• No results found

Development of an experimental tilt-wing VTOL unmanned aerial vehicle

N/A
N/A
Protected

Academic year: 2021

Share "Development of an experimental tilt-wing VTOL unmanned aerial vehicle"

Copied!
21
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)Development of an Experimental tilt-wing VTOL Unmanned Aerial Vehicle Jacob Venter Thesis Presentation.

(2) Overview „ „ „ „ „ „ „. Introduction Project Goals Flight System Development Simulink Simulation Control Demonstration Results & Conclusions Acknowledgements.

(3) Introduction „. Started in 1980’s in SA Seeker (bottom) „ Vulture (top) „. „. Started in ESL in 2001 Small Electric Helicopter „ Fixed Wing Airplane „ Methanol-powered Helicopter „ Experimental VTOL „ Takeoff/Landing „ Acrobatic flight „.

(4) Project Goals „ „ „ „. „. To develop an airframe To develop sensors and avionics To model this airframe and simulate it To control this airframe using the developed avionics To provide a solid basis for similar future projects.

(5) Flight System Development.

(6) Airframe Development….

(7) …Airframe Development….

(8) …Airframe Development „ „ „. Thrust: 11.5kg Weight: 8.25kg Power source: „ „ „. „ „. 1×11.1V LiPo Battery 1×4.8V NiCad Battery 2×36V LiPo Battery. Flight Time: 5 minutes Total Servos: 8.

(9) Avionics Development… Avionics on Aircraft GPS/Aerocomm Motherboard RF Modem. RF. RS232. ISA/PCI. PC/104 Expansion Cards. ISA. RF Modem. Onboard PC/104 Computer. RS232. GPS receiver. USB Expansion Hardware. USB. RS232. PC/104CAN Controller Power Supply. RS232. Serial Port Expansion. Processor CANsensIMU. Ground Station. Gyros CANsens. Backup Pilot. Backup Battery. Accelerometers Magnetometer. CAN Bus. Main Battery. Servo Board. RC Transmitter. CAN Bus Expansion PWM. PWM. RF RC Receiver. RC Servos. Key. Existing or “off-the-shelf” Hardware. Newly Developed Hardware. Expansion Options.

(10) …Avionics Development… „. PC104CAN Board CAN Communication „ Timing „. „. Servo Board Backup Battery „ Drive Servos „ Backup Pilot Interface „.

(11) …Avionics Development… „. IMU „. „. „. Inertial (Rotation and Lateral) Measurement Unit Developed by Fanus Groenewald and Johan Bijker. GPS/Aerocomm Board „. „. Houses GPS receiver and radio Modem Developed by Fanus Groenewald.

(12) …Avionics Development „. Main Processor Fanless Intel® PIII Celeron® 300MHz CPU „ 2xRS232 Serial Ports „ 2xUSB Controllers „ 64MByte RAM „. „ „. 32MByte Solid-state IDE HDD All RC equipment standardized on JR (“Japan Radio”).

(13)

(14) Modelling… „. „. „ „ „. Forces & Moments calculated as a function of Total Thrust and Paddle Angles Airframe Moment of Inertia calculated using the Torsion Pendulum Total Expected Weight Calculated 6 Degrees of Freedom Dynamic Equations No aerodynamics.

(15) …Modelling All measurements is with aircraft in VTOL configuration (0;0;0) is middle of rod. 3.1. 0.5. 2.9. 1.474. 9.8. 47.1. 16.0 0.2. 0.0. 0.2. X. 0.0. Pitch Inertia. 1.4. 0.2. 1.5. 1.474. 9.8. 46.3. 30.0 0.0. 0.0. 0.0. Y. 0.0. Yaw Inertia. 3.1. 0.5. 3.3. 1.474. 9.8. 42.6. 13.0 0.3. 0.0. 0.3. Z. 0.0. Roll Inertia. 1.054. 0.0. 0.3. 0.1. X. 0.0. Pitch Inertia. 1.054. 0.0. 0.1. 0.0. Y. 0.3. Yaw Inertia. 1.054. 0.0. 0.3. 0.1. Z. -0.1. Roll Inertia. 1.054. 0.0. 0.3. 0.1. X. 0.0. Pitch Inertia. 1.054. 0.0. 0.1. 0.0. Y. -0.3. Yaw Inertia. 1.054. 0.0. 0.3. 0.1. Z. -0.1. Roll Inertia. 1.141. 0.0. 0.2. 0.1. X. 0.0. Pitch Inertia. 1.141. 0.0. 0.1. 0.0. Y. 0.2. Yaw Inertia. 1.141. 0.0. 0.2. 0.1. Z. 0.1. Roll Inertia. 1.141. 0.0. 0.2. 0.1. X. 0.0. Pitch Inertia. 1.141. 0.0. 0.1. 0.0. Y. -0.2. Yaw Inertia. 1.141. 0.0. 0.2. 0.1. Z. 0.1. Roll Inertia. 2.2. 0.3. 1.5. 1.385. 9.8. 44.6. 30.0 0.0. 0.1. 0.0. X. -0.2. Pitch Inertia. 2.3. 0.4. 2.7. 1.385. 9.8. 53.3. 20.0 0.2. 0.2. 0.2. Y. 0.0. Yaw Inertia. 2.3. 0.4. 2.7. 1.385. 9.8. 63.8. 24.0 0.2. 0.1. 0.2. Z. 0.1. Total Aircraft Weight. Total Aircraft Moment of Inertia about CG Wing Motor Battery Fuselage. Total. Roll Inertia. 0.21. 0.23. 0.11. 0.034. 0.5781. Pitch Inertia. 0.02. 0.03. 0.01. 0.208. 0.2597. Yaw Inertia. 0.26. 0.20. 0.11. 0.194. 0.7600. Aircraft CG X. -0.0305. Y. 0.0000. Z. 0.0433. 7.249. Starboard. Roll Inertia. Port. Dist J around From CG CG CG. J. Starboard. Total Osc. Port. Total Time. g. Wing. m. Mot&Mnt. T. Battery. d. Fuselage. l.

(16) Simulink Simulation 0 Scope phi_x1. 0. 2. phi_y1. -C-. Constant. Force_1. Thrust Vector. States Out. States. 0 phi_x2. 0. Plots. Multiport Switch. Aircraft Dynamics States. phi_y2. -COut1. Flightgear. Force_2 Desturbance Generator. States. States Out. Linmod In1. Ramp1. Out1. States. To MATLAB. Ref X_Y _Z_psi. Ramp 1. Control System. Out1. Step. Scope Grav ity Forces (BA). DCM XY Z. Lat Long Alt. <= C. ECEF to Geocentric LLA. Gravity Model. phi_x1. Compare To Constant. V (m/s) e. Saturation. phi_y 1. Saturation1 1 Thrust Vector. Saturation2. F. Forces XY Z. xyz. X (m). (N). φ θ ψ (rad). F_1. Saturation4. phi_y 2. V (m/s) b. M. Moments LMN. xyz. (N-m). Fixed Mass. ω (rad/s) dω /dt. 1 States Out. A (m/s2). F_2. Saturation5. Stop Simulation. DCM. phi_x2. Saturation3. STOP. e. Euler Angles. b. 6DoF (Euler Angles). T ilt-wing Aircraft Forces/Moments. 12. 2 In1. 12. States In Control Out X_ref. Trim_Values. Fx =. Fy =. F tan φx. Longitudinal Controller. 1 + ( tan φx ) + ( tan φ y ). 2. 2. 12. States In Control Out Y _ref. phi_x1. F tan φ y. Lateral Controller phi_y1. 1 + ( tan φx ) + ( tan φ y ) 2. 2. 12. States In Control Out. 1. 4. F1 6. Z_ref. 6. 6. RefX_Y_Z_psi. Fz =. F 1 + ( tan φx ) + ( tan φ y ) 2. 6. Trim Values. Altitude Controller. 2. 12. phi_y2. States In Control Out psi_ref. F2 Heading Controller. 1 Out1. phi_x2.

(17) Control Demonstration… „. Controller split into four smaller Controllers (models acquired with decoupling): Lateral (Y) „ Longitudinal (X) „ Altitude (Z) „ Heading (Ψ) „. „. LQR.

(18) …Control Demonstration „. „. 20m step command (2m.s-1 ramp) on X, Y and Z after 20, 40 and 60 seconds respectively 360º heading step command (18º/s ramp) 3D Position of the Aircraft. Orientation of the Aircraft. 60. 7. 50. 6 5. North (X) East (Y) Down (Z). 30 20. Angle (in radians). Position (in meters). 40. 10 0. 4 3 2 1. -10. 0. -20 -30. Φ Θ Ψ. 0. 10. 20. 30. 40 50 60 Time (in sec). 70. 80. 90. 100. -1. 0. 10. 20. 30. 40 50 60 Time (in sec). 70. 80. 90. 100.

(19) Results & Conclusions „. Results: Useful Modular Avionics was developed „ A new experimental airframe was built „ Acceptable control results were obtained „ Simulink model can easily be augmented with aerodynamics, etc. „. „. Conclusions: Provides a foundation for future projects „ Simulation suggests control is possible „.

(20) Acknowledgements „ „ „ „ „ „. ARMSCOR Fanus Groenewald Thomas Jones Willie van Rooyen Johan Bijker Colleagues in the ESL.

(21) THE END.

(22)

Referenties

GERELATEERDE DOCUMENTEN

The Joint Water Committee has reportedly asked the Palestinian authorities, on several other occasions (not related to the four cases), to cooperate with the authorities

The latter feature is demonstrated by its ability to produce results for the case of finite plate thermal conductivity and for modes antisymmetric about the mid-plane of the system,

Based on the same 2011 data, the expert group of the ESRB estimated that a 10% risk weight for all sovereign exposures would lead to an increase in capital requirements of EU banks

B4 Legend: S S S Intervention S S S Concern variable Core variable Contextual core variable Management of diversity O S S Degree of growth in sustainable mining

Objective aa The purpose of this study was to establish the prevalence of PTSD among North Korean defectors who visited the National Medical Center, Seoul, South Korea over a period

s pecifi c disability. ) His initial failure in reading may be due partly to emotional attitudes formed during the pre- school period. Failure at Junior

• Nursing education institutions need to provide train- ing and support to clinical staff on how to supervise students in the clinical setting so that they know what is expected

This study investi- gates the effect of 6 months vitamin K2 supplementation on systemic arterial calcification and bone mineral density (BMD) in DM2 patients with a history