasphasestresstensor:

g=␮g



ug+∇uTg





␭g−23␮g



(∇·ug) I Gas–solidmomentumexchangerate:

ˇ=

3 4CD gεg(1−εg)ug−va dp ε−2.65g εg≥0.8 150(1−εg) 2 g εgd2p +1.75g(1−εg)ug−va dp εg<0.8 TheporosityinDPMsimulation:

εg,cell=1−Vcell1

∀a∈cell fa cellV a p

Equationsofmotionforeveryparticle: madvdta =mad

2ra

dt2 =−Va∇Pg+Vεapˇ(ug−va)+mag+Fcontact,a Iadwdta=Ta

Gascomponentconservationequations: ∂

∂t(εggyi)+∇· (εggyiug)=∇· (εggDi∇yi) Closureequationforcomponenti=0:y0=1−

c

i=1 yi

Viscosityofagasmixture:g=

i xii

jxiij ij=

1+



ij



1/2



Mj Mi



1/4



2



8



1+Mi Mj



1/2

(5)

Fig.1. Snapshotsofthetracergasconcentrationinthecentralsliceofthefluidizedbedatdifferentmomentsintimefromthebeginningoftheinjection(fromt=0to 0.16swithstepsof0.02s),wherethebubbleisdepictedwithdifferentthresholdvaluesoftheporosity(0.7−0.85)(bedwidth=6×10−2m,dp=400–600␮m,Uinj=6m/s, tinj=0.075s).

bedmaintainedatminimumfluidization(forbedsusingGeldart-B particles)orminimumbubblingconditions(forbedsusing Geldart-Aparticles).N2isusedasthebackgroundfluidizationgas.Afteran

initial1sofincipientfluidization,thebubbleisinjectedby set-tingthecentralcellsatthebottomboundary(i.e.,thenozzle)to theinflowofCO2 usingaprescribedinjectionvelocity.Thecells

areswitchedbacktoN2attheincipientfluidizationvelocityafter

theinjectionis finished.Theinjectiontime required for gener-atingspecificbubblesizesisdeterminedinseparatesimulations beforehand.

Aconstantmolecular(binary)diffusioncoefficientofCO2inN2

isusedtodescribethetracergasdiffusivity.ForGeldart-Aparticle simulations,thediffusioncoefficientofCO2isalsoincreasedbya

factorof3toinvestigatetheeffectofgasdiffusivity.Thenozzlefor gasinjectionisatthecenterofthebottomplate.

ThesimulationsusingGeldart-Bparticlesaresetupaccording totheconditionsofexperimentsconductedbyDangetal.(2013). Thebedwidthtakesvaluesof4cm(matchingthebedwidthinthe experiments),5and6cm.Similartothecaseintheexperiments, Geldart-Bparticleshaveadensityof2525kg/m3andaverage

(6)

Fig.2.Snapshotsofthestreamlinesthroughthebubbleinthecentralsliceofafluidizedbedfrom0.06to0.12safterthetracergasisinjected(bedwidth=6×10−2m,

dp=400–600␮m,Uinj=6m/s, tinj=0.075s).

with=5.0×10−5m).Theminimumfluidizationvelocityofthese

particlesis determined bysimulations using thepressure drop

methodas0.22m/s(0.206m/s inthereferencedpaper).No-slip

boundaryconditionsareappliedtothesidewallsofthebedinthese simulations.

The Geldart-A particles employed in the present study are

monodispersedparticleswithadiameterof100␮manddensity

of1500kg/m3.VanderWaalsforcesareneglectedinthisstudy.

Heretheminimumbubblingfluidizationvelocity(9.0×10−3m/s), determinedinsimulationsaccordingtothestandarddeviationof thepressuredropoverthebed,isusedasthebackground fluidiza-tionvelocity.Becausemanyparticlesareusedtoallowthebubble

somerisingtime,pseudo-two-dimensional(2D)fluidizedbedsare

simulatedtoreducethecomputationalcost.Thebeddepthisonly 6timestheparticlediameterandafree-slipboundaryconditionis thusappliedtothefrontandbackwalls.

Forallsimulations,thepressureatthetopoutletisspecifiedas theatmosphericpressure(101,325Pa).Particlesareinitiallyplaced regularlylayerbylayeratthebottomofthebedwithsmall ran-domfluctuating translationalandrotational velocitiestoensure thatthesystemisinanasymmetricfluidizedstatefromthestart, andthesystemisleftatminimumfluidizationconditionsfor1s.

Table3summarizesthemainparametersusedinthesimulations.

TheparametersintheDPMmodelforGeldart-Bparticles,suchas therestitutionandfrictioncoefficients,werefirsttestedwith sim-ulationsettingsclosesttotheexperimentalsettingsusedbyDang

etal.(2013).Goodagreementwasfoundwithregardtothemass

transferphenomena(seethesnapshotsshowninFig.1),andthe bubblesizeasafunctionoftimecompareswellwiththeresultsof theexperiments.Notethatdespitethegreatsimilarity,the simula-tionscannotbeusedforanexactone-to-onecomparisonwiththe experiments.Theanalysisandresultingmasstransfercoefficient aresensitivetothegasinjectionandbubbleformationtime,and

Dangetal.(2013)usedahighinjectionvelocityandstoppedthe

injectionbeforethebubbleformationwascomplete.Additionally, theiranalysisforthebubble-to-emulsionmasstransfercoefficients

startedbeforethebubblehadcompletelyformedanddetached.

Theseaspectscanbecontrolledmuchmoreaccuratelyinthe sim-ulationsandhencedifferfromthoseintheexperiments.

Calculationofthemasstransfercoefficient

ThemasstransfercoefficientKbecanbecalculatedfroman

inte-gralmassbalanceofthetracergasinthebubble(definedasan

enclosedregionwithporosityexceedingapredefinedthreshold): d



CCO2,bVb



dt =−Kbe



CCO2,b−CCO2,e



Vb. (1)

ToanalyticallysolveEq.(1),theaverageconcentrationofthe tracergas(inthiscaseCO2)intheemulsionphaseisassumed

neg-ligible(andthus settozero). Wekeep thebubblevolume(and

thusdiameter)constantbyintegratingoverashorttimeduring

whichthebubblediameterisrelativelyconstant.Weusethe time-averageddiameterforfurtheranalysis.AspresentedbyDangetal.

(2013),forapseudo-2Dbedhavingasinglebubblewithaninitial

averagedtracergasconcentrationofCCO2,b(0),andassuminga neg-ligibleconcentrationintheemulsionphase(CCO2,e=0),integration yields CCO2,b(t) CCO2,b(0)



D b(t) Db(0)



2 =exp (−Kbet) , (2)

whereDb(0) istheinitialbubblediameterandDb(t) isthebubble

diameterattimet.Byplottingln



CCO2,b(t) D

2

b(t) /CCO2,b(0) D

2 b(0)



asafunctionoftime,themasstransfercoefficientKbecanbe

cal-culatedfromtheslopeofthelinearcorrelationaccordingtoEq.

(7)

Table3

SummaryofthemainsimulationparametersintheDPM.

Geldart-Btype Geldart-Atype

Particlediameter,dp(␮m) 400–600 100

Particlenumber,Np 72500 279000

Particledensity,g(kg/m3) 2525 1500

Normalrestitutioncoefficients,en 0.97 0.95

Tangentialrestitutioncoefficients,et 0.33 0.95

Frictioncoefficient(particle–particle/wall),f 0.1 0.3

Normalspringstiffness,kn(N/m) 3500 28

Tangentialspringstiffness,kt(N/m) 1000 8

CFDtimestep,t(s) 1.0×10−5 1.0×10−5

Particledynamicstimestep,tp(s) 1.0×10−6 1.0×10−6

Domainheight(m) 1.5×10−1 3.6×10−2

Domainwidth(m) 4.0,5.0,6.0×10−2 2.32/3.0×10−2

Domaindepth(m) 5.0×10−3 6.0×10−4

Numberofgridcells 150×40/50/60×5 90×58/75×2

DiffusivityofCO2,Ddiff(m2/s) 1.65×10−5 1.65/4.95×10−5

Injectionvelocity,Uinj(m/s) 5.0,6.0 0.1,0.2

Injectiontime, tinj(s) 0.07,0.075 0.035,0.036

Nozzlearea(mm2) 20(4×5gridcells) 0.96(4×2gridcells)

Minimumfluidizationvelocity,Umf(m/s) 0.22 5.9×10−3

Bubblingfluidizationvelocity,Umb(m/s) – 9.0×10−3

FluidizedbedscomprisingGeldart-Bparticles Characteristicsofbubble-to-emulsionphasemasstransfer

Thetracergasconcentrationinthecentralsliceofthefluidized bedis shown inFig. 1for thesimulation usinga bed widthof 6×10−2mandaninjectionvelocityof6m/s.Whiletheactualvalue issomewhatarbitrary,aporosityof0.85isusedtodefinethebubble contour.Inthefigure,arangeofporositycontoursforthebubble

isprovidedtoshowthepronouncedphenomenonofparticle

rain-ingthatleadstobubblecollapse.Thebubbleshapeandbubblesize continuetochangeovertimeasfoundbyPatiletal.(2003)and

Dangetal.(2013).Thesameholdsforthetracergasconcentration

insidethebubble.

ThreestagescanbediscernedfromthesnapshotsinFig.1.First, itisnotedthatthebubblestartstoformshortlyaftertheinjection andthetracergasappearsatthenozzleevenbeforethebubbleis distinguishable.Thegasflowtrajectories,showninFig.2,indicate thatboththeCO2tracergas(viathemiddle)andtheN2background

fluidizationgas(viathebubblesides)contributetotheformationof thebubble,whiletheCO2tracergasimmediatelyflowsthroughthe

topofthebubbleintotheemulsionphase.Afterthebubbleforms, thesecondstagestarts,whereN2backgroundfluidizationgasflows

intothebubblealsoviathebottomandreplacestheCO2that

con-tinuestoleavethebubblethroughitsroof.Themasstransferisthus stronglydominatedbyconvectioninthiscaseofGeldart-B parti-cles,asreportedbyDangetal.(2013).AsmallpartoftheCO2that

leavestheemulsionphaseisrecycledthroughtheleftandright vortices,backintothebubble(seeFig.2).Duringthelaststage,the lasttracesofCO2 thataretrappedinthevorticescanonlyleave

throughdiffusion,which isaslowprocesssuchthatthebubble

concentrationremainsfairlyconstantwhilethebubblecollapses, asalsoshownbytheexperimentalresultsofDangetal.(2013).

Fig.3(a)shows theaverageCO2 concentrationinthebubble

andemulsionphases,wherethethreestagesdescribedabovecan

againbedistinguished.Theemulsionphaseconcentrationis non-zeroandattimesevenlargerthanthebubbleconcentration,but

becausethe majority of CO2 is founddownstream of the

bub-ble(andisincapableofre-enteringthebubble),theassumption ofanegligibleemulsionphaseCO2concentrationtodescribethe

bubble-to-emulsionphase masstransferseemsjustified.Fig.3b

showstheequivalentbubblediameterDb=



4Ab/␲andreveals

thatthebubblestartstocollapseshortlyafteraninitialgrowth,

whichisconsistentwithexperimentalresultsobtainedbyDang

Fig.3. (a)AverageCO2concentrationintheemulsionphaseandinthebubblewith

itsspatialstandarddeviation(shadedbar)asafunctionoftime;(b)equivalent bub-blediameterasafunctionoftimeaftertheinjectionstarts(bedwidth=6×10−2m,

dp=400–600␮m,Uinj=6m/s, tinj=0.075s).

et al. (2013). However, Patil et al. (2003) failed to predict the

decreasingbubblesizeatthelater stagein 2DTFMsimulations

andpresentedaslowincreaseintheequivalentbubblediameter, explainingthediscrepancydescribedabove.

(8)

Fig.4.Linearcorrelationsofthebubble-to-emulsionmasstransfercoefficientsfordifferentcasesusingparticlesof400–600␮mindiameter:(a)bedwidth=5×10−2m,

Uinj=5m/s, tinj=0.07sandDb=0.0231m;(b)bedwidth=6×10−2m,Uinj=6m/s, tinj=0.075sandDb=0.0277m.

Fig.5.SnapshotsoftherisingbubbleinGeldart-Aparticlebedsatdifferenttimesteps.Atthetop,theCO2concentrationinthecentralsliceisshown.Thebubbleisplotted

byvaryingthethresholdvalueofporosityfrom0.8to0.85.Atthebottom,thestreamlinesoftherelativegasphaseinthebubbleandtheemulsionphasesareshown.From topandbottom:thestreamlinesinthelefthalfofthebubblearecoloredusingtherelativegasvelocityinthezdirectionwhilethoseintherighthalfofthebubblearecolored withtheCO2concentration.(Bedwidth=2.32×10−2m,dp=100␮m,Uinj=0.1m/s,Ddiff=1.65×10−5m2/s, tinj=0.035s).

Table4

Comparisonofthesimulatedbubble-to-emulsionmasstransfercoefficientswithpredictionsmadeusingtheDavidsonandHarrison(1963)model,includingtheindividual contributionsofdiffusion-andconvection-basedmasstransfers.

Cases Averagedbubblediameter(m) MasstransfercoefficientKbe(s−1)

DavidsonandHarrisonmodel(1963) Thisstudy Difference

Bedwidth=5cm,Uinj=5m/s 0.0231 27.08(Conv24.90+Diff2.18) 28.89 6.69%

(9)

Fig.6. (a)Equivalentbubblediameterasafunctionoftimeafterthestartofinjection withthetracergaseshavingdiffusivitiesdifferingbyafactorof3and(b)theaverage CO2concentrationinthebubblesanditsspatialstandarddeviation(shadedbar)as

afunctionoftime,insingle-bubblefluidizedbedscomprisingGeldart-Aparticles (dp=100␮m,p=1500kg/m3,Ddiff=1.65×10−5m2/s, tinj=0.035and0.036s).

Coefficientofbubble-to-emulsionphasemasstransfer

Theprevioussectionhasjustifiedtheassumptionofa

negli-gibleemulsionCO2concentration,Eq.(2)canthusbeemployed

tocalculateKbe.Toexcludewalleffectsasmuchaspossible,the

evolutionofthegasstreamlinesisstudiedtofindthetimethat

elapsesbeforewalleffectsbecomedominant.Subsequently,Kbe

isobtainedfromthelinearizedEq.(2),usingtwodifferentbubble sizes(Fig.4).Table4presentsthecomparisonofKbebetweenthe

simulationsandpredictionsmadewiththeDavidsonandHarrison

(1963)model.

In Table4, thedifferences between thevalues calculated in

thesimulationsandthepredictionsmadewiththeDavidsonand

Harrison(1963)modelarelessthan10%,showinggoodagreement.

TheshorttimeusedtocalculateKbeallowstherelevant

assump-tions,suchasaconstantbubblediameter,aconstantmasstransfer coefficientandzerotracergasintheemulsionphase,tobemade.

Table4alsoshowsthattheconvectivecontributionisindeed

dom-Fig.7. AverageCO2concentrationinthebubbleandemulsionphasesfor

single-bubblefluidizedbedscomprisingGeldart-Aparticlesandthetracergaseswith diffusivitiesdifferingbyafactorof3(dp=100␮m,p=1500kg/m3,Uinj=0.1m/s,

tinj=0.035s).

inantandthatalargervalueofKbeisobtainedforasmallerbubble,

whichisconsistentwiththeresultspresentedaboveandwiththe resultsofpreviousstudies(Patiletal.,2003;Dangetal.,2013).

FluidizedbedscomprisingGeldart-Aparticles

TheDPMtechniqueisalsosuitedtosimulatingGeldart-A parti-cles,whichareusedinmanyindustrialfluidizationprocesses.This sectionusesparticleswithadiameterof100␮mandadensityof 1500kg/m3.Singlebubbleinjections,similartothoseinthe

pre-viouscases,areperformedusingaporosityof0.85todefinethe bubblecontour.Thebubblesrisesteadilythroughthebeduntilthey breakupatthebedsurface.

Characteristicsofbubble-to-emulsionphasemasstransfer

Fig.5showstheconcentrationfieldandgasphasestreamlines forasimulationusinganinjectionvelocityof0.1m/s.TheCO2

con-centrationinthemiddleofthebubbleisrelativelyhigh.TheCO2

transferredtotheemulsionphaseisfoundmainlyalongthepath behindthebubble.Thisconcentrationprofileissimilartothe pro-fileofgasbubblesrisinginaliquid(e.g.,Stöhr,Schanze,&Khalili, 2009)withtherebeingatailbehindthebubble.

Thesnapshotsindicateamasstransferprocessdifferentfrom

that whenusing Geldart-B particles.Thegas phase streamlines

recirculateinsidethebubbleandintheimmediatesurroundings

ofthebubble(i.e.,thecloud),keepingthetracergaslocaltothe bubble.Additionally,thereisnosignofbubblecollapseinthe snap-shots.ThesecharacteristicsarehighlightedinFig.6,showingthat thebubbleevencontinuestogrowwhilerisingthroughthebed.A simulationwith3timesthetracerdiffusivitybutotherwise iden-ticalsettingsshowsthatthediffusivityofthegashasanegligible effectonthebubblesize.TheaverageCO2concentrationinthe

bub-blecontinuestodecreasewithtimewhileitremainsmoreorless uniformlydistributed.Moreover,asshowninFig.7,overtime,the

averageCO2 concentrationintheemulsionphaseismuchlower

thantheaverageCO2 concentrationinthebubble,andthemass

transferrateincreaseswithincreaseddiffusivity.

Thebubblesaresurroundedbycloudsaccordingtothecriteria foracloudedbubblepresentedbyDavidsonandHarrison(1963).

Fig.5showsthatthegasflowingoutofthebubbleviaitsroofflows

downwardsalongthebubbleedgeandcirculatesbackthroughthe

cloudintothebubble.Themaindifferencesbetweenthecalculated

(10)

Fig.8.(a)GasandparticleflowpatternsnearabubblebasedonexperimentsandMurray’stheory(Roweetal.,1964)( 2.5).(ReprintedfromRoweetal.(1964)with permissionfromElsevier.)(b)ThesymbolizedmodelusedbyChibaandKobayashi(1970)(ReprintedfromChibaandKobayashi(1970)withpermissionfromElsevier).

cloudedbubbleinDavidsonandHarrison(1963)arethebubble

shapeandthegasflowprofilesinthewakeofthebubble.Thebubble isassumedtobeideallysphericalandnowakeisdefinedintheory whereastheoppositeisseeninsimulations.

Coefficientofbubble-to-emulsionphasemasstransfer

ThestreamlinesshowninFig.5aresimilartopredictionsbased

onthetheoryofMurray(1965)andusedbyChibaandKobayashi

(1970)toprovidea correlationforthemasstransfercoefficient

(Fig.8).

Eq.(1)isusedtocalculateKbe,basedontheaverageCO2

con-centrationthroughouttheemulsionphase,asafunctionoftime.

Fig.9showsthatwhilethebubblerises,Kbedecreaseswithtimeas

aresultofbubblegrowth(Fig.6(a)).Togetherwiththeaveraged

bubblediameter,thetime-averaged Kbe is presentedin Table5

(inthe“bulkemulsion”column)andcomparedwithpredictions

madeusingclassicphenomenologicalmodels:D&H(Davidson&

Harrison,1963),K&L(Kunii&Levenspiel,1991),andC&K(Chiba&

Kobayashi,1970).ThelargedifferencesinthepredictionsofKbeare

relatedtothedifferencesintheunderlyingassumptions.Notethat thebubblerisingvelocityUbcalculatedfromsimulationresultshas

beenusedinthecomputationofKbewiththesephenomenological

models.

Despitethesimilaritybetweenthegasstreamlines(Fig.5)and thetheoryofMurray(1965)(Fig.8)usedintheChibaandKobayashi

(1970)model,theC&K modeldoesnot givethebestprediction

ofKbe for thesesimulations.Thisis mostprobablybecausethe

phenomenaobservedinthesimulationsarenotconsistentwith

theassumptionsfortheprocessusedinthederivationoftheC&K model,suchasaconstantbubblevolume(andhencecloudvolume) andthesphericalshapeandsizeofthecloud.

TheeffectofbubblediameterontheaverageKbe isanalyzed

first.Thechangeintheamountoftracergasinthebubbleconsists oftwoparts:acontributionduetothechangeinbubblesizeanda contributionduetothechangeinCO2concentrationinthebubble.

Fig.9.Bubble-to-emulsionphasemasstransfercoefficientasafunctionoftime cal-culatedfromthesimulationsofasingleinjectedbubbleinafluidizedbedcomprising Geldart-Aparticles(dp=100␮m,p=1500kg/m3,Uinj=0.1and0.2m/s, tinj=0.035

and0.036s,Ddiff=1.65×10−5m2/s).

Theanalysisisthuscarriedoutforthesetwotermsseparately.It turnsoutthatthefirsttermcontributesover60%ofthetotalchange intheamountofCO2inthebubble.

Eq.(1)computesthetotalmasstransferbasedonthemass trans-fercoefficientandthedrivingforce,definedastheconcentration differencebetweenthebubbleandtheemulsionphaseintherestof thebed.AsshowninFig.5,however,amoreaccuratedrivingforce

canbetheconcentrationdifferencebetweenthebubbleandthe

emulsionphasearoundthebubble(orthecloud).Here,the emul-sionaroundthebubblewithaCO2concentrationhigherthan62.5%

and73%(correspondingtodifferentcloudsizes)oftheaverageCO2

(11)

Table5

ComparisonofmasstransfercoefficientsKbecomputedfromthesimulationresultsandfromphenomenologicalmodels.

Uinj(m/s) Db(m) Kbe(s−1)(predictions) Kbe(s−1)(simulations)

D&H K&L C&K Bulkemulsion 62.5%Cb 73%Cb Diffusioncoefficient=1.65×10−5 0.1 0.003 27.37 11.85 16.93 2.07 10.61 15.36 0.2 0.004 18.64 7.74 10.61 1.63 9.30 13.55 Diffusioncoefficient=4.95×10−5 0.1 0.003 42.34 19.12 28.11 4.33 20.48 29.16 0.2 0.004 28.98 12.66 17.88 3.47 14.42 19.60

concentrationhasbeenusedtocalculateKbe.Thisgivesan

emul-sionphaseconcentrationthatismuchmorelocalthantheaverage overtheentirebed.InTable5,thevaluesofKbeincolumnslabelled

62.5%Cband73%CbcomputedusingtheCO2concentrationinthe

surroundingsofthebubbleforthedrivingforceareinmuchbetter

agreementwiththepredictionsmadeusingthemodelsofKunii

andLevenspiel(1991)andChibaandKobayashi(1970).

Discussionandconclusions

Discussion

Thesimulationsnapshotsandanalysisshowthatthemass trans-ferprocessisgreatlyaffectedbythegasflowpatternatandaround thebubble.AslearnedfromDavidsonandHarrison(1963),thegas flowpatternatthebubbleisdeterminedbytheratioofthebubble risingvelocitytotheinterstitialgasvelocity(Ub/u0).Forslowly

ris-ingbubbles(Ub/u0<1)insingle-bubblefluidizedbedscomprising

Geldart-Bparticles,themasstransferisdeterminedbythe

convec-tiveflowsfromtheemulsiontothebubbleandfromthebubble

backtotheemulsion.Thesimulationsinthepresentworkshow

thatthetracergasinthebubbletransfersintotheemulsionphase firstbythe(convective)depletionofthecenterofthebubbleand thenbydiffusionviathevorticesattheleftandrightsidesofthe

bubblebeforethebubblecollapses.Theemulsionphase

concen-trationcanbeassumedtobezerobecausetheinjectedtracergas escapesthroughthebubble.Animportantissueremains,however, intermsofhowtheupstreamconcentrationprofilecanbe incorpo-ratedinthecorrelations,especiallyiftheprofileisnotuniform.Any tracergasthatexistsupstream(i.e.,belowthebubble)willlikely traveltowardsthebubble,enterviathebottomandleavethrough theroof.Thisaspectofmasstransferisnotcapturedinexisting correlationsbutiscrucialforfreelybubblingfluidizedbeds.

Forquickly risingbubbles(Ub/u0∼5)influidized beds

com-prisingGeldart-Aparticles,thephenomenaobservedinthemass

transferprocessaredifferentfromthoseintheGeldart-Bparticle

simulations.Noobviousvolumetricflowratebetweenthebubble

andtheemulsionbulkisobserved,andratherastronggas circu-lationinthebubbleandthelocalemulsionphase (i.e.,cloud)is distinguished.Someofthetracergasisleftbehindviathewakeat thebottomofthebubble,butalsoalargepartofthetracergasis trappedinthebubbleandisreleasedonlywhenthebubblebreaks upatthebedsurface.Themasstransfercoefficientscomputedwith thetheoreticalmodelsdonotagreewiththoseobtainedfromthe simulations,unlessalocalemulsionphaseconcentrationistaken intoaccount.Whilethelocalemulsionphaseisclearlythemost

influentialzoneandusingalocalemulsionphaseconcentration

canbejustified,itisimportanttoacknowledgethatthetheoretical modelsaretypicallyusedforfreelybubblingfluidizedbeds. Bub-blebreakupandcoalescencecangreatlyincreasethemasstransfer

betweenthebubbleandemulsionphases.Thismaygiveagood

additionalexplanationonwhyvaluesofKbecalculatedfromthe simulationresultsaremuchlowerthananyofthepredictionsmade usingthephenomenologicalmodelsderivedforfreelybubbling

flu-idizedbeds.Thescopeofthisstudy,however,remainsassingle risingbubbles.

Theusedcorrelations incorporatethediffusioncoefficientby includingD0.5

i inthediffusiveterms.Increasingthediffusion

coef-ficientbyafactor3wouldthereforegiveapredictionofanincrease inthemasstransfercoefficientbyafactorof30.5=1.73;however,

thesimulationstypicallyyieldamasstransfercoefficientthatis largerbyafactorof2,showingthattheeffectofthediffusiveflux ismoreimportantthananticipatedbythecorrelations.

Conclusions

ADPMextendedwithgascomponentconservationequations

wasusedtoinvestigatethebubble-to-emulsionphasemass

trans-ferby carrying out simulationsonsingle-bubble fluidized beds

comprisingGeldart-Aand-Bparticles.Newinsightsonthespatial distributionandtemporalevolutionofthetracergasconcentration

inthebubbleandemulsionweredeveloped.Detailedinformation

onchangesinthebubblesize,tracergasconcentrationandgasflow

atthebubblewereusedtoaccuratelyanalyzethemasstransfer

characteristicsandtocalculatethemasstransfercoefficient.

This work challenged the validity of the assumptions used

inpopularphenomenologicalmodelsforthebubble-to-emulsion

masstransfer coefficient.For single-bubblefluidized beds

com-prising Geldart-B particles,the bubble-to-emulsion phase mass

transfer process is dominated byconvective gasflow from the

emulsionphasetothebubblephaseandthenbacktothe

emul-sionphase.Nouniformgasconcentrationinthebubbleorconstant bubblesizeandshapecanbeassumedforthesecases.

TheDavidsonandHarrison(1963)modelassumesaconstant

volumetricflow-rateintothebubblefromtheemulsionbulkand

out of the bubble into the emulsion bulk. Because convective

transferis dominant(byfar)for Geldart-Bparticles,this model reasonablypredictsmasstransfercoefficientsfortheseparticles, providedthataconstantbubblesizeandzerotracergas

concentra-tionintheemulsionphasecanbeassumed.Thefirstassumption

isassuredbytakingashorttimeinterval(whichkeepsthesize relativelyconstant),andtheconcentrationintheemulsionphase

canbeassumedtobezerobecausethetracergasconcentration

profileextendsonlydownstreamofthebubble.Infreelybubbling fluidizedbeds,however,concentrationprofilesmayexistupstream ofabubbleandshouldbetakenintoaccount.

Thebubblescannotbeassumedtobeconstantinsizeorhavea circular(orspherical)shapeinthecaseofGeldart-Aparticles,and itwasshownthatthebubble-to-emulsionmasstransfercoefficient

changesovertime.Thesefindingsconfirmandextendthefindings

ofpreviousexperimentalandnumericalstudies.Notalltracergasis ultimatelyexchangedwiththeemulsioninsidethebeds,withsome beingreleasedatthebedsurfacewhenthebubblesbreakup.Hence, aproperdefinitionofthecloudaroundthebubbleandtheuseof theaveragetracergasconcentrationinthecloudarenecessaryto calculatethemasstransfercoefficient.Inthiscase,theKuniiand

Levenspiel(1991)andChibaandKobayashi(1970)modelsgivethe

(12)

hasadistinctiveeffectonthebubble-to-emulsionmasstransferin thebeds,whichisunderestimatedbythemodels.

Acknowledgment

ThisprojectisfinanciallysupportedbytheNetherlands

Orga-nizationforScientificResearch(NWO)underSTWVIDIGrantNo.

10244.

References

Chiba,T.,&Kobayashi,H.(1970).Gasexchangebetweenthebubbleand emul-sionphasesingas–solidfluidizedbeds.ChemicalEngineeringScience,25(9), 1375–1385.

Cundall,P.A.,&Strack,O.D.(1979).Adiscretenumericalmodelforgranular assem-blies.Geotechnique,29(1),47–65.

Dang,T.Y.N.,Kolkman,T.,Gallucci,F.,&vanSintAnnaland,M.(2013).Development ofanovelinfraredtechniqueforinstantaneous,whole-field,noninvasivegas concentrationmeasurementsingas–solidfluidizedbeds.ChemicalEngineering Journal,219,545–557.

Davidson,J.F.,&Harrison,D.(1963).Fluidisedparticles.Cambridge:Cambridge Uni-versityPress.

Deen,N.G.,vanSintAnnaland,M.,VanderHoef,M.A.,&Kuipers,J.A.M.(2007).

Reviewofdiscreteparticlemodelingoffluidizedbeds.ChemicalEngineering Science,62(1),28–44.

Deshmukh,S.A.R. K.,vanSintAnnaland,M.,&Kuipers, J.A.M.(2007).Gas back-mixingstudiesinmembraneassistedbubblingfluidizedbeds.Chemical EngineeringScience,62(15),4095–4111.

Ergun,S.(1952).Fluidflowthroughpackedcolumns.ChemicalEngineeringProgress, 48,89–94.

Hernández-Jiménez,F.,Gómez-García,A.,Santana,D.,&Acosta-Iborra,A.(2013).

Gasinterchangebetweenbubbleandemulsionphasesina2Dfluidizedbed asrevealedbytwo-fluidmodelsimulations.ChemicalEngineeringJournal,215, 479–490.

Hiegbe,R.(1935).Therateofabsorptionofapuregasintoastillliquidduringshort periodofexposure.TransactionoftheAmericaninstituteofChemicalEngineers, 31,365–389.

Hoomans,B.P.B.,Kuipers,J.A.M.,Briels,W.J.,&VanSwaaij,W.P.M.(1996).

Discreteparticlesimulationofbubbleandslugformationinatwo-dimensional gas-fluidisedbed:Ahard-sphereapproach.ChemicalEngineeringScience,51(1), 99–118.

Kunii,D., & Levenspiel, O. (1991). Fluidization engineering (2nd ed.). Oxford: Butterworth-Heinemann.

Li,J.,&Kuipers,J.A.M.(2007).Effectofcompetitionbetweenparticle–particleand gas–particleinteractionsonflowpatternsindensegas-fluidizedbeds.Chemical EngineeringScience,62(13),3429–3442.

Müller,C.R.,Davidson,J.F.,Dennis,J.S.,Fennell,P.S.,Gladden,L.F.,Hayhurst,A. N.,etal.(2006).Real-timemeasurementofbubblingphenomenaina three-dimensionalgas-fluidized bedusingultrafastmagneticresonanceimaging. PhysicalReviewLetters,96(15),154504.

Murray,J.D.(1965).Onthemathematicsoffluidization.Part2.Steadymotionof fullydevelopedbubbles.JournalofFluidMechanics,22(1),57–80.

Patil,D.J.,vanSintAnnaland,M.,&Kuipers,J.A.M.(2003).Gasdispersionand bubble-to-emulsionphasemassexchangeinagas–solidbubblingfluidizedbed: Acomputationalandexperimentalstudy.InternationalJournalofChemical Reac-torEngineering,1(A44),1–22.

Pavlin, T.,Wang,R.,McGorty, R.,Rosen,M.S.,Cory,D. G.,Candela,D.,etal. (2007).Noninvasivemeasurementsofgasexchangeinathree-dimensional flu-idizedbedbyhyperpolarized129XeNMR.AppliedMagneticResonance,32(1–2), 93–112.

Roels,S.,&Carmeliet,J.(2006).Analysisofmoistureflowinporousmaterialsusing microfocusX-rayradiography.InternationalJournalofHeatandMassTransfer, 49(25),4762–4772.

Rowe,P.N.,Partridge,B.A.,&Lyall,E.(1964).Cloudformationaroundbubblesin gasfluidizedbeds.ChemicalEngineeringScience,19(12),973–985.

Stöhr,M.,Schanze,J.,&Khalili,A.(2009).Visualizationofgas–liquidmasstransfer andwakestructureofrisingbubblesusingpH-sensitivePLIF.Experimentsin Fluids,47(1),135–143.

Tan,L.,Roghair,I.,&vanSintAnnaland,M.(2014).Simulationstudyontheeffect ofgaspermeationonthehydrodynamiccharacteristicsofmembrane-assisted microfluidizedbeds.AppliedMathematicalModelling,38(17),4291–4307.

Tan,L.,Roghair,I.,&vanSintAnnaland,M.(2016).Discreteparticlesimulations ofmicromembrane-assistedfluidizedbedswithH2extraction.International

JournalofHydrogenEnergy,41(20),8719–8731.

Tsuji,Y.,Kawaguchi,T.,&Tanaka,T.(1993).Discreteparticlesimulationof two-dimensionalfluidizedbed.PowderTechnology,77(1),79–87.

Wang,J.,VanderHoef,M.A.,&Kuipers,J.A.M.(2010).CFDstudyofthe mini-mumbubblingvelocityofGeldartAparticlesingas-fluidizedbeds.Chemical EngineeringScience,65(12),3772–3785.

Wen,C.Y.,&Yu,Y.(1966).Mechanicsoffluidization.ChemicalEngineeringProgress SymposiumSeries,62,100–111.

Xu,B.H.,&Yu,A.B.(1997).Numericalsimulationofthegas–solidflowinafluidized bedbycombiningdiscreteparticlemethodwithcomputationalfluiddynamics. ChemicalEngineeringScience,52(16),2785–2809.

Ye,M.,VanderHoef,M.A.,&Kuipers,J.A.M.(2004).Anumericalstudyof flu-idizationbehaviorofGeldartAparticlesusingadiscreteparticlemodel.Powder Technology,139(2),129–139.

Zhu,H.P.,Zhou,Z.Y.,Yang,R.Y.,&Yu,A.B.(2008).Discreteparticlesimulation ofparticulatesystems:Areviewofmajorapplicationsandfindings.Chemical EngineeringScience,63(23),5728–5770.

Referenties

GERELATEERDE DOCUMENTEN

De projectleider van Rijkswaterstaat was echter trots op zijn 12 kilometer nieuw asfalt: ‘We hebben 39 dassentunnels en ree-uitstapplaatsen aangelegd en in de bermen staan rasters

If the Netherlands Environmental Assessment Agency (MNP) is to provide the government, parliament and other interested parties with adequate information for policy development, it

IPV is important to health systems because of the wide-ranging and serious health effects experienced by exposed women, as well as the unique opportunity afforded to

Deze nieuwe vertaling en ook het enthou- siast onthaal ervan in zowel De Gids als de Vaderlandsche Letteroefeningen lijken representatief voor een veranderde houding tegenover

Het experiment Papy is thans zo ver gevorderd, dat er een eerste klasse (d.i. een examenklasse) is, die geheel volgens de opvattingen van het echtpaar Papy heeft les gehad en

gebruik van autogordels; Verslag van waarnemingen gedaan bij bestuurders en voorpassagiers van personenauto's op wegen binnen en buiten de be-.. bouwde

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of