• No results found

Green-blue water accounting in a soil water balance

N/A
N/A
Protected

Academic year: 2021

Share "Green-blue water accounting in a soil water balance"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Advances

in

Water

Resources

journalhomepage:www.elsevier.com/locate/advwatres

Green-blue

water

accounting

in

a

soil

water

balance

Arjen

Y.

Hoekstra

University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: Crop production Irrigation efficiency Water footprint Water productivity Water use efficiency

a

b

s

t

r

a

c

t

Ithasbecomecommonpracticetospeakabout‘green’versus‘blue’waterconsumption,inordertodistinguish betweenconsumptionofrainwaterversusgroundwaterorsurfacewater.Thetwosourcesofwaterdifferinterms ofpossibilitiesforstorageanduse.Whereasindustrial,municipalandlivestockwatersupplyprimarilydepend onbluewater,cropcultivationreliesonbothgreenandbluewater.Discriminatingbetweengreenandblue waterconsumptioninacropfieldisnotstraightforward:consumptionreferstoevapotranspiration(ET)and watercontainedintheharvestedcrop,whichbothappearinundifferentiatedform.Onecannotseewhichpart ofETorthewaterinaplantoriginatesfromrainwaterandwhichpartfromirrigationwater.InthispaperI proposeagenericandphysicallybasedmethodtodifferentiategreenandblueevaporation(E)andgreenand bluetranspiration(T)bydailyaccountingofthefractionsgreenandbluewaterineachsoilandvegetationlayer. Thegreenandbluefractionsofallwaterfluxesleavingasoilorvegetationlayerinadaydependontheaverage greenandbluewaterfractionsinthatsoilorvegetationlayerduringthatday.Thismethodallowsforanaccurate assessmentofirrigationefficiency(theratioofbluewatertranspirationtotheirrigationwaterapplied),andfor apreciseestimationofgreenandbluewaterfootprintsofcropproduction(theratioofeithergreenETorblue ETtothecropyield).

1. Introduction

Freshwateravailabilityessentiallydependsontheprecipitationover land.On land,precipitation partitionsinto two components: evapo-transpirationandrunoff.Thetraditionalfocusofwaterresources plan-ningandmanagementhasbeenonhowtobestdivert,storeand redis-tributetherunoff flowforuseinagriculture,industriesandhouseholds (FalkenmarkandRockström,2006).This,however,hasproventobea limitedfocus,becauseitignorestheotherwaterflowthatishighly rel-evanttooureconomyaswell(Schynsetal.,2019).Theconventional engineeringapproachofoptimizingtheallocationanduseof ground-waterandsurfacewaterresources (therunoff flow)results inaform ofsub-optimizationiftheefficientallocationanduseofthe evapora-tiveflowis notincludedin theconsiderationsaswell.Anestimated 67%oftheworld’scropproductionstillcomesfromrainfedagriculture (Portmannetal.,2010),wherecropstakeuprainwaterthatisstored inthesoiltosubsequentlytranspiremost ofit.Incroplandsthereis, nexttothebeneficialtranspirationbycrops,whichcontributestotheir biomassgrowth,unproductiveevaporationofwateraswell,from rain-fallthatfallsontheleavesandfromthesoilsurface.Efficientuse of rainwaterisasimportantasefficientuseofirrigationwater.Inorder togeneratethenecessarydebateontheefficientuseoftheevaporative flowfromrainwaterstoredinthesoilversustheefficientuseof ground-waterandsurfacewaterresources,Falkenmark(1995)coinedtheterms

E-mailaddress:a.y.hoekstra@utwente.nl

greenversusbluewateruse.Greenwaterusereferstotheuseof rainwa-terinthesoilandbluewaterusetotheuseofgroundwaterandsurface waterresources.

Eventhoughthedistinctionsbetweengreenandbluewaterresources andbetweengreenandbluewaterusearecommonlyemployedthese days,westillstruggletousetheminpreciseunambiguousways. Re-garding green water, as Schynset al.(2015) pointout, the termis oftenlooselyused,sometimestorefertorainwaterstorageinthesoil, whileothertimestorainwaterevaporation(FalkenmarkandRockström, 2006; Falkenmark, 2013).Furthermore, the term‘green water flow’ isusuallydefinedas‘theevaporativeflowfromland’,butoftenit re-mainsunclearwhetherthisincludesonlyevapotranspiration(ET)from rain storedinthesoil ortotalET,which includesETfrom irrigation water and evaporation from otherforms of blue water use as well. Falkenmark(2007) speaksabouttheblue-to-greenredirectionthat oc-curswhenpartofbluewaterresourcesthatareabstractedsubsequently evaporate.Thisideaofbluewaterflowbecominggreenwaterflow con-trasts withthecommonandlogicalusagetospeakaboutbluewater consumptionwhenreferringtoevaporationofabstractedbluewater re-sources. Furthermore,thetermsgreenandbluewateraresometimes usedtorefertowaterresourcesavailability,whileothertimestowater resourcesuse.Alltheseambiguitiesmayplayaroleinthehesitancein thehydrologicalcommunitytousethegreen-bluewaterterminology, sinceweshouldusecleardefinitionsofstocksandflowsandkeeptrack

https://doi.org/10.1016/j.advwatres.2019.05.012

Received29December2018;Receivedinrevisedform13April2019;Accepted16May2019 Availableonline17May2019

(2)

ofwaterbalancesovertime.Whatevercolourtermsareused,itshould alwaysbeclearhowatermmatchesanidentifiablestockorflowinthe watercycle.Infact,forunderstandinghydrologywecansufficeworking withwell-establishedhydrologicalterms;wedon’tneedcolourcoding forthat.Thecolourcoding,however,fulfilsapracticalfunctionin dis-cussionsontheefficientallocationanduseofdifferentwatersources (Rostetal.,2008;Hoekstra,2014).Whatisneededthoughisastricter formalizationoftheuseofthegreen-bluewaterterminology,inaway clearlylinkedtohydrologicalterminology.

Anotherchallengeisthatdifferentiatingbetweengreenandblue wa-terconsumptionisnotthatsimpleasitmayseem.Consumptionrefers toETandwatercontainedin theharvestedcrop,whichbothappear inundifferentiatedform;onecannotseewhichpartofETorthe wa-terinaplantoriginatesfromrainwaterandwhichpartfromirrigation water.Thisraisesthequestionthenhowtoestimateirrigationwater consumption.Eventhoughmanyscholarsreportfiguresonirrigation waterconsumption(e.g.Haddelandetal.,2014;Hoff etal.,2010),it oftenremainsunclearwhatpreciselytheyreferto,sincehydrological orcrop growthmodelshelp tosimulatethesoil waterbalance,thus providingestimatesoftotalET,possiblydistinguishingbetween evap-oration(E)andtranspiration(T),butthesemodelsdonotdistinguish betweengreenandblueET.Sinceirrigationwaterconsumptionrefers toblueET,thequestionishowthesescholarshandlethisproblem.

OnemethodthathasbeenpractisedistoestimateblueETasthe differencebetweenETunderirrigatedconditionsandETunder rain-fedconditions(e.g.MekonnenandHoekstra,2010,2011;LiuandYang, 2010;SiebertandDöll,2010;Hoogeveenetal.,2015).Thisapproachis problematicsincetherootingdepthunderrainfedconditionscan sub-stantiallydifferfromtherootingdepthunderirrigatedconditions, af-fectingthewateruptakebyplants,sothatwhatisgreenEandTunder rainfedconditionsisnotthesameasgreenEandTunderirrigated con-ditions.MekonnenandHoekstra(2010,2011) partiallysolvedthisby simulatingtherainfedcasewitharootingdepthasitwouldbeunder ir-rigatedconditions,butthisapproachisstillunsatisfactory,because irri-gationaffectstheoverallsoilmoisturedynamicsovertime,sothatgreen EandgreenTunderirrigationarenotnecessarilythesameasgreenE andTunderrainfedconditions.Anotherproblemwiththis approach isthatinmanyregions,rainfedagricultureisnotevenanalternative toirrigatedagriculture,sothatthereferencerainfedcaseisnot avail-able.Theapproachofestimating blueETastotalETunderirrigated conditionsminustotalETunderrainfedconditionshasalsobeen fol-lowedbyRomagueraetal.(2014),whousedremotesensingproducts forestimatingtotalETunderirrigationconditionsandmodel simula-tionswithoutirrigation.Thisapproachfacesthesameproblemasthe studiesthatcomparetwodifferentmodelsimulations.

AnothermethodtodistinguishbetweengreenandblueETisto es-timateblueETbasedontherelativeadditiontothesoilofirrigation waterandrainfallovertime(Rostetal.,2008;Hanasakietal.,2010; Faderetal.,2011).Thisisabetterwaytopursue,butthewaythishas beenimplementedhasthusfarbeenabitsimplistic,ignoringthefull dynamicswithinthesoil.Dropsofirrigationwaterorrainwaterarenot reallyfollowedalongtheirpathwaysthroughthesoilmoistureand fi-nallytoEorT.Rostetal.(2008) andFaderetal.(2011),forexample, distinguishdifferentsoillayerswithoutaccountingthegreen-blue ra-tiointhelayersseparately,andlackafullaccountingofallgreenand bluewaterfluxesleavingeachsoillayer.Hanasakietal.(2010)consider evapotranspirationasawhole,notdistinguishingtranspiration specifi-cally,thusunabletoestimatethepartofirrigationwaterappliedthat benefitsthecrop.Furthermore,allthreestudiesneglectthecontribution ofcapillaryrisetosoilwater.

InthispaperIproposeagenericandphysicallybasedmethodfor greenandbluewateraccountingincropcultivation.Thebasisisformed bytheunderlyingsoil hydrologythat determinesthechangesinsoil waterstocksandflowsovertime.Themethodcomprisesapartitioning ofsoilmoistureandallwaterfluxesleavingthesoilintoagreenand bluecomponent,forinstanceonadailybasiswhenthatisthetimestep

considered inthehydrological orcrop growthmodel. Inthegeneric frameworkIwill alsoincludecapillaryriseasa particularsourceof waterforcropgrowth,whichcomesinadditiontorainwaterand irri-gationwater.Thegreen-bluewateraccountsformanextensiontothe usualhydrologicalwateraccountsofchangesinstocksandflows.The essenceisthatwetracethedifferentoriginsofthewatercontainedin thesoilandineachflowleavingthesoil.Thenoveltyofthepaperisthat itproposesatheoreticallysoundmethodtodistinguishbetweengreen andbluetranspirationandbetweengreenandbluesoilevaporation,by trackingthepathwaysofrainwaterandirrigationwater,toreplacethe proximalmethodsasdiscussedaboveandemployeduntilnow.

First,Iwilladdressthequestionwhyhavingsuchgreen-bluewater accountingsystemisusefulatall.Second,Iintroducetheprincipleof tracinggreenandbluewaterinthesoilwaterbalance.Third,Iprovide anillustrativeexampleofgreen-bluewateraccounting,inasimplecase ofaone-soil-layermodel.Fourth,Ireflectonthepracticaluse ofthe accountingmethodfortheestimationofirrigationwaterconsumption, irrigationefficiencyandgreenandbluewaterfootprints.Iwillconclude byshowinghowthemethodpresentedheresolvestheambiguitiesin green-bluewateraccountingasmentionedabove,andIwillrecommend tointegrategreen-bluewateraccountinginsoil-waterbalancemodels asastandardroutine.

2. Whydifferentiatebetweengreenandbluewaterconsumption?

Themainreasontoexplicitlydistinguishbetween‘green’and‘blue’ waterconsumption– thatisconsumptionofrainwaterversus groundwa-terorsurfacewater– isthatthetwosourcesofwaterdifferintermsof possibilitiesforstorageanduse.Whereasrainwaterisstoredinthesoil andisprimarilyusedin-situforbiomassgrowth(food,feedorenergy crops,productionforest),groundwaterandsurfacewaterarestoredin naturalaquifers,lakesandrivers,butcanalsobeabstractedordiverted, transported,andstoredinartificialreservoirs,andcanbeusedfora va-rietyofpurposes,fromirrigatingcropsortrees(tosupplement rainwa-ter)towatersupplyforhouseholds,municipalpurposesandindustries. Therangeofbeneficialusesforbluewateristhuslargerthanforgreen water,butthisdoesnotmeanthatgreenwaterisnotbeneficiallyused foroureconomy.Therearevariousreasonswhywewanttoknowhow muchgreenandbluewaterresourcesweconsume,forwhat,andhow efficient.

Letmestartwiththerelevanceofirrigationefficiency.Whenweare interestedinthequestionwhichpartoftheirrigationwaterappliedto thefieldbenefitsthecrop,weneedtoknowblueT.Theirrigation ef-ficiencyatfieldlevelisdefinedasthefractionoftheappliedirrigation watervolumethatbenefitstheplant(Burtetal.,1997).Thevolumeof irrigationwaterthatbenefitstheplantisblueT,henceweneedtobe abletoestimatethat.Totalwaterconsumptionincropproductionis de-finedastheEToverthegrowingperiod(fromplantingtoharvest).In irrigatedcropproduction,thesourceofsoilmoistureandETispartly rainwater,partlyirrigationwater,andpartlycapillaryrise.With hydro-logicalorcropgrowthmodelsweareusedtoestimatetotalEandtotal T,butforassessingirrigationefficiencywereallyneedtoknowblueT, thepartofTthatstemsfromirrigation.

AnotherreasonforourinterestinblueT,aswellasblueE,isthe impact ofbluewater useon groundwatertables,river flowsand re-mainingbluewateravailabilityinacatchment,whichisnotcaptured bythemeasureofirrigationefficiency(Perry,2007;ContorandTaylor, 2013;Graftonetal.,2018).Whenweareinterestedinthequestionhow muchoftheirrigationwatergetslostfromthecatchment– thatisthe partoftheirrigationwaterthatevaporatesortranspiresanddoesnot infiltratetogroundwaterorrunoff tostreamsagain– weneedtoknow blueET.Bluewaterabstractionsarenotchangingthewateravailable inthecatchmentaslongaswereturnthewaterafterusetowherewe abstractedit.Bluewaterscarcityinacatchmentdependsonthevolume ofbluewaterconsumptionincomparisontobluewateravailability.

(3)

Wearealsointerestedinbluewaterconsumption(blueET),aswell asingreenwaterconsumption(greenET),toevaluatehowmuchwater weconsumeperunitofcropproduced.Inotherwords,wemaybe inter-estedtoquantifytheblueandgreenwaterfootprintofcropproduction andanalysetheextenttowhichwecanreducetheblueandgreen wa-terfootprintperunitofproductbyeitherconsuminglesswaterwhile producingthesameorproducingmorewiththesameamountofwater (Hoekstraetal.,2011).Notethatreducingthegreenandbluewater footprintperunitofcropisthesameasincreasingwaterproductivity, whichisexpressedastheamountofcropproducedperunitofwater consumed(Molden,2007).Inirrigatedcropproduction,onemayaim toincreaseproductionpertotalamountofgreenandbluewater con-sumed,whileinrainfedfarming,thefocuscansimplybetheincrease ofproductionperdropofgreenwaterconsumed.

Yetanotherreasonwhywemaybeinterestedinestimatinggreen andbluewaterconsumptionistoanalysethetrade-off betweenthetwo. Addingirrigationwatertoacropfieldchangesthewaterbalanceasa whole,affectingtheevaporationandwateruptakeandtranspirationby plantsaswell.Chukallaetal.(2015),forinstance,showhowadding someirrigationwatertoanoriginallyrainfedcropcanincreasegreen ET,butincreasecropyieldevenmore,thusreducingthegreenwater footprintperunitofcropproduced.Perryetal.(2009)refertothecase wherebyonecrop isreplacedbyanothercropwithadeeperrooting depth,sothatmorewatercanbetappedfromthesoilprofile.Ifthecrop wasirrigated,lessirrigation(bluewater)willbeneededtoachievethe sameyield,butthevolumeofrainwater(greenwater)thatwillbe con-sumedwillincrease.Therearealsotrade-offsatlargerscale,typically whenshiftinginariverbasinfromrainfedtoirrigatedproductionor viceversa,orwhenshiftingproductionfromabasinwithmainly rain-fedagriculturetoanotherbasinwithmostlyirrigatedfarmingorvice versa.Yetanotherexampleofshiftingbetweengreentobluewater con-sumptioniswhenchangingfromthecultivationofarainfedwintercrop togrowinganirrigatedspringcroportheotherwayaround.

ForvariousreasonswemaythusbeinterestedinknowingblueT, blueEorblueETasatotal,tobedistinguishedfromgreenT,greenE andgreenETasatotal.Inreality,however,EandTappear undifferen-tiated,sogreenandblueEandgreenandblueTcannotbemeasured directly;theycanonlybeinferredindirectly.GreenandblueEandgreen andblueTaren’tconventionalhydrologicalconcepts,becausefor un-derstandinghydrologyit’slogicandsufficienttoworkwithtotalEand totalT.SeparatingEandTintotheirgreenandbluecomponentsis use-fulthough,asthissplitunveilstheoriginofthewaterthatevaporates ortranspires.Green-bluewateraccountsasextensiontohydrological accountsthustellsomethingabouttheoriginofstocksandflows.Most inparticularforEandTorforETasatotalitishighlyrelevanttoknow whichpartscomeforrainwaterandwhichpartsfromaddedirrigation water.

3. Theprincipleoftracinggreenandbluewaterinthesoilwater

balance

Theaccountingmethodproposedhereisbuiltontheideathatavalid questionforanywaterfluxleavingthesoilandvegetationis:whatisthe source?Particularlyfor(nonbeneficial)soilevaporationand(beneficial) croptranspirationwemaywanttoknowhowmuchofthatwas irriga-tionwaterandhowmuchrainwaterorcapillaryrisefromthe ground-water.

InordertoestimategreenandblueEandTweneedtotracethe originofEandT.TheEandTflowsoriginatefromsoilwaterorwater interceptedbyvegetation.These waterstocks inturn originatefrom eitherprecipitationorirrigation,andsometimespartlyfromcapillary riseaswell.Ifwe knowhowmuchofthewaterinthesoilandhow muchofthewaterinterceptedbyvegetationcomesfromprecipitation orirrigation,wealsoknowthefractionsofgreenandbluewaterinEand T.ThereforeIproposeasimpleaccountingmethodtokeeptrackofthe fractionsgreenandbluewaterinthedifferentsoilandvegetationlayers,

onadailybasis,asabasistoestimategreenandbluewaterfractionsin allfluxesleavingeachlayer.Themethodisasfollows:

1. Asystematicrecordingofthegreen-bluewatercompositionisdone persoilandvegetationlayer.Theamountofgreenwaterinasoil orvegetationlayerincreaseswhenrainwaterentersthatlayer.The amountofbluewaterinalayerincreaseswhenirrigationwateror capillaryriseentersthatlayer.Thegreen-bluecompositionof the waterstorageinalayeriscontinuouslyupdatedbasedonthecolours ofthevariousinflows.

2. Atacertainpointintime,eachwaterflux(e.g.EorT)fromaspecific soilorvegetationlayeriscomposedofagreenandabluefraction equaltothegreen-bluecompositionofthewaterstorageinthatlayer atthatpointintime.Thisassumesahomogeneousdistributionof greenandbluewaterinalayer.

Theextendedaccountsarenotnecessarilylimitedtogreenandblue water. Thebluewateraccounts canbe doneseparatelyforblue wa-teroriginatingfromdifferentsources(Hoekstraetal.,2011),including forexample:irrigationwaterfromsurfacewater;irrigationwaterfrom renewablegroundwater;irrigationwaterfromfossilgroundwater; irri-gationwaterfromharvestedrainwater;irrigationwaterfromdomestic wastewater;irrigationwaterfromdesalinatedseawater;andcapillary risefromrenewablegroundwater.Atcatchmentscaleitcouldbe inter-estingtoknowhowmuchbluewaterisconsumedincropproduction fromthesedifferentwatersources.Attheminimumlevel– becauseof theessentiallydifferentsoilwaterdynamics– itisrecommendedto dis-tinguishbetweenbluewaterfromirrigationwateraddedtothefieldand bluewaterenteringthesoilwaterfrombelowthroughcapillaryrise.

Letmemakeanotehereonthetreatmentofharvestedrainwater. Rainwaterharvestingreferstothelocalcaptureandstorageof rainwa-ter,directlywhenitfallsonthegroundorshortlyafteritalreadyhas becomerunoff.Harvestedrainwateristhusbluewater(whichmaybe confusinggiventheuseofthetermrainwater),becauseitisnot con-tainedinthesoilbutinsteadcollectedinawaterreservoirfromwhich thewatercanbedistributedtoanyuse.Usingthisharvestedrainwater isthusbluewateruseandanyconsumptionfollowingfromitwillbea formofbluewaterconsumption.

Theaccountingmethodpresentedhereisphysicallybased;the out-comescouldbeempiricallytestedusingtracermethods.Forexample, ifwewouldaddatracersubstancetoirrigationwaterandmeasurethe occurrenceofthattracerinthesurfacerunoff,evaporativeflowsand groundwaterrecharge,wecouldestablishwhichfractionsofthese wa-terflowsoriginatefromtheaddedirrigationwater.Thesameistruefor thesoilwaterindifferentsoillayers:atanymomentintimeonecould measuretheoccurrenceofthetracerinthesoilmoistureinaparticular soillayerandestablishwhichfractionofthesoilmoistureinthatlayer apparentlyoriginatesfromirrigationwater(versusothersourceslike rainandcapillaryrise).

4. Thepracticeoftracinggreenandbluewaterinasoilwater

balancemodel

Howtheaccountingofgreenandbluewaterincropcultivationis donepreciselydependsontheschematizationoftheverticalintooneor moresoilandvegetationlayersandtheschematizationofwaterfluxes enteringandleavingthevariouslayers.HereIgiveasimpleexamplefor thecaseofonesoillayer,whiledistinguishingbetweenthreeinflows (in-filtrationofrainwater;infiltrationofirrigationwater;andcapillaryrise fromthegroundwater)andthreeoutflows(evaporation;transpiration; andpercolationtothegroundwater).Besides,wedistinguishan over-landrunoff flow,whichsubtractsfromrainwaterandirrigationwater beforeinfiltrationintothesoil(Fig.1).Notethatwaterenteringthesoil throughcapillaryriseisbluewaterbecausethewateroriginatesfrom groundwater.

(4)

Fig. 1. Green-bluewateraccountingofsoilmoistureandwaterfluxesenteringandleavingthesoilmoistureincaseofonesoillayer.The‘colourcodes’intheform ofsubscriptsrefertotheoriginofthewater.

InthesoilwaterbalancemodelasshowninFig.1,thechangesin thedifferentcomponentsofthesoilmoisturearegivenby:

𝑑𝑆𝑔 𝑑𝑡 =𝑃( 𝑃𝑃+𝐼 ) 𝑅𝑂𝑆𝑔 𝑆(𝐺𝑊𝑅+𝐸+𝑇) (1) 𝑑𝑆𝑏,𝑖 𝑑𝑡 =𝐼( 𝐼𝑃+𝐼 ) 𝑅𝑂𝑆𝑏,𝑖 𝑆 (𝐺𝑊𝑅+𝐸+𝑇) (2) 𝑑𝑆𝑏,𝑐 𝑑𝑡 =𝐶𝑅𝑆𝑏,𝑐 𝑆 (𝐺𝑊𝑅+𝐸+𝑇) (3)

ThesymbolsrefertothestocksandflowsasshowninFig.1.When implementedinanumericalmodel,thisgives;

𝑆𝑔(𝑡)=𝑆𝑔(𝑡𝑑𝑡)+𝑃(𝑡)− ( 𝑃 (𝑡) 𝑃(𝑡)+𝐼(𝑡) ) 𝑅𝑂(𝑡) − (𝑆 𝑔(𝑡𝑑𝑡) 𝑆(𝑡𝑑𝑡) ) (𝐺𝑊𝑅(𝑡)+𝐸(𝑡)+𝑇(𝑡)) (4) 𝑆𝑏,𝑖(𝑡)=𝑆𝑏,𝑖(𝑡𝑑𝑡)+𝐼(𝑡)− ( 𝐼(𝑡) 𝑃(𝑡)+𝐼(𝑡) ) 𝑅𝑂(𝑡) − (𝑆 𝑏,𝑖(𝑡𝑑𝑡) 𝑆(𝑡𝑑𝑡) ) (𝐺𝑊𝑅(𝑡)+𝐸(𝑡)+𝑇(𝑡)) (5) 𝑆𝑏,𝑐(𝑡)=𝑆𝑏,𝑐(𝑡𝑑𝑡)+𝐶𝑅(𝑡)− (𝑆 𝑏,𝑐(𝑡𝑑𝑡) 𝑆(𝑡𝑑𝑡) ) (𝐺𝑊𝑅(𝑡)+𝐸(𝑡)+𝑇(𝑡)) (6) Atimestepdtofonedaywillgenerallybesufficienttocapturethe dynamicsofthesoilmoisture,andispracticalalsogiventhatthevarious inputdataaregenerallyavailableonadailybasis.

ForanyoutflowFfromthesoilmoisture(E,T,GWR),thepartofF

thathasoriginx(precipitation,irrigationorcapillaryrise)followsat anytimefrom:

𝐹𝑥(𝑡)= (𝑆 𝑥(𝑡) 𝑆(𝑡) ) 𝐹(𝑡) (7)

Theexampleprovidedhereisforthecaseofasimplesoilwater bal-ancemodelwithonlyonesoillayerandhasbeensuccessfullyapplied

inafewcasestudiesalready(Chukallaetal.,2015;Zhuoetal.,2016; KarandishandHoekstra,2017;Nourietal.,2019).Inthecaseof var-ioussoillayers,theaccountingprincipleremainsthesame:thecolour compositionofeachsoillayeristoberecordedovertimebasedonthe colourcompositionsofincomingandoutgoingwaterfluxes.Themodel presentedherealsodoesn’tdistinguishbetweenevaporationfromthe soilandevaporationofwaterinterceptedbytheleavesandstemsofthe vegetation.Ifavegetationlayerandtheprocessofinterceptionisadded, thegreen-bluewateraccountingprinciplewillneedtobeappliedtothis layeraswell.

Thegreen-bluewater accountingasproposedhere doesnotneed anydataontopofthedataalreadyrequiredforthesoilwaterbalance modelused.Thedatarequireddependonthechosensoilwaterbalance model,nottheextendedgreen-blueaccounting.Theonlypractical is-suewhenapplyingtheproposed accountingmethodis thataninitial green-bluecompositionofthesoilwaterneedstobeassumed(foreach layerwhenmorethanonelayerisdistinguished),justlikeanoverallsoil moisturecontentneedstobeassumed.Insimulationstudies, initializa-tionisawell-knownproblemandthegeneralsolutionsoftenchosenin hydrologicalstudiescanalsobeappliedforinitialisingthegreen-blue compositionofthesoilwater.Oneoptionistoiterativelydeterminea realisticinitialcondition(seee.g.Chukallaetal.,2015);anotheroption is torunamodelfortwoormoresubsequentyearsjustfor initializ-ing(wherebytheoriginalassumptiondoesnotmattermuch,because anyerrorwillnotworkthroughmorethanafewyears)anduseonly thesimulatedyearsaftertheinitializationperiod(seee.g.Nourietal., 2019).

5. Fromthegreen-bluewateraccountstoestimatingirrigation

waterconsumption,irrigationefficiencyandgreenandblue

waterfootprints

Thegenericprincipleintroducedheretodistinguishbetweengreen andblueEandbetweengreenandblueTallowsustomoreaccurately estimateirrigationwaterconsumption,irrigationefficiencyandgreen andbluewaterfootprintsofcropproductionthanbefore.Earlier

(5)

assess-mentsofblueETinirrigatedcropproductionwereroughestimations basedontherelativeadditiontothesoilofirrigationwaterandrainfall overtime(Rostetal.,2008;Faderetal.,2011;Hanasakietal.,2010) orontakingthedifferencebetweenETunderrainfedconditionsand ETunderirrigatedconditions(MekonnenandHoekstra,2010;Siebert andDöll,2010).AnearlierassessmentofblueETfromcapillaryrisein productionforestswassimilarlybasedonaroughassumptionregarding thecontributionofcapillaryrisewithoutproperlykeepingtrackofthe compositionofthesoilmoisture(Schynsetal.,2017).

Theaccountingmethodpresentedoffersanunambiguouswayto esti-mateirrigationwaterconsumption,whichreferstowhatintheaccounts comesas‘blueevapotranspirationfromirrigationwater’(Eb,i +Tb,i ).It isimportanttoknowirrigationwaterconsumption,becauseitisthepart oftheirrigationwaterappliedtothefieldthatdoesnotreturntothe catchment(througheitherrunoff fromthefieldordrainage).Itisthe consumptivepartofirrigationthatcontributestobluewaterscarcity, soitishighlyrelevanttoestimateitaccurately.

Theaccountingmethodalsoenablesthecalculationofirrigation effi-ciency(IE)astheratioofbluetranspirationfromirrigationwater(Tb,i ) totheappliedirrigationwater(I)overthegrowingperiodofthecrop (ZhuoandHoekstra,2017):

𝐼𝐸= 𝑇𝑏,𝑖

𝐼 (8)

Itistobenotedherethatifnexttotheharvestedcropthereareweeds orotherformsofvegetation(e.g.thecoverunderproductiontrees)as well,oneshoulddistinguishbetweentotalcropTandweed/otherTand computeIEbasedoncropT.

ByprovidingthedistinctionbetweengreenandblueEandTover thegrowingperiod,theproposedaccountingschemeeasilyallowsthe estimationofgreenandbluewaterfootprints(WF)perunitofcrop har-vestedbydividingtherightcomponentsofEandToverthegrowing periodbythecropyield(Y):

𝑊𝐹𝑔=𝐸𝑔 +𝑇𝑔 𝑌 (9) 𝑊𝐹𝑏,𝑖= 𝐸𝑏,𝑖 +𝑇𝑏,𝑖 𝑌 (10) 𝑊𝐹𝑏,𝑐=𝐸𝑏,𝑐 +𝑇𝑏,𝑐 𝑌 (11)

Allwaterfootprintsarecalculatedbasedonthesumofthebeneficial consumptionofwater(T)andthenonbeneficialconsumptionofwater (E)becausethewaterfootprintmetricintendstoshowtotalwater con-sumptionrelatedtoproduction,andthisincludesthe‘wastefraction’ ofconsumption,thatistheunproductiveevaporationfromthesoil.For theblueWFofirrigationthismeansthatitgetssmallerwhenthe un-productiveconsumptionofwatergetsreduced;measurestoshiftsome ofthenonbeneficialEtobeneficialT(e.g.throughsoilmulching),thus increasingY,willreducetheblueWF(Chukallaetal.,2015).Theblue WFrelatedtoconsumptionofirrigationwatercanbesplitupinto dif-ferentcomponentsifdifferentsourcesofirrigationwaterareusedand explicitlydistinguished(e.g.fossilgroundwater,renewable groundwa-ter,rivers/lakes,andharvestedrainwater).TheblueWFcanbesplitup accordingtothesesourcesprovidedthatseparatetracingisdoneinthe accountingforeachofthesesources.

6. Conclusion

Theconfusionintheliteratureonwhether‘greenwater’refersto rainwaterinthesoilortoevapotranspirationofrainwater– aswas men-tionedintheintroduction– hasbeensolvedherebyacknowledgingthat ‘green’and‘blue’donotrefertooneparticularstockorflowinthe wa-tercycle,butareratherlabelsthattellsomethingabouttheoriginof water.Greenandbluearelabelsthatcanbeusedbothforwaterstored inasoilorvegetationlayerandforawaterfluxthatleavesfromthesoil

orvegetation(liketheevaporationortranspirationflow).‘Green’thus means‘originatingfromrainwater’and‘blue’means‘originatingfrom groundwaterorsurfacewater’.Inbothcaseswerefertotheorigininthe short-termpast,becausewaterkeepscirculating,sointheendallwater canbetracedbackinsomestagetobothrainwaterandrunoff flows.The issuehereiswhether,whenwetraceforinstanceE,Torsoilmoisture backtowhereitcomesfrom,weeitherendupfirstwithrainfallorwith groundwaterorsurfacewater.

Theproposedgreen-bluewateraccountingmethodhelpstoimprove theestimationofirrigationwaterconsumption,irrigationefficiencyand greenandbluewaterfootprintsinagriculture.Althoughtheemphasis hasbeenoncropproduction,thegreen-bluewateraccountingmethodis equallyapplicableforforestryandgardening.Forallthesepurposeswe needanaccuratepartitioningofEandTintoagreenandblue compo-nent.Theproposedmethodprovidesinagenericandaccurateroutine forthat,whileallpreviousapproachesreliedonsimplisticroutinesthat didnotdojusticetothesoilwaterdynamics.

Thenumberofpaperspublishedinthefieldofgreenandblue wa-terconsumptioninagricultureandforestryisgrowingquickly;itwould behelpfulifresearchers– insteadofrelyingonsimplisticassumptions – adoptthehereproposedphysicallybasedtracingmethod,which al-lowsthepreciseassessmentofgreenandbluefractionsofsoilmoisture andwaterfluxesleavingthesoil.Theminimumrequirementisthatthe hydrologicalorcropgrowthmodelusedincludesadailysoilwater bal-ance.Currentlytheredoesnotexistanyhydrologicalorcrop growth modelthatincludesgreen-bluewatertracing,henceresearchershave torelyonpost-processingofthetimeseriesoutputsfromtheirmodelto simulatethecolourcompositionofsoilmoistureandwaterfluxes leav-ingthesoil(seee.g.Chukallaetal.,2015).Itistobe recommended tointegrategreen-bluewateraccountinginsoil-waterbalancemodels, which requireslittleeffortotherthanaddsome additionalcoding to systematicallykeeptrackofthecolourcompositionofsoilmoistureand soilwaterfluxes.

Theinterestintracingtheoriginsofwaterconsumedincrop produc-tionincreases.Wadaetal.(2014)forinstanceestimatedirrigationwater consumptiondistinguishingbetweenirrigationfromsurfacewaterand irrigationfromgroundwaterataglobalscale,ataspatialresolutionof 0.5arcdegree.Thenextstepistosystematicallydifferentiatebetween irrigationfromfossilversusrenewablewaterresources.Itwillbe inter-estingalsotomapirrigationwaterconsumptionfrominter-basinwater transferschemes.Sinceirrigationwaterconsumptionisthelargest con-tributortobluewaterscarcitythroughouttheworld(Mekonnen and Hoekstra,2016)andsinceincreasingwater-useefficiencyand reduc-ingbluewaterscarcityaretargetsintheUNSustainableDevelopment Goals(Vanhametal.,2018),properlyestimatingirrigationwater con-sumptionisgaininginimportance.

References

Burt, C.M. , Clemmens, A.J. , Strelkoff, T.S. , Solomon, K.H. , Bliesner, R.D. , Hardy, L.A. , Howell, T.A. , Eisenhauer, D.E. , 1997. Irrigation performance measures: efficiency and uniformity. J. Irrig. Drain. Eng. 123 (6), 423–442 .

Chukalla, A.D. , Krol, M.S. , Hoekstra, A.Y. , 2015. Green and blue water footprint reduc- tion in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 19 (12), 4877–4891 .

Contor, B.A. , Taylor, R.G. , 2013. Why improving irrigation efficiency increases total vol- ume of consumptive water use. Irrig. Drain. 62 (3), 273–280 .

Fader, M. , Gerten, D. , Thammer, M. , Heinke, J. , Lotze-Campen, H. , Lucht, W. , Cramer, W. , 2011. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 15 (5), 1641–1660 .

Falkenmark, M. , 1995. Land-water linkages: a synopsis. In: FAO, Land and water integra- tion and river basin management, Proceedings of an FAO informal workshop, Rome, Italy, 31 January–2 February 1993, FAO Land and Water Bulletin 1, Food and Agri- culture Organization, Rome, pp. 15–16 .

Falkenmark, M. , 2007. Shift in thinking to address the 21st century hunger gap: moving focus from blue to green water management. Water Resour. Manage. 21, 3–18 . Falkenmark, M. , 2013. Growing water scarcity in agriculture: future challenge to global

water security. Philos. Trans. R. Soc. A 371, 20120410 .

Falkenmark, M. , Rockström, J. , 2006. The new blue and green water paradigm: breaking new ground for water resources planning and management. J. Water Resour. Plann. Manage. 132, 129–132 .

(6)

Grafton, R.Q. , Williams, J. , Perry, C.J. , Molle, F. , Ringler, C. , Steduto, P. , Udall, B. , Wheeler, A. , Wang, Y. , Garrick, D. , Allen, R.G. , 2018. The paradox of irrigation effi- ciency. Science 361 (6404), 748–750 .

Haddeland, I. , Heinke, J. , Biemans, H. , et al. , 2014. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. 111 (9), 3251–3256 . Hanasaki, N. , Inuzuka, T. , Kanae, S. , Oki, T. , 2010. An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 .

Hoekstra, A.Y. , 2014. Sustainable, efficient and equitable water use: the three pillars under wise freshwater allocation. WIREs Water 1 (1), 31–40 .

Hoekstra, A.Y. , Chapagain, A.K. , Aldaya, M.M. , Mekonnen, M.M. , 2011. The Water Foot- print Assessment Manual: Setting the Global Standard. Earthscan, London, UK . Hoff, H. , Falkenmark, M. , Gerten, D. , Gordon, L. , Karlberg, L. , Rockström, J. , 2010. Green-

ing the global water system. J. Hydrol. 384, 177–186 .

Hoogeveen, J. , Faurès, J.M. , Peiser, L. , Burke, J. , Van de Giesen, N. , 2015. GlobWat – a global water balance model to assess water use in irrigated agriculture. Hydrol. Earth Syst. Sci. 19 (9), 3829–3844 .

Karandish, F. , Hoekstra, A.Y. , 2017. Informing national food and water security policy through water footprint assessment: the case of Iran. Water 9 (11), 831 .

Liu, J. , Yang, H. , 2010. Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. J. Hydrol. 384 (3–4), 187–197 .

Mekonnen, M.M. , Hoekstra, A.Y. , 2010. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 14 (7), 1259–1276 .

Mekonnen, M.M. , Hoekstra, A.Y. , 2011. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15 (5), 1577–1600 .

Mekonnen, M.M. , Hoekstra, A.Y. , 2016. Four billion people facing severe water scarcity. Sci. Adv. 2 (2), e1500323 .

Molden, D. (Ed.), 2007. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan, London, UK .

Nouri, H. , Stokvis, B. , Galindo, A. , Blatchford, M. , Hoekstra, A.Y. , 2019. Water scarcity alleviation through water footprint reduction in agriculture: the effect of soil mulching and drip irrigation. Sci. Total Environ. 653, 241–252 .

Perry, C. , 2007. Efficient irrigation; inefficient communication; flawed recommendations. Irrig. Drain. 56 (4), 367–378 .

Perry, C. , Steduto, P. , Allen, R.G. , Burt, C.M. , 2009. Increasing productivity in irrigated agriculture: agronomic constraints and hydrological realities. Agric. Water Manage. 96 (11), 1517–1524 .

Portmann, F.T. , Siebert, S. , Döll, P. , 2010. MIRCA2000 - Global monthly irrigated and rain- fed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24 (1), GB1011 .

Romaguera, M. , Krol, M.S. , Salama, M.S. , Su, Z. , Hoekstra, A.Y. , 2014. Application of a remote sensing method for estimating monthly blue water evapotranspiration in irrigated agriculture. Remote Sens. 6 (10), 10033–10050 .

Rost, S. , Gerten, D. , Bondeau, A. , Lucht, W. , Rohwer, J. , Schaphoff, S. , 2008. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44, W09405 .

Schyns, J.F. , Booij, M.J. , Hoekstra, A.Y. , 2017. The water footprint of wood for lumber, pulp, paper, fuel and firewood. Adv. Water Res. 107, 490–501 .

Schyns, J.F. , Hoekstra, A.Y. , Booij, M.J. , 2015. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 19 (11), 4581–4608 . Schyns, J.F. , Hoekstra, A.Y. , Booij, M.J. , Hogeboom, H.J. , Mekonnen, M.M. , 2019. Limits

to the world’s green water resources for food, feed, fibre, timber and bio-energy. Proc. Natl. Acad. Sci. 116 (11), 4893–4898 .

Siebert, S. , Döll, P. , 2010. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–207 .

Vanham, D. , Hoekstra, A.Y. , Wada, Y. , Bouraoui, F. , De Roo, A. , Mekonnen, M.M. , Van de Bund, W.J. , Batelaan, O. , Pavelic, P. , Bastiaanssen, W.G.M. , Kummu, M. , Rock- ström, J. , Liu, J. , Bisselink, B. , Ronco, P. , Pistocchi, A. , Bidoglio, G. , 2018. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: an evaluation of indicator 6.4.2 “Level of water stress ”. Sci. Total Environ. 613-614, 218–232 . Wada, Y. , Wisser, D. , Bierkens, M.F.P. , 2014. Global modeling of withdrawal, allocation

and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 .

Zhuo, L. , Hoekstra, A.Y. , 2017. The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. Front. Agric. Sci. Eng. 4 (2), 185–194 .

Zhuo, L. , Mekonnen, M.M. , Hoekstra, A.Y. , Wada, Y. , 2016. Inter- and intra-annual vari- ation of water footprint of crops and blue water scarcity in the Yellow River Basin (1961–2009). Adv. Water Res. 87, 21–41 .

Referenties

GERELATEERDE DOCUMENTEN

Some questions that arise from this research question are: “How has the balance between the green water footprint and blue water footprint changed over the period 1990-2019?”;

There is a real irony in this situation, for our vision of an effective mental health service does not involve vast numbers of trained psychological therapists, but a programme

This conclusion was backed up by the authors’ observations in two maintenance depots (i.e., Leidschendam and Haarlem, NL), and was asserted by maintenance technicians

The problems which have significant results include (1) improper planning of the project, specifically inadequately set out project milestones (CPM1); (2) improper controlling of

The process induced residual distortions (warpage formation for the rectangular hollow profile and spring-in generation for the L- shaped profile) and stresses (internal stresses

de term diffusie wordt echter door veel auteurs gebruikt voor één bepaald type van verspreiding; namelijk die verspreiding die kan worden toegeschreven aan bepaalde mechanismen

In order to show that the injection seeding imposes narrowband signal and idler spectral output tunable over the gain bandwidth, rather than the spontaneous broadband FWM spectrum,

This research consists of five chapters. The first chapter introduces the research and identifies the research problem. In the second chapter, the definitions and