• No results found

Perturbative unitarity bounds for effective composite models

N/A
N/A
Protected

Academic year: 2021

Share "Perturbative unitarity bounds for effective composite models"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Perturbative unitarity bounds for effective composite models

Biondini, S.; Leonardi, R.; Panella, O.; Presilla, M.

Published in:

Physics Letters B

DOI:

10.1016/j.physletb.2019.06.042

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Biondini, S., Leonardi, R., Panella, O., & Presilla, M. (2019). Perturbative unitarity bounds for effective

composite models. Physics Letters B, 795, 644-649. https://doi.org/10.1016/j.physletb.2019.06.042

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Perturbative

unitarity

bounds

for

effective

composite

models

S. Biondini

a

,

,

R. Leonardi

b

,

O. Panella

b

,

M. Presilla

c

,

d

aVanSwinderenInstitute,UniversityofGroningen,Nijenborgh4,NL-9747AGGroningen,Netherlands bIstitutoNazionalediFisicaNucleare,SezionediPerugia,ViaA.Pascoli,I-06123Perugia,Italy

cDipartimentodiFisicaeAstronomia“GalileoGalielei”,UniversitàdegliStudidiPadova,ViaMarzolo,I-35131,Padova,Italy dIstitutoNazionalediFisicaNucleare,SezionediPadova,ViaMarzolo,I-35131,Padova,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received5April2019

Receivedinrevisedform7June2019 Accepted18June2019

Availableonline20June2019 Editor:G.F.Giudice Keywords: Perturbativeunitarity Compositemodels Compositefermions LHCRun2

High-LuminosityandHigh-EnergyLHC

Inthispaperwepresentthepartial waveunitarityboundintheparameterspaceofdimension-5and dimension-6 effective operators that arise in a compositeness scenario. These are routinely used in experimentalsearchesattheLHCtoconstraintcontactandgaugeinteractionsbetweenordinaryStandard Model fermionsand excited(composite) statesofmass M.Afterdeducingtheunitarityboundforthe productionprocessofacompositeneutrino,weimplementsuchboundandcompareitwiththerecent experimental exclusion curvesfor Run 2, the High-Luminosityand High-Energy configurations of the LHC.Ourresultsalsoappliestothesearcheswhereagenericsingleexcitedstateisproducedviacontact interactions. We findthat the unitarity bound, sofar overlooked,is quite compelling and significant portionsoftheparameterspace(M,)becomeexcludedinadditiontothestandardrequestM≥ .

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Itiswellknownthatpartialwaveunitarityisapowerfultoolto estimatetheperturbativevalidityofeffectivefield theories(EFTs). It has been used in the past to provide useful insights both in strong and electroweak interactions [1] as well as in quantum gravity [2]. Perhapsthebest knownexampleistheboundonthe Higgs mass derived from an analysis of W W

W W scattering

within the Standard Model (SM) [1,3]. On the other end, unitar-ity hasalsobeen appliedto a numberofapproachesbeyondthe StandardModel(BSM).ForinstanceincompositeHiggsmodels [4], insearches ofscalar di-bosonresonances [5,6], searchesfor dark mattereffectiveinteractions [7] andongenericdimension-6 oper-ators [8].

OnepossibleBSMalternative,widelydiscussesinliteratureand routinely pursued in high-energy experiments, is a composite-fermions scenario which offers a possible solution to the hierar-chypatternoffermionmasses [9–15].Inthiscontext [14–20],SM quarks“q”andleptons“



”areassumedtobeboundstatesofsome asyetnotobserved fundamentalconstituentsgenerically referred aspreons.Ifquarksandleptonshaveaninternalsubstructure,they areexpectedto beaccompanied byheavy excited states



,

q∗ of

*

Correspondingauthor.

E-mailaddress:s.biondini@rug.nl(S. Biondini).

massesM thatshouldmanifestthemselvesatanunknownenergy scale,thecompositenessscale



.

AscustomaryinanEFTapproach,theeffectsofthehigh-energy physics scale, here



, are capturedin higherdimensional opera-torsthatdescribeprocesseswithinalowerenergydomain,where the fundamental building blocks of the theory cannot show up. Hence, the heavy excited states may interact with the SM ordi-nary fermionsvia dimension-5gaugeinteractions oftheSU(2)L

U(1)Y SMgaugegroupofthemagnetic-momenttype(sothatthe electromagnetic current conservation is not spoiled by e.g.





γ

processes [18]).In addition,the exchange ofpreonsand/or bind-ingquantaoftheunknowninteractionsbetweenordinaryfermions ( f ) and/or the excited states( f∗) resultsin effective contact in-teractions (CI) that couple the SM fermions and heavy excited states [19–22]. Inthelattercase, thedominanteffectisexpected to be given by the dimension-6 four-fermioninteractions scaling withtheinversesquareofthecompositenessscale



:

L

6

=

g∗2



2 1 2j μj μ

,

(1a)

=

η

Lf

¯

L

γ

μfL

+

η

Lf

¯

L

γ

μfL

+

η

Lf

¯

L

γ

μfL

+

h

.

c

.

+ (

L

R

) ,

(1b)

where g2

=

4

π

andthe

η

’s factorsareusually setequaltounity. Inthiswork theright-handedcurrentswillbe neglectedfor

sim-https://doi.org/10.1016/j.physletb.2019.06.042

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

plicity(thisisalsothesettingadoptedbytheexperimental collab-orations).

Asfarasgaugeinteractions(GI)areconcerned, letusconsider thefirst lepton familyandassume that the excited neutrinoand the excited electron are groupedinto left handed singlets and a right-handedSU(2)doublet:eL

,

ν

L

,

LR

=



ν

R

,

eR



T,sothata mag-netictype couplingbetweenthe left-handedSMdoublet andthe right-handedexcited doublet via the SU(2)L

U(1)Y gauge fields canbewrittendown [18,23]:

L

5

=

1 2



L

¯

R

σ

μν



g f

τ

2

·

Wμν

+

g fY B μν



LL

+

h

.

c

. .

(2) Here, LT

= (

ν

L

,



L

)

is the ordinary lepton doublet, g and g are theSU(2)L andU(1)Y gaugecouplingsandW μν ,Bμν arethefield strength tensorof the corresponding gauge fieldsrespectively;

τ

arethePaulimatricesandY isthehypercharge, f and fare di-mensionless couplings andare expected (and assumed) to be of orderunity.

ExcitedstatesinteractingwiththeSMsectorthroughthemodel Lagrangians(1a)-(1b) and (2) have beenextensively searched for at high-energy collider facilities. The current strongest bounds are dueto the recentLHC experiments.Charged leptons (e

,

μ

∗) havebeensearchedforin thechannel pp

→ 

→ 

γ

[24–30], i.e. produced via CI and then decay via GI, and in the channel

pp

→ 

→ 

qq

¯

 [31] wherebothproductionanddecayproceed throughCI.Neutralexcitedleptonshavebeenalsodiscussedinthe literatureandthecorresponding phenomenologyatLHChasbeen discussedindetailinthecaseofaheavycompositeMajorana neu-trinoN∗ [32].Adedicatedexperimentalanalysishasbeencarried outbytheCMScollaboration[33] onLHCdatacollectedfor

s =

13TeVandlookingfortheprocess

pp

→ 

N

→ 

qq

¯

 (3)

withdilepton (dielectrons or dimuons) plus diquark final states. TheexistenceofN isexcludedformassesup to4

.

60

(

4

.

70

)

TeV at95% confidencelevel,assumingM

= 

.Moreover,thecomposite Majorananeutrinosofthismodelcanberesponsiblefor baryogen-esisvialeptogenesis [34,35].Thephenomenologyofother excited states has also been discussed in a series of recent papers [32,

36–42].

Weemphasizethatinallphenomenologicalstudiesreferenced aboveaswellasall experimentalanalyses thathavesearchedfor excitedstatesatcolliders,itiscustomarytoimposetheconstraint

M

≤ 

onthe parameter spaceofthe model.To thebest ofour knowledgeunitarityhasneverbeentakenintoaccountand/or dis-cussedinconnectionwiththeeffectiveinteractionsofthesocalled excitedstates.Themaingoalofthisworkistoreportinsteadthat theunitarity bounds, asextractedfromEq. (1a)-(1b) and (2), are quitecompellingandshouldbeincludedinfuturestudiesofsuch effectivecompositemodelsbecausetheyconstraint ratherstrongly theparameter space. While we present an explicitcalculation of theunitarityboundforheavycompositeneutrinosearches,we ex-pectthat similarbounds(i.e.equallycompelling)wouldapplyfor excitedelectrons(e∗),muons(

μ

∗)andquarks(q∗).Indeed,the ef-fective operators that describe the latter excited states have the verysamestructureofthosereferredtothecompositeneutrinos.

2. Unitarityinsingle-excited-fermionproduction

Forthederivationoftheunitaritybound,weadoptastandard methodthat makesuseoftheoptical theoremandtheexpansion ofthescatteringamplitudeinpartialwaves.Inordertospecifythe CIandGILagrangiansforadefinitesituation,weconsiderthe pro-ductionoftheexcitedMajorananeutrinoattheLHC.However,we

Fig. 1. Feynmandiagrams depicting themechanisms responsiblefor the process

qq¯→N,wherestandsforboth±.Thedarkgreyblob(diagramontheleft) de-scribestheproductionofanon-shellheavyMajorananeutrinoN inproton-proton collisionsatLHC.Theproductionispossiblebothwithgaugeinteractions(first di-agramontheright-handside)andwithfour-fermioncontactinteractions(second diagramontheright-handside).

shallhighlightwhentheresultsapplytoothercompositefermion statesinthefollowing.

The central object that we shall derive fromthe operators in theeffectiveLagrangians(7) and(8) is theinteractingpartofthe

S matrix,indicatedwithT inthisletter.Itentersthepartialwave decompositionofthescatteringamplitudeasfollows

M

if

(θ )

=

8

π



j

(

2 j

+

1

)

Tijfdλj

fλi

(θ ) ,

(4)

where j istheeigenvalueofthetotalangularmomentum J ofthe incoming(outgoing)pair, dλj

fλi

(θ )

isthe Wigenerd-function and

λ

i (

λ

f) isthetotalhelicityoftheinitial(final)state pair.Without loss of generality, we consider azimuthally symmetric processes andfix

φ

=

0 accordingly. From theoptical theorem andthe de-composition in Eq. (4), one can find the perturbative unitarity conditionofaninelasticprocessforeach j tobe



f =i

β

i

β

f

|

Tijf

|

2

1

,

(5)

where

β

i (

β

f) is the factor obtained from the two-body phase spaceandreadsfortwogenericparticleswithmassesm1 andm2

β

=



ˆ

s

− (

m1

m2)2



ˆ

s

− (

m1

+

m2)2

ˆ

s

.

(6)

Itcorrespondstotheparticlevelocitywhenm1

=

m2.Itis

impor-tanttonoticethattheunitaritybound isimposed onthe subpro-cess involving the proton valence quarks as initial state, namely

qq

¯



→ 

N∗asshowninFig.1.Then,fortheprocessofinterest,the relevantinteraction(s)areasfollows:

L

CI

=

g2

η



2q

¯



γ

μP LqN

¯

γ

μPL



+

h

.

c

. ,

(7)

L

GI

=

g f

2



N

¯

σ

μν

(∂

μWν+

)

PL



+

h

.

c

. .

(8)

Accordingly,inEq. (6),

ˆ

s denotesthecenter-of-massenergyineach collision anditisobtainedfromthe nominalcolliderenergyand thepartonmomentum fractionsas

ˆ

s

=

x1x2s. Asfar asthe

kine-matic is concerned,

β

i

=

1 can be used since the valence quark masses are negligible with respect to the center-of-mass energy. Instead, one finds

β

f

=

1

M2

s for the final state, where the compositeneutrinomasshastobekept.

The coreofthemethod reliesonthe derivation ofthe ampli-tudefortheprocessofinterestinducedbythecontactand gauge-mediatedeffectiveLagrangians(7) and(8).Then,onematchesthe so-obtainedresultfor

M

if withther.h.sofEq. (4) andextracts the corresponding Tijf for each definite eigenvalue of the total angularmomentum ( j).Thelatterare insertedinto Eq. (5) in or-der to derive the unitarity condition that the model parameters (

,

M

,

g

,

g) andthecenter-of-massenergyhavetoobey.Tothis

(4)

end,theamplitude

M

if isdecomposedintermsofdefinite he-licitystatesand,therefore,wehavetoexpresstheinitialandfinal stateparticlesspinorsaccordingly[43].Thehelicityofeachparticle intheinitialorfinalstateis

λ

= ±

1

/

2,beingalltheinvolved parti-clesfermions(alsothecompositeneutrinosarespin-1/2fermion). We shall simply use

±

to label the initial and final state helic-itycombinations,

(

+,

+)

,

(

+,

−)

,

(

−,

+)

and

(

−,

−)

. Sinceinthe center-of-mass frame the incoming andoutgoing particles travel inopposite directions,thehelicitiesintheWignerd-functionsare definedas

λ

i

= λ

q

− λ

q¯ and

λ

f

= λ

N

− λ

.Onecanadopttwo

dif-ferentbases forexpressing the spinors andthegamma matrices, theDiracandchiral bases(see e.g.appendix inref. [7]).Weused boththeoptionstoderive Tijf andcheckedthatourfindingsare indeedinvariantuponthechoiceofthebasis.

We give the result for the CI Lagrangian in Eq. (7) first. The non-vanishinghelicityamplitudesread

T(j−,+)→(−,+)=1

= −

ˆ

s g 2 ∗ 12

π



2

1

M 2

ˆ

s

1 2

,

(9) T(j−,+)→(+,+)=1

=

ˆ

s M g2 12

2

π



2

1

M 2

ˆ

s

1 2

.

(10)

Onlytheamplitudewith j

=

1 isnon-zero,duetotheinitial helic-itystate.Thesameoccurswiththevectorandaxial-vector opera-torsstudiedin[7] fordarkmatterpairproductionatcolliders.We noticethatafinitecompositeneutrinomassallowsforthehelicity flip inthe final state originatingtheterm inEq. (10). Weobtain thesame resultifwe workwithright-handed particles intheCI operator,howeverthehelicitiesinEqs. (9) and(10) flipas

+

↔ −

. Using Eq. (4) and summing over the non-vanishing final helicity states,weobtain g4s

ˆ

(

2s

ˆ

+

M2

)

288

π

2



4

1

M 2

ˆ

s

2

1

.

(11)

As far as the GI process is concerned, we proceed the same way.Adimension-5operatoris involvedand,inthiscase, theW

bosonmediatesthescatteringbetweentheinitialandfinal states. Wekeepthe W bosonmassinourexpression,evenifitismuch smallerthanthetypical

ˆ

s valuesofthepp collisions.TheSM elec-troweakcurrententersbesidestheonefromthecompositemodel andthehelicityamplitudesarefoundtobe

T(j−,+)→(−,+)=1

= −

ig 2 24

π



ˆ

s3/2

ˆ

s

m2 W

1

M 2 s

1 2

,

(12) T(j−,+)→(+,+)=1

=

ig 2 24

2

π



ˆ

s M

ˆ

s

m2W

1

M 2

ˆ

s

1 2

,

(13)

andthecorrespondingresultfortheunitarityboundis

g4 1152

π

2



2

ˆ

s2

(

2

ˆ

s

+

M2

)

(

ˆ

s

m2W

)

2

1

M 2

ˆ

s

2

1

.

(14)

A comment is in order. The unitarity bound in Eq. (11) is valid for the more generic production process qq

¯



ff , i.e. excited chargedor neutralleptons andexcited quarksaccompanied by a SMfermion.Thisstatementtracesbacktotheparticle-blindchoice adoptedintheCIsframework,wherethe

η

’saresettounityinall the cases.More carehas to be takenabouta wider applicability ofthe resultfor GIs inEq. (14). Here,different factorscan enter accordingtothe gaugecouplings andgaugebosons that describe theprocessesinvolvingexcitedchargedleptonsandquarksinstead ofcompositeneutrinos.

3. Implementingthebound

The production of heavy composite Majorana neutrinos has beenstudiedbytheCMSCollaborationbymeasuringthefinalstate withtwoleptonsandatleastonelarge-radiusjet,withdatafrom

pp collisionsat

s

=

13 TeVandwithanintegratedluminosityof 2

.

3 fb−1 [33].Goodagreement betweenthedata andtheSM

ex-pectations was observed in the search, butthe whole dataset of the Run 2 of the LHC still needs to be analysed. Therefore, the issueoftheunitarityconditionontheaccessibleparameterspace (M

,



)urgestobeassessed.AsusualinBSMsearches,theabsence ofasignalexcessovertheSMbackgroundistranslatedintoan ex-perimental bound on theparameter space

(

M

,

)

. Moreover, the sensitivity ofthis search was investigated fortwo futurecollider scenarios: the High-Luminosity LHC (HL-LHC), with a centre-of-mass energy of 14 TeV andan integrated luminosity of 3 ab−1, andtheHigh-EnergyLHC(HE-LHC),withacentre-of-massenergy of27 TeVandanintegratedluminosity of15ab−1 [44].The pro-jectionstudies,includedintherecentYellowReportCERN publica-tion [45,46],haveshownthepotentialofsuchfacilitiesinreaching muchhigherneutrinomasses.

In this section, the perturbative unitarity bounds are applied to these searches in the dilepton and a large-radius jet chan-nel with the CMS detector for the three different collider sce-narios. As alreadyclearfromthe ratherdifferent couplingvalues entering the Lagrangians (7) and (8), namely g

/

2

1 versus

g2

=

4

π

,theproductionmechanismofaheavycompositeneutrino and other excited states is dominated by the contact interaction mechanism [40]. In particular, it was shown that cross sections incontact-mediatedproductionareusuallymorethantwo orders of magnitudelarger than thegauge mediated ones forall values of the



and M relevant in the analyses. This means that it is a reasonable approximationto consideronly theboundsgivenin Eq. (11) toconstrainttheunitarityviolationofthesignalsamples. In order to estimate the effect of the unitarity condition on LHC searches, we need to implementthe boundsin the case of hadron collisions. Then, the square of the centre-of-mass energy of the collidingpartons system,

ˆ

s

=

x1x2s does not have a

defi-nite value, where x1 and x2 are the partonmomentum fractions

and

s isnominalenergyofthecollidingprotons.Tothisaim,we haveestimated

ˆ

s ineacheventgeneratedintheMonteCarlo(MC) samples,andwe haveplugged theresultintoEq. (11) inorderto obtainlevelcurvesontheparameterspaceforwhichtheunitarity boundissatisfiedtosomeextent.Indeed,oneshouldnotinterpret the constraintinEq. (11) toostrictly.A violationofsuch bounds would signal the breakdown of the EFT expansion and call for higherorder operatorsin

ˆ

s

/

and/or M

/

to helpinrestoring the unitarity of the process. We implement a theoretical uncer-tainty by allowing up to50% of theevents toviolate the bound, that corresponds to assign a relative correction to the cross sec-tion

δ

σ

/

σ

LO

0

.

5 fromhigherorderterms.Thisprocedureresults inthebandsbetweenthesolid-thickandsolid-thin(violet)linesin Figs.2-5forwhich100%and50%oftheeventssatisfytheunitarity boundrespectively.TheMCsamplesforthesignalaregeneratedat Leading Order(LO) withCalcHEP (v3.6) [47] for

s

=

13

,

14 and 27 TeVproton-protoncollisions,usingtheNNPDF3.0LOparton dis-tributionfunctionswiththefour-flavorscheme [48],spanningover the

(,

M

)

regioncoveredby theexperimental searches [44].The informationonthepartonmomentaisthenretrievedfromtheLes HouchesEvent(LHE)filesofeachsignalprocessthrough MadAnal-ysis [49].

We have explicitlychecked that, in the mass range explored, the

ˆ

s-distributions in our MC simulations are peaked at values around M2 almost irrespective of the nominal collider energy

(5)

Fig. 2. Theunitarityboundinthe(M,)planecomparedwiththeRun2 exclu-sionat95%CLfrom[33],dashedline(blue),fortheeeqq¯finalstatesignature.The solid-thickandsolid-thin(violet)linesrepresenttheunitaritybound,whereasthe dot-dashed(gray)linestandsforthe M≥ condition.Hereandinthefollowing figuresbothandM startat100GeV.

Fig. 3. Theunitarityboundintheplane(M,)comparedwiththeexclusionfrom theHighLuminosityprojectionsstudyin[45] forLHCat√s=14 TeVat3ab−1of

integratedluminosity.

since in the generated signal eventsthe available energy,

ˆ

s, is mostly used to produce a heavy excited state (of mass M). Of course,thelargerthecolliderenergythemoreprominentthe dis-tributiontailsathigh

ˆ

s values.Theseexpectationsarecorroborated by analytical expressions for the

ˆ

s-distributions that can be re-trieved from ref. [32], involving only the product of the parton luminosity functions and the hard production process cross sec-tion.

TheresultsarepresentedinFigs.2,3and4fortheRun2, HL-LHCandHE-LHCscenariorespectively.Thevioletshadedareas,and thecorrespondinguncertaintybandsinadarkerfilling,definethe regionswhere themodelshould notbe trustedbecauseunitarity isviolatedforsuch

(

M

,

)

values.

4. Discussionandresults

Letus elaborate on our findings and explain their impact on theexperimental analysescarried outatthe LHC.First ofall,the experimentaloutcomesaresummarizedwithexclusionregionsin the

(

M

,

)

plane,whichareinturnsetwiththe95%C.L.observed (Run2) [33] and expectedlimit (HL/HE-LHC) [45,46], namelythe dashedbluelinesinFig.2,3and4respectively.Abovetheselines themodelisstillviable,whereasbelowitisexcluded.The experi-mentalcollaborationsquoteroutinelythelargestexcluded excited-statemass byintersecting the 95%C.L. exclusioncurveswiththe

Fig. 4. Theunitarityboundintheplane(M,)comparedwiththeexclusioncurve fromtheHE-LHCprojectionstudiesin[45] for√s=27 TeVat15ab−1ofintegrated

luminosity.

Fig. 5. Theunitarityboundintheplane(M,)comparedwiththeexclusionfrom theRun2forchargedleptonssearcheswithtwodifferentfinalstates [30,31].

M

≥ 

constraint(dot-dashedgraylineandgrayshadedregionin Fig.2,3and4).Thisisthewidely adoptedcondition imposedon themodelvalidityanditoriginatesfromaskingtheheavyexcited statestobeatmostasheavyasthenewphysicsscale



.Despiteit isareasonableconstraint,itdoesnottakeintoaccountthetypical energyscale that entersthe productionprocess, i.e.

ˆ

s. The corre-spondingmass valuesarereportedinthe firstrawofTable 1for thethreecollidersettings.

TheunitarityconditioninEq. (11) isrepresentedwiththesolid violetlinein Fig.2,3and4,anditdefinestheregion ofthe pa-rameterspace

(

M

,

)

whereunitarityissatisfied(abovethesolid violetline)orviolated(violetshadedarea).Itisclearthatthe uni-tarity boundismuch morerestrictive than M

≤ 

anditshrinks theavailableparameterspacequiteconsiderably.Ifoneappliesthe unitarityboundtotheexperimentalresultsbyfollowingthesame prescriptionasoutline beforefor M

≤ 

,then themaximal neu-trino massvaluesare those collected inTable 1,second raw. For example, for LHC Run 2, we find M

2

.

7 TeV for



=

8

.

6 TeV insteadofM

4

.

6 TeV(



=

4

.

6 TeV).Asanticipated,thenew con-straintsetbytheunitarityboundisquitestrikinganditoffersan alternative theoretical input for ongoing and futureexperimental analyses on this effectivecomposite model. We provide the uni-taritybounddownto M

=

100 GeV.Smallervaluesclashwiththe original modelsettingthat assumessome newphysics abovethe electroweakscaletriggeringfermionexcitations [18,19].

(6)

Table 1

InthefirstlinewequotetheboundsreportedintheCMSanalysisoflikesigndileptons anddiquark[33] and subsequentprojectionsstudiesatHL-LHCandHE-LHC[44–46].Insecondline,wequoteinsteadthestrongest massboundobtainedfromFigs.2,3,4whenthelineoftheperturbativeunitaritybound(satisfiedby50%of theevents)crossesthe95%C.L.exclusioncurvefromtheexperimentaland/orprojectionsstudies.

LHC Run 2 HL-LHC HE-LHC

2.3 fb−1,s=13 TeV 3 ab−1,s=14 TeV 15 ab−1,s=27 TeV M=  M≤4.6 TeV [33] M≤7.8 TeV [44–46] M≤12 TeV [44–46] Unitarity 50% M≤2.7 TeV (=8.6 TeV) M≤5.1 TeV (=19.7 TeV) M≤7.2 TeV (=29.5 TeV)

While in this study we have concentrated on the impact of unitarity boundson the heavy composite neutrino production at theLHC,HL-LHCandHE-LHC,we expectthatsimilar boundswill affectthe searchesforchargedexcited leptons. Leaving more de-tailed studies for future work, we apply the unitarity bound in Eq. (11) for the recent experimental results reported in [30,31], wherechargedexcitedleptons areproducedvia CIintheprocess

pp

→ 



,with



=

e

,

μ

∗.BeingtheeffectiveLagrangianforthe productionmechanismtheverysameasforexcitedMajorana neu-trinos (if one insists on

η

=

1 for the different states), we can usethe unitarity bound as extractedfor

s

=

13 TeV andapply itfortheprocessinvolvingchargedexcited leptons.The compari-sonwiththeexperimentalexclusionlimitat95%C.L.isshownin Fig.5.

Inconclusion, we studied the perturbative unitarity bound ex-tracted from the effective gauge and contact Lagrangians for a composite-fermion model. On general grounds, an effective the-oryisvaliduptoenergy/momentumscalessmallerthanthelarge energyscalethatsetstheoperatorexpansion.Sincecollider exper-imentsare involving moreandmore energetic particlecollisions, theusageandtheapplicabilityofeffectiveoperatorscanbe ques-tioned. Inorder toaddress thisissueandto be onthe safeside, one canimpose theunitarity condition both onthe EFT parame-ters

(

M

,

,

g

,

g

)

andthe energyinvolvedin a givenprocess. To thebestof ourknowledge,such aconstraintwas not derived for themodelLagrangiansinEq. (7) and(8),andwehaveobtainedthe corresponding unitarity bounds, namelyEqs. (11) and(14). Thus, theapplicability ofthe effectiveoperators describingthe produc-tion of composite neutrinos (and other excited states) has to be restricted accordingly. We have considered an estimation of the theoreticalerrorontheunitaritybound,whichisderivedat lead-ingorderintheEFTexpansion,byallowingupto50%oftheevents toevadetheconstraint.ThisoriginatesthebandsinFigs.2-5.

Itisthe authors’opinionthat thefindings herediscussedwill have a significant impact on ongoing and future experimental searchesfor excited statescouplingto the SM fermionswiththe interactions given in (7) and (8). At the very least, the unitarity bounds play the role of a collider-driven theoretical tool for in-terpreting the experimental results of the considered composite models,morerigorousthanthesimplerelationM

≤ 

.

Acknowledgements

The authors thankP. Azzi and F. Romeo forusefulcomments anddiscussiononthemanuscript.

References

[1] B.W.Lee,C.Quigg,H.B.Thacker,Thestrengthofweakinteractionsatvery high-energiesandtheHiggsbosonmass,Phys.Rev.Lett.38(1977)883–885,https:// doi.org/10.1103/PhysRevLett.38.883.

[2] M. Atkins, X.Calmet, Unitarity bounds onlow scalequantum gravity, Eur. Phys.J.C70(2010)381–388,https://doi.org/10.1140/epjc/s10052-010-1476-2, arXiv:1005.1075.

[3] B.W.Lee,C.Quigg,H.B.Thacker,Weakinteractionsatveryhigh-energies:the roleoftheHiggsbosonmass,Phys.Rev.D16(1977)1519,https://doi.org/10. 1103/PhysRevD.16.1519.

[4] S.DeCurtis, S.Moretti, K.Yagyu, E.Yildirim,Perturbativeunitarity bounds incompositetwo-Higgs doubletmodels,Phys.Rev.D94 (5) (2016)055017,

https://doi.org/10.1103/PhysRevD.94.055017,arXiv:1602.06437.

[5] L.DiLuzio,J.F.Kamenik,M.Nardecchia,Perturbativeunitarityboundson di-bosonscalarresonances,EPJWebConf.164(2017)07026,https://doi.org/10. 1051/epjconf/201716407026.

[6] L.D.Luzio,J.F.Kamenik,M.Nardecchia,Implicationsofperturbativeunitarity forscalardi-bosonresonancesearchesatlhc,Eur.Phys.J.C77 (1)(2017)30,

https://doi.org/10.1140/epjc/s10052-017-4594-2.

[7] M. Endo, Y. Yamamoto, Unitarity bounds on dark matter effective interac-tions at LHC, J. High Energy Phys. 06 (2014) 126,https://doi.org/10.1007/ JHEP06(2014)126,arXiv:1403.6610.

[8] T. Corbett, O.J.P. Éboli, M.C. Gonzalez-Garcia, Unitarity constraints on dimension-sixoperatorsII:includingfermionicoperators,Phys.Rev.D96 (3) (2017)035006,https://doi.org/10.1103/PhysRevD.96.035006,arXiv:1705.09294. [9] J.C.Pati,A.Salam,J.A.Strathdee,Arequarkscomposite?,Phys.Lett.B59(1975)

265–268,https://doi.org/10.1016/0370-2693(75)90042-8.

[10] J.C.Pati,A.Salam,Supersymmetryatthepreonicorprepreonicleveland com-positesupergravity,Nucl.Phys.B214(1983)109–135,https://doi.org/10.1016/ 0550-3213(83)90168-2.

[11] H.Harari,Compositemodelsforquarksandleptons,Phys.Rep.104(1984)159,

https://doi.org/10.1016/0370-1573(84)90207-2,[334(1982)].

[12] O.W. Greenberg,C.A.Nelson,Compositemodelsofleptons,Phys.Rev.D10 (1974)2567,https://doi.org/10.1103/PhysRevD.10.2567.

[13] P.A.M.Dirac,Theevolutionofthephysicist’spictureofnature,Sci.Am.208 (5) (1963)45–53,http://www.jstor.org/stable/24936146.

[14] H.Terazawa,SubquarkModelofLeptonsandQuarks,Phys.Rev.D22(1980) 184,https://doi.org/10.1103/PhysRevD.22.184.

[15] H.Terazawa,K.Akama,Y.Chikashige,UnifiedmodeloftheNambu-Jona-Lasinio typefor allelementaryparticle forces,Phys.Rev.D15(1977)480,https:// doi.org/10.1103/PhysRevD.15.480.

[16] E.Eichten,K.D.Lane,Dynamicalbreakingofweakinteractionsymmetries,Phys. Lett.B90(1980)125–130,https://doi.org/10.1016/0370-2693(80)90065-9. [17] E.Eichten,K.D.Lane,M.E.Peskin,Newtestsforquarkandleptonsubstructure,

Phys.Rev.Lett.50(1983)811–814,https://doi.org/10.1103/PhysRevLett.50.811, 369(1983).

[18] N.Cabibbo,L.Maiani,Y.Srivastava,AnomalousZdecays:excitedleptons?,Phys. Lett.B139(1984)459–463,https://doi.org/10.1016/0370-2693(84)91850-1. [19] U.Baur,M.Spira,P.M.Zerwas,Excitedquarkandleptonproductionathadron

colliders,Phys.Rev.D42(1990)815–824,https://doi.org/10.1103/PhysRevD.42. 815.

[20] U. Baur, I. Hinchliffe, D. Zeppenfeld, Excited quark production at hadron colliders, Int. J. Mod. Phys. A 2 (1987) 1285, https://doi.org/10.1142/ S0217751X87000661.

[21]M.Peskin,InternationalSymposiumonLeptonPhotonInteractionsatHigh En-ergies,1985.

[22] M.Tanabashi,et al., Reviewofparticle physics,Phys. Rev.D98 (3)(2018) 030001,https://doi.org/10.1103/PhysRevD.98.030001.

[23] E.Takasugi,Compositeneutrinosanddoublebetadecay,Prog.Theor.Phys.94 (1995)1097–1104,https://doi.org/10.1143/PTP.94.1097,arXiv:hep-ph/9506379. [24] Search for excitedleptons in proton-protoncollisions at √s=7 TeV with theATLAS detector,Phys. Rev.D85 (2012)072003,https://doi.org/10.1103/ PhysRevD.85.072003,arXiv:1201.3293.

[25] Search for excitedelectrons and muonsin √s=8 TeV proton-proton col-lisions with the ATLAS detector, New J. Phys. 15 (2013) 093011, https:// doi.org/10.1088/1367-2630/15/9/093011,arXiv:1308.1364.

[26] S.Chatrchyan,etal.,Searchforexcitedleptonsinppcollisionsat√s=7 TeV, Phys. Lett. B 720(2013) 309,https://doi.org/10.1016/j.physletb.2013.02.031, arXiv:1210.2422.

[27] V.Khachatryan,etal., Searchforexcitedleptonsinproton-protoncollisions at√s=8 TeV,J.HighEnergy Phys.03(2016) 125,https://doi.org/10.1007/ JHEP03(2016)125,arXiv:1511.01407.

[28] V.Khachatryan,et al., Search for excitedleptonsin the γ finalstateat

s=13 TeV,CERN,Geneva,2016,CMSPhysicsAnalysisSummary CMS-PAS-EXO-16-009,URLhttp://cds.cern.ch/record/2205754.

[29] SearchforExcitedLeptonsintheγ FinalStateinProton-ProtonCollisions at√s=13 TeV,CMSPhysicsAnalysisSummaryCMS-PAS-EXO-18-004,CERN, Geneva,2018,https://cds.cern.ch/record/2629352.

(7)

[30]A.M.Sirunyan,etal.,Searchforexcitedleptonsinγ finalstatesin proton-protoncollisionsat√s=13TeV,arXiv:1811.03052,submittedtoJ.High En-ergyPhys.

[31] SearchforExcitedLeptons DecayingviaContactInteractiontoTwoLeptons andTwoJets,Tech.Rep.CMS-PAS-EXO-18-013.CERN,Geneva,2019,http://cds. cern.ch/record/2667479.

[32] R.Leonardi,L.Alunni,F.Romeo,L.Fanò,O.Panella,Huntingforheavy compos-iteMajorananeutrinosattheLHC,Eur.Phys.J.C76 (11)(2016)593,https:// doi.org/10.1140/epjc/s10052-016-4396-y,arXiv:1510.07988.

[33] A.M.Sirunyan,etal.,SearchforaheavycompositeMajorananeutrinointhe finalstatewith twoleptonsand twoquarksat √s=13 TeV,Phys. Lett.B 775(2017)315–337,https://doi.org/10.1016/j.physletb.2017.11.001,arXiv:1706. 08578.

[34] D.Zhuridov,Baryogenesisfromleptomesons,Phys.Rev.D94 (3)(2016)035007,

https://doi.org/10.1103/PhysRevD.94.035007,arXiv:1604.07740.

[35] S.Biondini,O.Panella,Leptogenesisandcompositeheavyneutrinoswithgauge mediatedinteractions,Eur.Phys.J.C77 (9)(2017)644,https://doi.org/10.1140/ epjc/s10052-017-5206-x,arXiv:1707.00844.

[36] S.Biondini,O.Panella,G.Pancheri,Y.N.Srivastava,L.Fanò,Phenomenologyof exciteddoublychargedheavyleptonsatLHC,Phys.Rev.D85(2012)095018,

https://doi.org/10.1103/PhysRevD.85.095018,arXiv:1201.3764.

[37] S.Majhi,QCDcorrectionstoexcitedlepton(pair)productionattheLHC,Phys. Rev. D 88 (7) (2013) 074028, https://doi.org/10.1103/PhysRevD.88.074028, arXiv:1210.8307.

[38] R.Leonardi,O.Panella,L.Fanò,DoublychargedheavyleptonsatLHCvia con-tactinteractions, Phys.Rev.D90 (3)(2014)035001, https://doi.org/10.1103/ PhysRevD.90.035001,arXiv:1405.3911.

[39] S.Biondini,O.Panella,Exoticleptons atfuturelinearcolliders,Phys.Rev.D 92 (1)(2015)015023,https://doi.org/10.1103/PhysRevD.92.015023,arXiv:1411. 6556.

[40] O.Panella,R.Leonardi,G.Pancheri,Y.N.Srivastava,M.Narain,U.Heintz, Pro-ductionofexotic compositequarksat the LHC,Phys.Rev.D96 (7) (2017) 075034,https://doi.org/10.1103/PhysRevD.96.075034,arXiv:1703.06913. [41]M.Presilla,R.Leonardi,O.Panella,Like-signdileptonswithmirrortype

com-positeneutrinosattheHL-LHC,arXiv:1811.00374.

[42] A.Caliskan,S.O.Kara,Singleproductionoftheexcitedelectronsinthefuture FCC-basedlepton–hadroncolliders,Int.J.Mod.Phys.A33 (24)(2018)1850141,

https://doi.org/10.1142/S0217751X18501415,arXiv:1806.02037.

[43] M.Jacob,G.C.Wick,Onthegeneraltheoryofcollisionsforparticleswithspin, Ann.Phys.7(1959)404–428,https://doi.org/10.1016/0003-4916(59)90051-X, Ann.Phys.281(2000)774.

[44] SearchforHeavyCompositeMajoranaNeutrinosattheHigh-Luminosityand the High-Energy LHC,Tech. Rep.CMS-PAS-FTR-18-006 CERN,Geneva,2018,

http://cds.cern.ch/record/2650355.

[45]X.CidVidal,etal.,BeyondthestandardmodelphysicsattheHL-LHCand HE-LHC,arXiv:1812.07831.

[46] ATLAS,CMSCollaborations,ReportonthePhysicsattheHL-LHCand Perspec-tivesfortheHE-LHC,Tech.rep.,CERN,Geneva.

[47] A. Belyaev, N.D. Christensen, A. Pukhov, CalcHEP 3.4 for collider physics withinandbeyondthestandardmodel,Comput.Phys.Commun.184(2013) 1729–1769,https://doi.org/10.1016/j.cpc.2013.01.014,arXiv:1207.6082. [48] R.D.Ball,etal.,PartondistributionsfortheLHCrunII,J.HighEnergyPhys.04

(2015)040,https://doi.org/10.1007/JHEP04(2015)040,arXiv:1410.8849. [49] E.Conte,B.Fuks,G.Serret,MadAnalysis5,auser-friendlyframeworkfor

col-lider phenomenology,Comput.Phys.Commun.184(2013)222–256,https:// doi.org/10.1016/j.cpc.2012.09.009,arXiv:1206.1599.

Referenties

GERELATEERDE DOCUMENTEN

If the researcher senses that people do not dare to be open to residents from other groups, it is more than warranted to put more effort into listening to the stories behind

Cooperation Policy’ in M Telò (ed), The European Union and Global Governance (Abingdon, Routledge, 2009); L Bartels, ‘The Trade and Development Policy of the European Union’ in

” In this example, the tediousness of the request procedures that have to be followed resulted in an enhanced IT self-leadership, but it also occurs that these type

 Literature review – divisions in Corporate governance, IT governance, Corporate control and IT control sections – presents some of the most used and important

deze bijdrage gaat niet over de robotrechter en de mogelij- ke gevolgen van deze stap (niet alleen vanuit de inzet van de robot zelf, maar ook vanuit de implicaties voor het

To subtract this component (and make more sensitive searches for additional.. The histogram on the right shows the binned distribution of integrated optical depth. Cas A

significantly induce a change in sales according to these results. In contrast, H1b: the internet advertising response function has an inverted-U shape, is supported.

The remarkable progress in understanding of various rates entering the kinetic equations describing the asymmetry generation along with considerable improvements of the