• No results found

Decision making, physical fitness and Heart Rate Variability in virtual reality

N/A
N/A
Protected

Academic year: 2021

Share "Decision making, physical fitness and Heart Rate Variability in virtual reality"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Decision  Making,  Physical  Fitness,  &  

Heart  Rate  Variability  in  Virtual  Reality  

Author:  Maarten  R.  Struijk   Supervisor:  Dr.  Jasper  Winkel  

Date:  17-­‐07-­‐2015   Student  ID:  5618002  

Abstract  

Effort-­‐Based  Decision  Making  (EBDM)  has  been  researched  in  humans  using  standard   psychological  tools.  These  tools  might  suffer  from  low  ecological  validity  in  order  for   them  have  high  internal  validity.  Virtual  Reality  (VR)  using  a  Head  Mounted  Display   (HMD)  might  be  a  valuable  tool  for  psychological  research,  allowing  for  both  high   internal  validity  and  increased  ecological  validity.  Research  shows  that  EBDM  is  closely   linked  to  the  Anterior  Cingulate  Cortex  (ACC),  which  in  turn  is  affected  by  aerobic   physical  exercise.  The  ACC  is  also  one  of  the  main  brain  regions  controlling  heart  rate   and  Heart  Rate  Variability  (HRV)  through  it’s  mediating  effects  on  the  parasympathetic   nervous  system.  HRV  is  inYluenced  by  aerobic  physical  exercise.  A  novel  EBDM  

paradigm  is  presented  using  a  standard  psychological  paradigm  and  a  VR  paradigm.   Results  indicate  that  the  presentation  method  has  no  effects  on  the  EBDM  task.  Results   indicate  that  the  HRV  is  able  to  differentiate  between  the  presentation,  allowing  for   optimism  regarding  the  future  of  VR  in  psychological  research.    

Introduction  

People  make  decisions  many  times  a  day.  Most  of  these  decisions  are  based  on   obtaining  some  kind  of  reward  (e.g.  getting  food),  while  simultaneously  requiring  some   kind  of  effort  (walking  to  the  shop).  When  these  decisions  include  a  choice  between   two  kinds  of  reward  (very  tasty  food  versus  fastfood)  and  differing  levels  of  effort   which  at  least  somewhat  reYlects  these  differing  rewards  (walking  further  for  the  tasty   food  versus  getting  fastfood  from  around  the  corner),  these  scenarios  can  be  studied   using  various  decision  making  frameworks.    

One  of  these  frameworks  is  Effort-­‐Based  Decision  Making  (EBDM).  EBDM  is  about   decision  making  based  on  the  amount  of  effort  needed  to  expend,  to  receive  a  certain   reward  associated  with  that  effort  (Kurniawan,  Guitart-­‐Masip  &  Dolan,  2011).  Another   framework  is  Delay-­‐Based  Decision  Making  (DBDM)  where  participants  need  to  wait  a   set  amount  of  time  before  the  reward  is  given.  Longer  waits  result  in  higher  rewards   (Floresco  et  al.,  2008-­‐1).  Other  decision  making  theories  like  Probabilistic  Decision   Making  theory  apply  when  the  reward  is  not  completely  certain,  such  as  in  optimal-­‐ foraging  theory  (Floresco,  Maric  &  Ghods-­‐SharifYi  2008;  Niv,  Daw,  Joel  &  Dayan,  2007),   but  not  all  researchers  apply  this  strict  a  separation  between  above  mentioned  

(Wardle,  Treadway,  Mayo,  Zald  &  de  Wit,  2011).  

EBDM  is  traditionally  measured  in  lab-­‐rats  using  a  T-­‐maze  paradigm  (Salamone,   Cousin  &  Bucher,  1994).  The  animal  is  placed  in  the  bottom  arm,  and  food  pellets  have   been  placed  in  the  ends  of  the  remaining  arms.  A  barrier  is  placed  in  one  of  the  arms  to   obstruct  easy  access.  This  is  the  high  effort  (HE)  arm.  The  other  arm  is  left  open,  this  is   the  low  effort  (LE)  arm.  The  animal  can  choose  only  one  of  the  arms  before  the  trial   ends.  In  most  experiments  the  amount  of  food  in  the  HE  arm  is  higher  than  in  the  LE   arm,  creating  a  high-­‐effort/high-­‐reward  (HE/HR)  arm  and  a  low-­‐effort/low-­‐reward   (LE/LR)  arm.  Healthy  rats  will  choose  the  HE/HR  arm  most  of  the  time  (Walton,   Bannerman  &  Rushworth,  2002).  

A  confound  in  EBDM  research  occurs  when  the  HE/HR  condition  takes  longer  to   complete  than  the  LE/LR  condition,  like  in  most  T-­‐maze  setups.  This  paradigm  

measures  aspects  of  DBDM  as  well  as  EBDM  (Floresco  et  al.,  2008-­‐1).  It  potentially   allows  the  animal  to  quickly  complete  many  LE/LR  trials  to  obtain  a  higher  net  reward   than  spending  the  same  amount  of  time  performing  the  slower  HE/HR  trials.  For  this   reason  it  is  important  in  EBDM  research  to  make  sure  both  conditions  take  the  same   amount  of  time  (Floresco  et  al.,  2008-­‐1).  

With  people  EBDM  can  be  measured  using  different  paradigms.  In  one  

experiment  participants  were  shown  one  of  eight  shapes  which  corresponded  to  a  set   amount  of  effort  and  reward  (Croxson,  Walton,  O’Reilly,  Behrens  &  Rushworth,  2009).   Participants  had  to  use  a  trackball  to  click  on  square  shapes  shown  on  the  monitor.  In   this  experiment  the  participants  could  not  choose  whether  they  wanted  to  do  the  LE/ LR  option  or  the  HE/HR  option,  which  has  implications  for  the  neurobiological  basis  of   these  results  (Walton,  Croxson,  Behrens,  Kennerley  &  Rushworth,  2007).  The  

experiment  of  Westbrook,  Kester  and  Braver  (2013)  consisted  of  a  cognitive  EBDM  task   by  means  of  the  N-­‐back  paradigm.  Participants  were  repeatedly  made  to  choose  

between  a  low-­‐effort  1-­‐back  task  (LE),  or  the  high-­‐effort  2-­‐back  task  (HE).  The  

participant  received  $2.00  for  each  HE  task  completed.  The  reward  for  the  LE  task  was   initially  set  at  $1.00.  After  each  iteration,  the  amount  of  the  LE  task  was  varied  

depending  on  the  choice  made.  When  for  example  the  HE  task  was  selected  in  the  Yirst   trial,  the  LE  task  was  then  set  to  $1.50  on  the  second  trial.  When  in  the  second  round   the  LE  task  was  chosen,  the  reward  for  the  LE  task  dropped  to  $1.25  in  the  third  trial,   and  so  on.  This  way  the  balance  between  desired  reward  per  expended  effort  was   approached  for  each  participant.    

Extensive  studies  have  been  done  on  how  the  brain  processes  EBDM.  Dopamine  is   associated  with  overcoming  the  effort  needed  in  the  EBDM  paradigms  (Phillips,  Walton   &  Jhou,  2007;  Walton,  Kennerley,  Bannerman,  Phillips  &  Rushworth,  2006;  Bardgett  et   al.,  2009),  and  with  the  mental  calculation  needed  to  assess  the  relationship  between   effort  and  reward  (Walton  et  al.,  2006).  In  rats  and  in  people,  dopamine  antagonists   reduce  percentage  of  times  the  HE/HR  option  is  chosen  (Bardget  et  al.,  2009;  Floresco   et  al.,  2008;  Schweimer  &  Hauber,  2006).  In  contrast,  a  small  to  medium  dose  of  the   dopamine  agonist  amphetamine  increases  the  percentage  the  HE/HR  option  is  chosen   in  rats  and  people  (Bardget  et  al.,  2009;  Floresco  et  al.,  2008;  Wardle  et  al.,  2011),  while   a  high  dose  of  amphetamine  seems  to  have  a  deleterious  effect  in  rats  (Floresco  et  al.,   2008).    

Decision  making  is  for  a  large  part  mediated  in  the  anterior  cingulate  cortex   (ACC)  (Kurniawan,  Guitart-­‐Masip  &  Dolan,  2011;  Schweimer  &  Hauber,  2006)  and  the   striatum,  which  are  connected  with  each  other  through  glutamatergic  projections   (Balleine  et  al.,  2007;  Winkel,  2014).  Damage  to  the  ACC  reduces  the  amount  of  effort   rats  are  willing  to  spend  on  a  particular  amount  of  reward.  This  is  not  due  to  inability   to  calculate  the  relationship  between  effort  and  reward,  because  this  effect  is  reversed   by  raising  the  reward  in  the  HE/HR  arm  or  placing  a  barrier  in  the  LE/LR  arm  (Walton   et  al.,  2002).  Rudebeck  et  al.  (2006)  surgically  damaged  the  ACC  in  some  rats,  and  the   orbito-­‐frontal  cortex  (OFC)  in  other  rats.  In  rats  with  ACC  damage  a  similar  pattern  was   observed  as  in  the  experiments  of  Walton  et  al.  (2002),  as  well  as  when  dopamine   antagonists  are  used  (Bardget  et  al.,  2009;  Floresco  et  al.,  2008).  This  was  not  the  case   in  rats  with  OFC  damage.  These  rats  showed  a  pattern  of  reduced  willingness  to  wait   for  a  higher  reward  in  the  DBRM  paradigm,  and  instead  chose  the  low-­‐delay/low-­‐ reward  option  most  of  the  time  (Rudebeck,  Walton,  Smyth,  Bannerman  &  Rushworth,   2006).  Croxson  et  al.  (2009)  showed  that  fMRI  BOLD  activity  in  the  ventral  striatum   and  the  dACC  corresponds  to  the  expected  reward  and  the  needed  effort.  The  ACC  is   active  when  adaptation  is  needed  in  the  choice-­‐and-­‐control  process.  According  to  this   view,  activation  in  the  ACC  means  a  that  adaptations  in  performance  might  be  needed,   for  instance  when  the  situation  is  error-­‐prone  or  when  tasks  require  a  lot  of  attention   (Colcombe  et  al.,  2004).  

Increasing  the  function  of  this  brain  area  could  possibly  increase  the  functions   associated  with  it.  This  increase  in  function  can  be  mediated  through  physical  exercise   (Hillman,  Erickson  &  Kamer,  2008).  Six  months  of  aerobic  training  does  increase  the   brain  volume  of  the  dACC  (Colcombe  et  al.,  2006),  but  there  is  some  debate  about  how   this  relates  to  the  effectiveness  of  the  area.  Most  research  suggests  that  the  ACC  is  less   activated  in  adults  who  exercise  regularly  (Colcombe  et  al.,  2004).  In  the  experiment  of   Colcombe  et  al.  (2004)  conYlict-­‐monitoring  has  been  measured  using  an  Eriksen  Ylanker   task.  After  six  months  of  aerobic  training  a  reduction  in  activation  in  the  ACC  was   shown,  in  contrast  to  the  prefrontal  cortex  (PFC),  which  had  increased  activation   (Colcombe  et  al.,  2004).  According  to  the  interpretation  of  Voss,  Nagamatsu,  Liu-­‐ Ambrose  and  Kramer  (2011),  this  result  means  that  the  ACC  was  more  efYicient  in   processing  the  information  provided  by  the  PFC.  An  experiment  by  Chaddock  et  al.   (2011)  shows  similar  results  with  children.  Brain  activation  was  measured  with  fMRI   while  the  participants  performed  an  Eriksen  Ylanker  task.  Based  on  their  physical   Yitness,  children  were  divided  into  two  groups;  lower  and  higher  Yitness.  To  study  the   effects  of  mental  fatigue,  the  results  of  the  task  were  divided  into  early  and  late  trials.   No  difference  was  observed  between  the  two  groups  in  accuracy  or  brain  activation  in   the  congruent  trials;  children  in  both  groups  showed  increased  brain  activation  in  early   trials,  and  decreased  brain  activation  combined  with  decreased  accuracy  in  late  trials.   This  decline  in  accuracy  in  both  groups  was  attributed  to  mental  fatigue.  In  the  

incongruent  trials  however,  only  the  higher  Yit  children  showed  increased  brain   activation  in  the  ACC  in  the  early  incongruent  trials,  followed  by  decreased  ACC   activation  but  no  decline  in  accuracy  in  the  late  incongruent  trials.  The  lower  Yit  

children  did  not  show  an  increase  in  brain  activation  in  the  early  incongruent  trials,  but   did  show  a  decrease  in  accuracy  in  the  late  incongruent  trials.  This  shows  that  ACC   activation  is  scaled  according  to  the  level  of  action-­‐monitoring  is  required  in  higher  Yit   people,  whereas  their  performance  remains  on  a  steady  level.  ACC  activity  does  not   scale  along  with  the  level  of  action-­‐monitoring  required  in  less  Yit  people,  which  results   in  lower  levels  of  performance.    

Other  research  shows  that  other  executive  control  processes  like  planning,   inhibition  and  cognitive  control  are  most  strongly  affected  by  physical  exercise  

(Colcombe  &  Kramer,  2003),  while  other  functions  are  less  affected.  Seventeen  weeks   of  running  exercise  of  three  times  per  week  results  in  increased  executive  control   processes,  while  working  memory  is  not  affected  (Stroth,  Reinhardt,  Thöne,  Hille,   Schneider,  Härtel  &  Spitzer,  2010).  Physically  trained  older  adults  have  less  strong  ACC   activation  than  their  unYit  counterparts,  which  is  evident  by  a  lessening  in  error-­‐related   negativity  (ERN)  ERP  amplitude  in  the  dorsal  ACC  (Hillman,  Erickson  &  Kramer,  2008).   The  ERN  is  a  measure  of  error  processing,  and  a  lower  ERN  is  one  indication  of  more   efYicient  executive  control  processes  (Stroth,  Kubesh,  Dieterle,  Ruchsow,  Heim  &  Kiefer,   2009).  Fitter  people  show  better  task  preparation  processes,  evident  by  an  increase  in   contingent  negative  variation  (CNV)  ERP  amplitude  and  a  decrease  in  the  N2  ERP   amplitude,  which  is  another  marker  for  more  efYicient  executive  control  processes.  This   signal  is  associated  with  response  monitoring  and  inhibition  (Stroth  et  al.,  2009).  The   prevailing  theory  is  that  physical  Yitness  is  associated  with  better  top-­‐down  control,   which  is  a  result  of  a  more  efYicient  ACC,  which  results  in  better  performance  on  tasks   which  are  related  to  executive  functions  (Hillman  et  al.,  2008).    

One  way  to  measure  physical  exercise  is  by  using  self-­‐report  questionnaires.   However,  because  self-­‐report  questionnaires  can  be  skewed  to  reYlect  recent  exercise   practices  instead  of  accurately  measuring  long-­‐term  exercise  habits,  physical  measures   can  be  useful  in  conjunction.    

Heart  Rate  Variability  (HRV)  has  been  shown  to  be  a  reliable  indicator  of  physical   Yitness  (Achten  &  Jeukendorp,  2003;  Algra,  Tijssen,  Roelandt,  Pool  &  Lubsen,  1993;   Levy,  Cerqueira,  Harp,  Johannessen,  Abrass,  Schwartz  &  Stratton,  1998;  Tsuji,  Venditti,   Manders,  Evans,  Larson,  Feldman  &  Levy,  1994).  HRV  is  the  variance  in  time  between   heartbeats.  This  difference  between  R-­‐R  peaks  can  vary  substantially,  even  when  heart   rate  is  stable  (Achten  &  Jeukendorp,  2003;  Levy  et  al.,  1998).  HRV  is  inYluenced  by  the   sympathetic  and  parasympathetic  nervous  system,  where  the  parasympathetic  

inYluence  is  responsible  for  fast  deceleration  of  the  heart,  which  is  indicated  by  a  higher   HRV  (Thayer  &  Lane,  2005).  HRV  is  measured  with  indexes  such  as  SDNN  and  rMSSD.   SDNN  is  the  standard  deviation  of  all  normal  R-­‐R  intervals;  this  measure  can  show  long   term  and  short  term  differences  between  R-­‐R  intervals.  The  root  mean  square  of  all   successive  differences  is  called  rMSSD  and  is  used  as  an  index  parasympathetic  

inYluence.  Higher  HRV  is  associated  with  better  health,  lower  mortality  risk  and  higher   quality  of  life  (Algra,  Tijssen,  Roelandt,  Pool  &  Lubsen,  1993;  Tsuji,  Venditti,  Manders,   Evans,  Larson,  Feldman  &  Levy,  1994).    

Most  HRV  measures  are  inYluenced  by  aerobic  exercise,  where  higher  trained   individuals  have  higher  SDNN  and  rMSSD  during  rest  and  activity  than  their  less   trained  counterparts  (Achten  &  Jeukendorp,  2003;  Levy  et  al.,  1998).  Research  shows   that  the  effect  of  aerobic  exercise  on  HRV  measures  is  only  evident  after  several  weeks   of  training.  SigniYicant  differences  in  HRV  are  evident  after  12  or  16  weeks  of  training,   but  not  after  Yive  weeks  (Achten  &  Jeukendorp,  2003;  Amano,  Kanda,  Ue  &  Moritani,   2001).  HRV  decreases  when  physical  exercise  is  required  (Achten  &  Jeukendorp,  2003).   Participants  had  lower  rMSSD  and  SDNN  shortly  after  performing  Yifteen  minutes  of   incremental  physical  exercise  than  they  had  before  the  intervention  (Luft  et  al.,  2009).  

HRV  is  also  a  measure  of  cognitive  events,  such  as  increased  mental  load,  divided   attention  and  stress  (Hjortskov,  Rissén,  Blangsted,  Fallentin,  Lundberg  &  Søgaard,   2004;  Thayer,  Hansen,  Saus-­‐Rose  &  Johnsen,  2009).  HRV  can  be  an  indication  of  mental   functioning.  When  participants  were  separated  into  two  groups  based  on  their  resting   rMSSD,  the  group  with  higher  rMSSD  performed  better  on  mental  tasks  than  the  group   with  lower  rMSSD  (Hansen,  Johnsen  &  Thayer,  2003).  This  difference  is  evident  for   tasks  which  tax  executive  functions  (Luft,  Takase  &  Darby,  2009:  Thayer  et  al.,  2009),   but  not  nonexecutive  tasks  (Luft,  Takase  &  Darby,  2009).    

(2)

HRV  seems  to  be  linked  to  the  ACC.  Some  patients  with  lesions  in  the  ACC  have   unchanged  rMSSD  when  performing  cognitive  tasks  such  as  the  N-­‐back  task,  or   physical  tasks  such  as  applying  manual  grip  pressure.  People  without  such  lesions   show  sharply  decreased  rMSSD  when  performing  these  tasks  (Critchley,  Mathias,   Josephs,  O’Doherty,  Zanini,  Dewar,  et  al,  2003).    

Taken  together,  this  means  that  the  ACC  might  very  well  be  responsible  for  HRV   through  mediation  of  the  parasympathetic  nervous  systems,  while  also  being  

responsible  for  an  important  part  of  decision  making  and  executive  functions  in   general,  which  can  be  positively  affected  by  physical  exercise.    

A  difYiculty  when  studying  associations  like  these  is  that  some  psychological  lab   experiments  have  low  ecological  validity.  The  scenarios  studied  do  not  always  

correspond  well  to  real-­‐world  situations.  Tasks  which  are  often  used  in  psychological   research  such  as  the  N-­‐back  task  (Kirchner,  1958),  random-­‐dot  task  (Julesz,  1971)  and   the  Eriksen  Ylanker  task  (Eriksen,  1974)  have  high  internal  validity,  and  allow  for  a  high   degree  of  experimental  control,  but  they  do  not  allow  for  the  kind  of  generalisation  that   Yield  research  provides.  However,  Yield  research  does  not  always  allow  for  the  

experimental  control  needed  to  accurately  measure  the  desired  constructs.     Within  the  Yield  of  psychological  research,  a  need  has  emerged  for  research   methods  that  combine  high  ecological  validity  with  high  internal  validity  (Bohil,  Alicea   &  Biocca,  2011).  An  interesting  option  has  arisen  in  recent  developments  in  Virtual   Reality  (VR)  combined  with  Head-­‐Mounted  Displays  (HDMs).  These  devices  could   possibly  form  a  bridge  between  more  traditional  lab  research  and  Yield  research.  This  is   possible  due  to  the  fact  that  virtual  worlds  can  be  created  which  resemble  our  own   world,  but  with  the  advantage  of  having  high  experimental  control.  In  VR  it  is  possible   to  create  a  world  which  provides  multiple  sensory  stimulations,  such  as  visual,  

auditory  and  kinetic.  Some  degree  of  kinetic  stimulation  can  be  achieved  by  using   sensitive  head-­‐tracking  systems,  where  the  user’s  head  movements  are  translated  to   movements  in  the  software,  and  using  input  devices  which  resemble  the  devices  used   in  the  VR  world.  Adding  sensory  stimulations  increases  the  level  of  immersion  of  the   user,  which  causes  the  user  to  feel  more  present  in  the  simulated  world  (Bohil  et  al.,   2011).  However,  is  not  necessary  to  have  perfect  sensory  integration  to  create  a  high   level  of  presence;  reading  a  good  book  achieves  high  levels  of  presence  by  calling  upon   the  fantasy  of  the  reader  to  create  this  effect  (Bohil  et  al.,  2011).  To  achieve  this  feeling   of  presence  it  is  important  to  have  an  absence  of  breaks  within  the  stimulus  such  as   interruptions,  errors  or  glitches.    

Increasing  the  level  of  immersion  has  effects  on  physiological  measures,  which  is   an  indication  that  it  is  experienced  as  more  realistic  than  methods  with  lower  levels  of   immersion.  Adding  tactile  markers  or  increasing  the  video  frame-­‐rate  in  VR  can  

signiYicantly  increase  stress  measures  such  as  heart  rate  and  skin  conductance   (Meehan,  Insko,  Whitton  &  Brooks,  2002).  It  has  been  shown  that  experimental   techniques  can  have  more  realistic  results  when  they  are  more  immersive  when   compared  to  less  immersive  measures.  Participants  are  better  able  to  assess  value   (Bateman,  Day,  Jones  &  Jude,  2009)  and  risk  (Fiore,  Harrison,  Hughes  &  Rutström,   2009)  when  the  scenarios  are  presented  with  more  immersive  techniques.  

Since  HRM  based  VR  technology  as  used  in  present  research  is  a  recent  

development,  previous  research  does  not  use  the  same  technology  as  available  today,   so  generalisations  of  those  results  to  current  research  should  be  viewed  with  some   skepticism.  Regardless  of  those  limitations,  a  trend  is  visible  where  more  immersive   methods  provide  better  and  more  realistic  research  results  than  less  immersive   methods.  

A  setup  of  a  HMD  and  VR  software  has  some  advantages.  It  allows  for  a  cheap  and   mobile  experimental  setup.  Participants  can  be  virtually  transported  to  realistic  

locations  and  situations  which  would  otherwise  not  be  possible  due  to  budgetary,   safety  or  ethical  concerns.  Within  these  worlds  the  variables  of  interest  can  be   manipulated  freely  by  the  researcher,  creating  high  levels  of  control.    

The  experiments  described  in  this  thesis  investigates  an  EBDM  paradigm  at   multiple  levels  of  immersion.  The  way  the  reward  is  presented  will  be  held  constant   over  all  levels  of  immersion,  while  the  way  the  effort  is  displayed  varies  over  the   conditions.  It  is  expected  that  the  effort  is  perceived  as  more  realistic  when  presented   in  a  more  immersive  environment.  It  is  expected  that  in  the  more  immersive  conditions   the  participants  will  perform  less  effort  for  the  same  amount  of  reward  than  in  the  less   immersive  conditions  due  to  the  differences  in  perceived  effort  between  conditions.   Because  physically  Yit  participants  have  better  executive  functions  it  is  expected  that   they  require  less  reward  per  effort  than  less  physically  Yit  participants.  Because  HRV   correlates  both  to  aerobic  Yitness,  physical  effort  and  mental  effort,  it  is  expected  that   this  measure  differentiates  between  higher  Yit  and  lower  Yit  people,  and  between  the   different  levels  of  immersion.    

In  experiment  one  three  conditions  have  been  used  to  measure  the  effect  of   different  levels  of  immersiveness.  In  this  experiment  a  questionnaire  has  been  used  to   determine  physical  Yitness.  In  experiment  two  the  effect  of  different  levels  of  

immersiveness  have  been  measured  using  two  conditions.  These  conditions  have  been   performed  with  and  without  the  addition  of  wrist-­‐weights,  which  were  used  to  

increase  the  effort,  creating  four  conditions.  Physical  Yitness  has  been  measured  using  a   questionnaire  and  a  physical  HRV  measurement.    

Methods  Experiment  One   Participants  

A  total  of  thirty-­‐eight  people  (12  male)  participated  in  experiment  one.  The   average  age  of  was  23  years  old  (min:  19,  max:  28).  Research  funding  of  €20,-­‐  or  two   research  credits  was  available  for  the  Yirst  segment  of  the  participants.  Due  to  

budgetary  constraints  the  remainder  of  the  participants  received  either  a  box  of  Merci   chocolates  or  two  research  credits.  The  participants  were  promised  an  incentive,   where  they  could  earn  more  money  depending  on  the  amount  of  effort  they  chose  to   do.  The  maximum  of  this  incentive  was  €2.50.  The  participants  were  recruited  using   the  university  required  lab  hours  system  DPMS,  through  Ylyers  around  the  university   campus,  through  street  recruitment  and  through  friends  and  family.    

Materials  

An  Oculus  Rift  DK2  HMD  was  used  in  the  VR  condition.  A  standard  Ylat  screen   monitor  was  used  for  all  questionnaires,  the  listening  span  task  (not  used  in  this   thesis),  and  both  2D  and  3D  conditions  of  the  task.  An  X-­‐Box  One  controller  was  used   for  the  task.  It  was  taped  to  the  table  so  it  could  not  be  picked  up,  and  had  to  be   operated  using  the  balled  Yists.  

A  non-­‐operational  webcam  was  used  to  incite  a  sense  of  being  monitored,  to   insure  task-­‐adherence.  Questionnaires  were  presented  using  Google  Forms.  

The  Short  QUestionnaire  to  ASses  Health  enhancing  physical  activity  (SQUASH)   by  Wendel-­‐Vos,  Schuit,  Saris  &  Kromhout  (2003)  is  used  in  this  thesis.  It  measures  how   much  physical  movement  and  exercise  is  performed  in  a  typical  week  over  the  last  few   months.  It  has  43  items  (over  15  categories).  An  intensity-­‐factor  between  one  and  nine   is  given  to  each  activity  depending  on  the  amount  of  physical  strain  this  activity  costs.   For  example,  an  intense  cycling  exercise  has  an  intensity-­‐factor  of  six,  whereas  an   average  session  of  DIY  around  the  house  has  an  intensity-­‐factor  of  two.  This  intensity-­‐ factor  is  multiplied  by  the  amount  of  time  spent  on  each  activity  per  week.  

From  these  data  a  number  of  measures  can  be  calculated.  The  Activities  Hours   per  Week  index  states  how  many  hours  per  week  the  participant  is  performing  general   activities  such  as  walking  or  cycling  to  and  from  work  and  performing  general  

housework  duties.  The  Activities  Activity  score  multiplies  the  Activities  Hours  per   Week  index  by  the  intensity  factor  of  each  activity.  The  Sports  Hours  per  Week  index  is   similar  to  the  Activities  Hours  per  Week  index  but  reYlects  sports  related  vocations.  The   Sports  Activity  score  multiplies  the  Sports  Hours  per  Week  index  with  each  sports’   activity  index,  similar  to  the  Activities  Activity  score.  The  Total  Hours  per  Week  index  is   a  summation  of  the  Activities  Hours  per  Week  and  the  Sports  Hours  per  Week  indexes.   The  Total  Activity  score  equals  the  Activities  Activity  score  and  the  Sports  Activity   score  combined.  The  SQUASH  has  a  good  reproducibility  (Spearman’s  correlate:  0.58).  

The  Igroup  Presence  Questionnaire  (IPQ)  was  used  to  measure  sense  of  presence.   This  questionnaire  has  14  items  for  each  of  the  conditions  (42  total)  about  the  amount   of  immersion  experienced  during  each  of  the  tasks.  Scores  can  range  from  14  to  70  on   each  of  the  conditions.  Higher  scores  mean  more  immersion  experienced.  Sample   question:  “I  was  no  longer  aware  of  my  actual  surroundings  during  the  task”.  Possible   responses  were:  completely  disagree,  partly  disagree,  neither  disagree  nor  agree,   partly  agree,  completely  agree.    

Other  questionnaires  were  obtained  but  not  used  in  this  thesis  (Locus  of  Control   questionnaire,  Temporal  Experience  of  Pleasure  questionnaire,  Social  Economic  Status   Questionnaire,  Immersive  Tendencies  Questionnaire,  Game  Experience  Questionnaire,   Listening  Span  task).    

The  task  consisted  of  three  times  the  exact  same  EBDM  task,  with  various   amounts  of  immersion  created  by  increasing  amounts  of  visual  and  kinetic  stimuli.  

In  the  2D  task  the  two  options  were  presented,  one  on  the  left  and  one  on  the   right,  see  Image  1.  The  required  effort  was  presented  in  coloured  blocks  (green  =  low   effort,  orange  =  medium  effort,  red  =  high  effort).  Above  each  option  the  amount  of   reward  was  presented  numerically.  After  choosing  which  option  the  participant  wanted   to  do,  a  powerbar  was  presented,  indicating  if  the  amount  of  effort  expended  was  high   enough,  see  Image  2.  If  the  effort  expended  was  too  low  the  powerbar  dropped  down   and  turned  from  green  to  orange.  During  the  medium  effort  of  the  trial  the  powerbar   dropped  faster  than  in  the  green  parts,  whereas  it  dropped  fastest  in  the  high  effort   parts  of  the  trial.  The  words  “Choose  track”,  “Waiting  for  track”,  “Get  ready”  or  “Go!”   provided  additional  information  on  which  stage  of  the  task  the  participant  was  at  the   moment.  The  background  of  the  2D  task  was  black,  and  no  other  visual  stimulation  was   given.  There  was  no  auditive  stimulation.  Both  tracks  took  the  same  amount  of  time  to   complete,  regardless  of  the  amount  of  effort  needed.    

Image  1.  Visual  representation  of  2D  condition  during  effort/reward  selection.  

Image  2.  Visual  representation  of  2D  condition  during  trail  performance.      

The  3D  version  of  the  task  was  similar  to  the  2D  version,  but  instead  of  a  black   background  a  representation  of  a  manually  operated  train-­‐cart  was  presented.  At  the   Yirst  stage  of  each  trial  the  effort  was  still  displayed  by  the  coloured  blocks,  see  Image  3.   However,  while  operating  the  train  cart,  the  effort  was  displayed  as  shrubbery  

(3)

view  was  directly  above  the  seat  in  the  train  cart,  with  the  two  handlebars  which  

operated  the  cart  directly  in  view.      

Image  3.  Visual  representation  of  3D  condition  during  effort/reward  selection.    

Image  4.  Visual  representation  of  3D  condition  during  trail  performance.      

The  VR  version  was  identical  to  the  3D  version,  only  presented  through  the   Oculus  Rift  DK2,  see  Image  5  and  Image  6.  This  way  the  participant  was  able  to  look   around  freely.  

 

Image  5.  Visual  representation  of  VR  condition  during  effort/reward  selection.  

Image  6.  Visual  representation  of    VR  condition  during  trail  performance.      

The  Point  of  Indifference  (POI)  was  measured  in  each  of  the  conditions.  It  is  a   measure  where  the  participant  chooses  the  high-­‐effort/high  reward  (HE/HR)  option   50%  of  the  times.  It  means  that  the  reward  in  the  HE/HR  option  is  exactly  that  much   higher  than  in  the  low-­‐effort/low-­‐reward  (LE/LR)  option,  that  the  difference  in  the   required  amounts  of  effort  is  exactly  covered  by  the  amount  of  reward  (Bardgett,   Depenbrock,  Downs,  Points  &  Green,  2009).  A  high  POI  means  that  a  lot  of  extra  reward   needs  to  be  given  to  the  participant  for  the  extra  effort  required  in  the  HE  option.  A  low   POI  means  that  the  extra  effort  is  not  considered  that  hard,  and  less  reward  is  needed   to  perform  the  HE  option.  A  POI  of  0  means  that  the  effort  is  not  taken  into  account  at   all,  and  that  simply  the  highest  rewarding  option  is  chosen.  The  POI  is  a  reliable   measure  for  the  relationship  between  effort  and  reward  (Westbrook  et  al.,  2013).  The   last  Yive  trials  of  each  condition  were  used  for  another  measurement  not  used  in  this   thesis.  The  four  trials  previous  were  considered  to  be  where  the  participants  reached   their  POI.  The  average  reward  scores  of  these  four  trials  were  taken  and  used  as  POI.    

Procedure  

Participants  were  tested  in  separate  cubicles.  The  participants  read  the   information  brochure  and  the  informed  consent  form,  after  which  the  latter  was   signed.  Depending  on  which  counterbalancing  order  the  participant  was  assigned  to,   the  questionnaires  and  listening-­‐span  task  were  performed  Yirst,  or  the  task  was   started  directly.  If  the  participant  had  to  start  with  the  questionnaires  and  listening-­‐ span  task,  they  were  escorted  to  the  cubicle  where  the  questionnaires  were  obtained   using  Google  Forms.  This  took  roughly  thirty  minutes.  After  completing  the  

questionnaires,  the  research  assistant  explained  the  listening-­‐span  task,  after  which   the  participant  completed  this  task.  It  took  roughly  twenty  minutes.  If  the  participant   had  to  start  with  the  task  directly,  they  were  escorted  to  the  cubicle  where  the  task  was   obtained,  where  the  research  assistant  explained  the  task  and  provided  a  live  

demonstration.  Depending  on  the  counterbalancing  the  participant  started  in  the  2D,   3D  or  VR  condition.  

In  the  task  itself  the  participant  could  choose  between  the  track  on  the  left  and   the  track  on  the  right  by  moving  the  joysticks  of  the  controller  in  that  direction.  The   joysticks  were  operated  using  the  proximal  and  intermediate  phalanges  of  the  pinky   Yingers  of  the  balled  Yists,  which  rested  on  top  of  the  small  joysticks  of  the  X-­‐Box   controller.  After  choosing  the  desired  track  the  participant  had  to  move  their  Yists  in   alternating  fashion  backwards  and  forwards.  They  had  to  move  just  fast  enough  so  that   the  powerbar  neared  full,  but  not  faster.  

Each  condition  took  roughly  seventeen  minutes,  with  a  total  of  the  entire  task  of  a   little  over  Yifty  minutes.  After  completing  the  task  the  IPQ  was  obtained  using  Google   Forms.  Each  participant  was  debriefed,  after  which  the  research  credits  or  cash  reward   were  handed  over.  The  €2.50  added  bonus  was  presented  to  each  participant,  

regardless  their  level  of  effort.    

Changes  

The  X-­‐Box  One  controller  was  considered  to  be  irritating  by  some  participants,   due  to  the  unconventional  way  of  operating  it.  It  was  replaced  by  two  Logitech  joysticks   for  the  second  experiment.  The  joysticks  were  more  similar  to  the  presentation  on   screen  than  the  X-­‐Box  controller  was.  It  was  also  thought  to  increase  the  effort  needed.   In  experiment  one  HRV  data  was  collected  originally.  Unfortunately  this  data  was  lost   due  to  theft.  Seventeen  out  of  39  participants  were  considered  to  be  non-­‐responders   due  to  a  POI  of  zero.  It  was  thought  that  the  amount  of  effort  was  not  sufYicient  for   these  participants  to  take  this  into  consideration  when  choosing  between  the  HE  or  the   LE  track.  Conditions  were  added  where  weights  were  added  to  the  participants’  wrist   to  increase  the  effort  needed  and  to  decrease  the  amount  of  non-­‐responders  in  

experiment  two.  Due  to  time  constraints  and  the  addition  of  the  wrist  weights,  the  3D   condition  was  removed  from  the  second  experiment.  The  reasoning  was  that  if  the   amount  of  immersion  would  inYluence  the  POI,  this  difference  should  be  visible   between  the  2D  and  the  VR  conditions.    

Methods  Experiment  Two   Participants  

A  total  of  thirty-­‐six  participants  (21  men)  completed  experiment  two.  The   average  age  was  25  years  (min  =  18,  max  =  44).  Participants  received  a  box  of  Merci   chocolates,  or  two  research  credits  as  compensation.  The  participants  were  recruited   via  the  university  research  credits  website  DPMS  and  through  friends  and  family.    

Materials  

An  Oculus  Rift  DK2  HMD  was  used  in  the  VR  task.  The  questionnaires  and  the  2D   version  of  the  task  were  presented  on  a  standard  Ylatscreen  monitor.  Two  Logitech   Attack  3  joysticks  were  used  as  input  devices.  Two  0.5KG  wrist-­‐weights  were  used  in   the  weighted  condition.  A  noise  cancelling  headset  was  used  to  block  extraneous  noise.   A  Polar  H7  bluetooth  heart  beat  monitor  (chest-­‐strap  style)  was  used  for  HRV  

measurements.  HRV  data  were  logged  on  an  iPhone  4S  using  the  application  HRV   Logger  (Marco  Altini,  2015)  which  connected  to  the  Polar  H7  HRM  via  bluetooth.   Google  Forms  was  used  for  questionnaires.  SQUASH  and  IPQ  were  used  in  this  

experiment.  ITQ  and  Game  Experiences  Questionnaire  were  also  taken,  but  not  used  in   this  thesis.    

The  amount  of  effort  required  was  changed  slightly  in  this  version  of  the  task   compared  to  the  task  in  experiment  one.  Green  blocks  considered  no  effort,  and  the   powerbar  reYlected  this  change.  Orange  and  red  blocks  were  still  medium  and  high   effort  parts  respectively.  Some  visual  aspects  were  changed  in  the  2D  version  to  better   show  which  part  of  the  track  the  participant  was  at  any  moment.  This  was  done  by   moving  the  powerbar  to  the  middle  of  the  screen  while  displaying  the  current  effort   requirements.  

The  last  four  trials  were  considered  to  be  the  POI  of  the  participant.  The  average   of  the  reward  scores  of  these  trials  were  used  as  value  for  POI.    

HRV  were  measured  during  the  time  when  the  participant  reached  their  POI.  The   HRV  Logger  application  has  built  in  formulas  for  HRV  calculations,  and  these  data  were   matched  to  the  POI  data  using  timestamps  imbedded  in  the  POI  data  Yiles.  

Procedure  

The  participants  read  the  information  brochure  and  the  informed  consent  form,   after  which  the  latter  was  signed.  The  participants  were  told  they  could  earn  more   chocolates  depending  on  the  amount  of  effort  they  were  exerting.  These  chocolates   were  displayed  in  the  area  where  the  participants  were  Yirst  received.  Next  the  

participants  Yilled  out  the  SQUASH,  ITQ  and  Game  Experiences  questionnaire,  this  took   roughly  20  minutes.  Once  this  part  was  completed  the  participants  were  Yitted  with  the   Polar  H7  heart  beat  monitor,  and  the  connection  to  the  iPhone  application  was  tested   by  the  research  assistant.  The  participant  was  asked  to  sit  still  for  two  minutes  to  gain  

(4)

HRV  baseline.  Once  baseline  was  completed  the  research  assistant  explained  the  task   requirements  and  provided  a  live  demo.  Depending  on  the  counterbalancing  the   participant  was  Yitted  with  the  wrist-­‐weights  or  not.  

Depending  on  the  counterbalancing  the  participant  was  Yitted  with  the  Oculus   Rift  DK2  HMD,  or  started  with  the  2D  version  of  the  task.  Once  the  participant  was   clear  on  what  was  expected  the  experiment  began.  After  each  trial  block  the  research   assistant  assisted  the  participant  in  taking  off  or  putting  on  the  wrist  weights  and/or   the  Oculus  Rift,  depending  on  the  counterbalancing.  The  task  took  approximately  40   minutes  to  complete.  After  completion  of  the  task  the  participant  Yilled  out  the  IPQ,   which  took  approximately  10  minutes.  Finally  a  debrieYing  was  done  by  the  research   assistant  and  the  compensation  was  provided.    If  the  participant  had  no  more  

questions  the  experiment  was  completed.  

Results  Experiment  One  

Of  the  38  original  subjects  in  the  Yirst  experiment,  16  had  a  POI  of  three  or  lower,   indicating  that  the  required  effort  had  no  effect,  the  experimental  manipulation  had   failed,  and  their  performance  was  based  on  reward  only.  The  mean  age  of  these   participants  was  23  years  (min  19,  max  28).  These  non-­‐responding  subjects  were   omitted  from  all  calculations  involving  POI,  but  remained  in  the  rest  of  the  calculations.   Of  one  participant  the  questionnaires  were  not  properly  saved  due  to  technical  

difYiculties.  Three  subjects  made  errors  in  the  SQUASH  questionnaire.  The  subjects   reported  riding  their  bikes  for  excessive  durations  (22,  25  and  30  hours  per  day).  Their   SQUASH  scores  were  omitted  from  calculations.  

The  average  POI  scores  are  presented  in  Table  1  and  Figure  1:  

A  one-­‐way  within-­‐subjects  ANOVA  was  conducted  on  the  mean  POI  scores.  The  

main  effect  of  condition  was  not  statistically  signiYicant:  F(2,42)  =  0.031,  p  =  0.969.   There  was  no  difference  in  POI  between  the  2D,  the  3D  and  the  VR  condition.  This  goes   against  the  main  hypothesis  of  this  thesis,  stating  that  the  POI  of  the  VR  condition   should  be  higher  than  the  3D  condition,  which  should  be  higher  than  the  2D  condition.    

The  average  IPQ  scores  are  presented  in  Table  2  and  Figure  2:  

 

A  one-­‐way  within-­‐subjects  ANOVA  was  conducted  on  the  mean  IPQ  scores.  The   main  effect  of  condition  was  signiYicant:  F(2,42)  =  157.557,  p  <  0.01.  There  was  a   signiYicant  lineair  trend:  F(1,21)  =  352.238,  p  <  0.01.  The  subjects  reported  feeling   much  more  present  in  the  VR  condition  than  in  the  3D  condition,  and  much  more   present  in  the  3D  condition  than  in  the  2D  condition.  No  signiYicant  correlations   between  the  POI  measures  and  2D  IPQ  (r  =  -­‐0.24,  N  =  22,  p  =  ns),  3D  IPQ  (r  =  0.16,  N  =   22,  p  =  ns)  or  VR  IPQ  (r  =  0.182,  N  =  22,  p  =  ns)  were  found.  This  means  that  the  level  of   perceived  presence  in  a  certain  condition  did  not  correspond  to  the  POI  in  that  

condition.    

The  average  Exertion  scores  are  presented  in  Table  3  and  Figure  3:  

A  one-­‐way  within-­‐subjects  ANOVA  was  conducted  on  the  mean  Exertion  scores.   The  Mauchly’s  test  of  sphericity  was  signiYicant  (χ2(2)  =  10.901,  p  =  0.004),  so  the  

Greenhouse-­‐Geisser  Epsilon  was  used.  The  main  effect  of  condition  was  signiYicant:   F(2,42)  =  5.720,  p  =  0.015.  There  was  a  signiYicant  quadratic  effect:  F(1,21)  =  7.789,  p  =   0.011.  This  means  the  perceived  effort  was  higher  in  the  VR  condition  than  in  the  2D  or   3D  condition,  which  were  similar.  

Pearson’s  correlations  were  calculated  between  perceived  exertion  and  POI.   There  was  a  signiYicant  positive  correlation  between  exertion  and  POI  in  the  2D   condition:  r  =  0.456,  N  =  22,  p  =  0.016.  There  was  neither  a  signiYicant  correlation   between  exertion  and  POI  in  the  3D  condition  (r  =  -­‐0.271,  N  =  22,  p  =  ns)  nor  the  VR   condition  (r  =  -­‐0.06,  N  =  22,  p  =  ns).  This  means  that  the  perceived  effort  in  the  3D  and   VR  conditions  had  no  relationship  with  the  POI,  but  that  such  a  relationship  between   perceived  effort  and  POI  did  exist  in  the  2D  condition.    

Correlations  were  calculated  between  the  POIs  of  the  different  conditions  and  the   various  SQUASH  measures.  The  Activities  Activity  index  correlated  signiYicantly  with   the  3D  POI  (r  =  0.502,  N  =  21,  p  =  0.01)  and  the  VR  POI  (r  =  0.485,  N  =  21,  p  =  0.013).   The  Activities  Hours  per  Week  index  correlated  with  the  VR  POI  (r  =  0.377,  N  =  20,  p  =   0.046).  The  Total  Activities  index  correlated  positively  with  the  3D  POI  (r  =  0.405,  N  =   20,  p  =  0.038).    

If  however  a  Bonferroni  correction  for  multiple  comparisons  was  used,  and  thus   the  desired  p  value  should  be  below  0.0028  (0.05/18  comparisons)  (Field,  2013),  none   of  the  above  mentioned  correlations  between  POI  and  the  SQUASH  measures  were   signiYicant.    

If  the  conservative  Bonferroni  correction  is  disregarded,  these  results  mean  that   people  who  reported  higher  levels  of  daily  activities  and  higher  levels  of  total  activities   had  higher  POIs  in  the  3D  and  the  VR  conditions  than  people  who  had  reported  lower   levels  of  activity.  This  is  not  in  line  with  the  predictions  made  in  this  thesis,  because   higher  levels  of  reported  activity  were  expected  to  correlate  with  lower  levels  of  POI.  If   the  Bonferroni  correction  is  upheld,  the  levels  of  POI  and  reported  activity  do  not  relate   to  each  other,  which  is  also  against  the  hypothesis  of  this  thesis.  The  use  of  the  

Bonferroni  correction  will  be  discussed  further  in  the  discussion  paragraph.    

No  correlations  were  found  between  either  of  the  Sports  indexes  and  any  of  the   POI  measures.  This  result  is  not  in  line  with  the  hypothesis  of  this  thesis  regarding  the   level  of  sports  and  POI.  It  was  expected  that  people  reporting  higher  levels  of  sports   would  have  lower  POIs  than  people  who  report  lower  levels  of  sports.    

Correlations  between  perceived  exertion  and  various  SQUASH  measures  were   calculated.  SigniYicant  negative  correlations  were  found  between  perceived  exertion  in   2D  and  the  Activities  Hours  per  Week  index  (r  =  -­‐0.428,  N  =  36,  p  =  0.005),  the  

Activities  Activity  index  (r  =  -­‐0.396,  N  =  35,  p  =  0.009),  the  Total  Hours  per  Week  index   (r  =  -­‐0.418,  N  =36,  p  =  0.006)  and  the  Total  Activities  index  (r  =  -­‐0.331,  N  =  36,  p  =   0.032).  This  means  that  higher  daily  activity  levels  and  higher  total  activity  levels  are   related  to  lower  perceived  exertion  scores  in  the  2D  condition,  which  is  in  line  with  the   predictions.    

The  perceived  exertion  in  VR  and  the  Sports  Activity  index  show  an  unexpected   positive  correlation  (r  =  0.316,  N  =  33,  p  =  0.036).  This  is  not  in  line  with  the  

predictions  and  goes  against  the  expected  hypothesis.  It  could  be  the  case  that  people   who  play  more  sports  also  work  harder  in  VR  than  people  who  play  less  sports.  If  this   result  however  is  combined  with  the  absence  of  a  signiYicant  correlation  between  POI   and  perceived  exertion  this  interpretation  seems  unlikely.  It  seems  like  people  who   play  more  sports  perceive  higher  levels  of  exertion,  however  they  do  not  actually  work   harder  in  the  corresponding  condition.    

No  other  correlations  were  signiYicant.  

If  a  Bonferroni  correction  for  multiple  comparisons  was  used,  and  thus  the   desired  p  value  should  be  below  0.0028  (0.05/18  comparisons)  (Field,  2013),  none  of   the  above  mentioned  correlations  between  POI  and  exertion  were  signiYicant.    

Results  Experiment  Two  

Twelve  out  of  36  participants  did  not  reach  a  POI  of  three  or  higher,  and  were   excluded  from  all  calculations  involving  POI.  Since  these  participants  did  not  reach  a   POI  of  three  or  higher  they  were  considered  non-­‐responders  as  far  as  the  data   concerning  POI,  for  the  same  reason  as  the  non-­‐responders  in  experiment  one.  The   mean  age  of  these  participants  was  27  (min  =  22,  max  =  38).  The  participants  whose   data  were  omitted  did  not  differ  as  a  group  from  the  rest  of  the  participants.  The  scores   from  the  group  whose  POI  data  were  omitted  were  still  used  in  all  other  calculations.   One  participant  reported  feeling  nauseated  in  the  VR  condition  and  only  completed  the   2D  conditions.  None  of  the  participants  were  considered  outliers  in  the  SQUASH  

Table 1

POI Means and Standard Errors in 2D, 3D & VR conditions

Mean Std. Error

POI 2D 18.318 3.593

POI 3D 17.000 3.809

POI VR 17.500 4.528

Table 2

IPQ Means and Standard Errors in 2D, 3D & VR conditions

Mean Std. Error

IPQ 2D 21.909 1.059

IPQ 3D 34.682 1.664

IPQ VR 49.500 1.133

Table 3

Perceived Exertion Means and Standard Errors in 2D, 3D & VR conditions Mean Std. Error Exertion 2D 1.523 0.304 Exertion 3D 1.455 0.210 Exertion VR 2.523 0.363 Me a n PO I 12 14 16 18 20 22 Condition 2D 3D VR

Figure 1. POI averages in the three presentation conditions. Error bars represent Standard Error. n = 22 participants.

POI = Point of Indifference, 2D = 2D condition, 3D = 3D condition, VR = Virtual Reality condition.

Me a n I PQ 18 23 28 33 38 43 48 53 Condition 2D 3D VR

Figure 2. IPQ averages in the three presentation conditions. Error bars represent Standard Error. n = 22 participants.

IPQ = Igroup Presence Questionnaire, 2D = 2D condition, 3D = 3D condition, VR = Virtual Reality condition.

Me a n Ex e rti o n 0.5 1 1.5 2 2.5 3 Condition 2D 3D VR

Figure 3. Perceived Exertion averages in the three presentation conditions. Error bars represent Standard Error. n = 22 participants. 2D = 2D condition, 3D = 3D condition, VR = Virtual Reality condition.

Referenties

GERELATEERDE DOCUMENTEN

Chapter 7 Internet program for physical activity and exercise capacity in children with juvenile idiopathic arthritis: a multicenter randomized controlled

These PA guidelines are for children in general, but children with a chronic disease like juvenile idiopathic arthritis (JIA), juvenile dermatomyositis or a history of liver

The aim of this study was to evaluate gross and fine motor development in chil- dren, aged 0-2 years, pre liver transplantation (screening), at the time of hospital discharge

The relationship between physical activity level, anxiety, depression, and functional ability in children and adolescents with juvenile idiopathic arthritis. Gueddari S, Amine

In conclusion, young children after liver transplantation have similar MVPA patterns, spend less time on sedentary activities compared to published healthy norms, and have

In a study including 513 healthy children, aged 13-15 years, correction for non-wear using ActiGraph accelerometers and a non-wear diary resulted in an increased mean MVPA of

Therefore, we performed a multicentre randomized controlled trial to study the feasibility, safety, and efficacy of an individually tailored 12-week home-based exercise

To determine the effects of Rheumates@Work, an internet-based program supple- mented with 4 group sessions, aimed at improving physical activity, exercise capacity,