Waves/instab. inhomogeneous plasmas: Overview
Chapter 7: Waves
/
instab. in inhomogeneous plasmas
Overview
•
Hydrodynamics of the solar interior: radiative equilibrium model of the Sun,con-vection zone; [ book: Sec. 7.1 ]
⇒
please read at home!•
Hydrodynamic waves & instabilities of a gravitating slab: HD wave equation, convective instabilities, gravito-acoustic waves, helioseismology; [ book: Sec. 7.2 ]⇒
not treated this year•
MHD wave equation for a gravitating magnetized plasma slab: derivation MHD wave equation for gravitating slab, gravito-MHD waves; [ book: Sec. 7.3 ]⇒
not treated this year•
Continuous spectrum and spectral structure: singular differential equations, Alfv ´en and slow continua, oscillation theorems; [ book: Sec. 7.4 ]Waves/instab. inhomogeneous plasmas: motivation (1)
Motivation
•
plasmaWAVES and INSTABILITIES
play an important role. . .–
in the dynamics of plasma perturbations–
in energy conversion and transport–
in the heating & acceleration of plasma•
characteristics (ν
,λ
, amplitude. . . ) are determined by the ambient plasma⇒
can be exploited as a diagnostic tool for plasma parameters, e.g.–
wave generation, propagation, and dissipation in a confined plasma⇒
helioseismology (e.g. Gough ’83)⇒
MHD spectroscopy (e.g. Goedbloed et al. ’93)–
interaction of external waves with (magnetic) plasma structures⇒
sunspot seismology (e.g. Thomas et al. ’82, Bogdan ’91)Waves/instab. inhomogeneous plasmas: motivation (2)
Fusion plasmas
controlled thermo-nuclear fusion:
•
tokamaks/
stellerators/
in-ertial plasmas, . . .•
MHD spectroscopyWaves/instab. inhomogeneous plasmas: motivation (3)
Solar wind – magnetosphere coupling
•
interaction of time-varying solar wind with the geonetic field near the mag-netopause results in wave mode conversion•
ultra-low frequency (ULF) waves (periods of seconds to minutes)⇒
standing AWs with fixed ends in the ionosphere⇒
interaction of time-varying solar wind with the geomagnetic field near the magnetopause results in resonant wave mode conversionWaves/instab. inhomogeneous plasmas: motivation (4)
•
corona: highly inhomogeneousin both space and time
(Skylab, Yohkoh, Soho)
•
structure dominated byWaves/instab. inhomogeneous plasmas: motivation (4)
•
corona: highly inhomogeneousin both space and time
(Skylab, Yohkoh, Soho)
•
structure dominated bymag-netic field
Waves/instab. inhomogeneous plasmas: motivation (4)
•
corona: highly inhomogeneousin both space and time
(Skylab, Yohkoh, Soho)
•
structure dominated bymag-netic field
•
average temperature2 − 3 ×
10
6K
0 1000 2000 3000 4000 5000 6000 6 3 4 5 6 7 Height (km) Log(T) Photo-spere Chromosphere tion region Low coronalow middle high
Temperature minimum region
T: 1x10 1.5x10 2x10 h: 8600 28000 75000
6 6
Waves/instab. inhomogeneous plasmas: motivation (4)
•
corona: highly inhomogeneousin both space and time
(Skylab, Yohkoh, Soho)
•
structure dominated bymag-netic field
•
average temperature2 − 3 ×
10
6K
•
hot material concentrated inloops (Rossner et al. ’78)
•
TRACE: nnloopbackgr
∼ 10
(As-chwanden ’01)•
outline magnetic field (Orrall ’81)Hot coronal loops (TRACE)
⇒
waves? (generation, propagation, dissipation?)Waves/instab. inhomogeneous plasmas: motivation (4)
•
corona: highly inhomogeneousin both space and time
(Skylab, Yohkoh, Soho)
•
structure dominated bymag-netic field
•
average temperature2 − 3 ×
10
6K
•
hot material concentrated inloops (Rossner et al. ’78)
•
TRACE: nnloopbackgr
∼ 10
(As-chwanden ’00)•
outline magnetic field (Orrall ’81)Hot coronal loops (TRACE)
⇒
waves? (generation, propagation, dissipation?)⇒
heating mechanism(s)? (what is the role of waves?)Waves/instab. inhomogeneous plasmas: Helioseismology (1)
Helioseismology
•
Power spectrum of solar oscillations, from Doppler velocity measurements in light integrated over solar disk (Christensen-Dalsgaard, Stellar Oscillations, 1989):Waves/instab. inhomogeneous plasmas: Helioseismology (2)
•
Done by comparison with theoretically calculated spectrum for standard solar model (of course, spherical geometry) (Christensen-Dalsgaard, 1989).•
Orders of magnitude :τ
∼ 5 min ⇒ ν ∼ 3 mHz
˜v
r<
1km/s ≈ 5 × 10
−4R
/
5 min
⇒
linear theory OK!• p
-modes of low orderl
penetrate deep in the Sun, highl
modes are localized on outside.g
-modes are cavity modes trapped deeper than convection zone and, hence, quite difficult to observe.•
Frequencies deduced from the Doppler shifts of spectral lines agree with calcu-lated ones for p-modes to within0.1%
!Waves/instab. inhomogeneous plasmas: Helioseismology (3)
Systematics of helioseismology
Solar Model: X(r) , Y (r) , Z(r) T (r) , ρ(r) , L(r) Extensions: Ω(r, θ) – diff. rotation B(r, θ) – magn. field f(t) – stellar evolution ρ(r) , T (r) Spectral Code: ˆξ(r) Ym l (θ, φ) eiωt ( p & g modes ) {ωl,n}theory Observations: Doppler shifts of spectral lines {ωl,n}observ. - -6 ?•
Similar activities:– MHD spectroscopy for laboratory fusion plasmas (Goedbloed et al., 1993), – Sunspot seismology (Bogdan and Braun, 1995),
Waves/instab. inhomogeneous plasmas: approaches
Different approaches
•
the system of linear PDEsL ·
∂
u
∂t
= R · u
can be approached in three differentways (after spatial discretization of
L
andR
):1) steady state approach:
t
-dependence is prescribed, e.g.∼ e
iωdt⇒
linear algebraic system:(A − iω
dB) · x = f
with force
f
: from BCs (driver)2) time evolution approach:
t
-dependence is calculated⇒
initial value problem:A · x = B ·
∂
x
∂t
withx(r, t = 0)
given⇒
‘driven’ problem:A · x = B ·
∂
x
∂t
+ f
3) eigenvalue approach:
t
-dependence∼ e
λt, withλ
calculatedWaves/instab. inhomogeneous plasmas: MHD wave equation (1)
•
Starting point is the general MHD spectral equation:F(ξ) ≡ −∇π −B×(∇×Q)+(∇×B)×Q+∇Φ ∇·(ρξ) = ρ
∂
2ξ
∂t
2= −ρω
2
ξ , (1)
where
π
= −γp∇ · ξ − ξ · ∇p ,
Q = ∇ × (ξ × B) .
(2)
Aside:
•
Recall homogeneous plasmas (Chap. 5) with plane wave solutionsˆξ(k) exp(ik · r)
:ρ
−1F(ˆξ) =
− (k · b)
2I − (b
2+ c
2) kk + k · b (kb + bk)
· ˆξ = −ω
2ˆξ .
(3)
In components:⎛
⎜
⎝
− k
x2(b
2+ c
2) − k
z2b
2−k
xk
y(b
2+ c
2)
−k
xk
zc
2− k
xk
y(b
2+ c
2)
−k
y2(b
2+ c
2) − k
z2b
2−k
yk
zc
2− k
xk
zc
2−k
yk
zc
2−k
z2c
2⎞
⎟
⎠
⎛
⎜
⎝
ξ
xξ
yξ
z⎞
⎟
⎠ = −ω
2⎛
⎜
⎝
ξ
xξ
yξ
z⎞
⎟
⎠ .
(4)
Corresponds to Eq. (5.35) [book (5.52)] with
k
y= 0
: Coordinate system rotated todistinguish between
k
x (becomes differential operator in inhomogeneous systems) andWaves/instab. inhomogeneous plasmas: MHD wave equation (2)
•
Dispersion diagramω
2(k
x)
exhibits relevant asymptotics fork
x→ ∞
:a ω 2 k x (n) ω2 f0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 ω2 s0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • A ω2 • • • • • • • • • • • • • • ω2 S b ω2 S Alfvén fast slow ω2 A ω2 ∞
Yields the essential spectrum:
ω
F2≡ lim
kx→∞ω
2 f≈ lim
kx→∞k
2x
(b
2+ c
2) = ∞ ,
(fast cluster point)(5)
ω
A2≡ lim
kx→∞
ω
2
a
= ω
a2= k
2b
2,
(Alfv ´en infinitely degenerate)(6)
ω
S2≡ lim
kx→∞
ω
s2= k
2b
2
c
2b
2+ c
2.
(slow cluster point)(7)
Waves/instab. inhomogeneous plasmas: continuous spectrum (1)
Finite
homogeneous
plasma slab
•
equilibrium:B
0= B
0e
z– with
ρ
0, p
0, B
0= const
– enclosed by plates at
x
= ±a
•
normal modes:∼ exp(−iω t)
⇒
eigenvalueproblem•
plane wave solutions∼ exp(k · x)
⇒
k
x=
πan
is quantized⇒
three MHD waves:
FMW, AW,
SMW
aω
2 k x (n) ω2 f0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 ω2 s0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • A ω2 • • • • • • • • • • • • • • ω2 SWaves/instab. inhomogeneous plasmas: continuous spectrum (2)
Alfv ´en waves
•
eigenfrequency:ω
= ±ω
Aω
A≡ k
b
= k b cos ϑ
withb
=
√
B
0ρ
0•
eigenfunctions: (x) k (y) (z) ϑ vA BA B0Waves/instab. inhomogeneous plasmas: continuous spectrum (2)
Alfv ´en waves
•
eigenfrequency:ω
= ±ω
Aω
A≡ k
b
= k b cos ϑ
withb
=
√
B
0ρ
0•
eigenfunctions: (x) k (y) (z) ϑ vA BA B0Fast & slow magnetoacoustic
waves
•
eigenfrequency:ω
= ±ω
s,f ωs,f ≡ k 1 2(b2 + c2) ± 12 (b2 + c2)2 − 4(k2 /k2) b2c2•
eigenfunctions: (z) (x) k ϑ vs Bs,f B0 vfWaves/instab. inhomogeneous plasmas: continuous spectrum (3)
•
the eigenfunctions are mutually orthogonal:ˆv
s⊥ ˆv
A⊥ ˆv
fWaves/instab. inhomogeneous plasmas: continuous spectrum (3)
•
the eigenfunctions are mutually orthogonal:ˆv
s⊥ ˆv
A⊥ ˆv
f⇒
arbitrary velocity field may be decomposed in the three waves!(z) (x) k ϑ vs Bs,f B0 vf
• Remark
: forθ
= 0
the FMW is polar-ized almost perpendicular toB
0 but in the
(k, B
0)
-plane⇒
corresponds to the direction normal to the magnetic flux surfaces in the inhomoge-neous plasmas discussed belowWaves/instab. inhomogeneous plasmas: continuous spectrum (4) a
ω
2 k x (n) ω2 f0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 ω2 s0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • A ω 2 • • • • • • • • • • • • • • ω2 S b ω2 S Alfvén fast slowω
2 A ω2∞
(a) Dispersion diagram ω2 = ω2(k
x) for ky and kz fixed; (b) Corresponding structure of the spectrum.
•
the eigenfrequencies are well-ordered:0 ≤ ω
s2≤ ω
s20≤ ω
A2≤ ω
f20≤ ω
f2<
∞
Waves/instab. inhomogeneous plasmas: continuous spectrum (4) a
ω
2 k x (n) ω2 f0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 ω2 s0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • A ω2 • • • • • • • • • • • • • • ω2 S b ω2 S Alfvén fast slowω
2 A ω2∞
(a) Dispersion diagram ω2 = ω2(k
x) for ky and kz fixed; (b) Corresponding structure of the spectrum.
•
discrete eigenvalues of the fast subspectrum monotonically increase, so thatω
F2≡ lim
kx→∞ω
2 f≈ lim
kx→∞k
2Waves/instab. inhomogeneous plasmas: continuous spectrum (4) a
ω
2 k x (n) ω2 f0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 ω2 s0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • A ω2 • • • • • • • • • • • • • • ω2 S b ω2 S Alfvén fast slowω
2 A ω2∞
(a) Dispersion diagram ω2 = ω2(k
x) for ky and kz fixed; (b) Corresponding structure of the spectrum.
•
The eigenvaluesω
a2 of the Alfv ´en subspectrum are infinitely degenerate, so thatω
A2≡ lim
kx→∞
ω
2
Waves/instab. inhomogeneous plasmas: continuous spectrum (4) a
ω
2 k x (n) ω2 f0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 ω2 s0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • A ω2 • • • • • • • • • • • • • • ω2 S b ω2 S Alfvén fast slowω
2 A ω2∞
(a) Dispersion diagram ω2 = ω2(k
x) for ky and kz fixed; (b) Corresponding structure of the spectrum.
•
slow wave subspectrum monotonically decreases with a cluster point atω
S2≡ lim
kx→∞ω
2 s= k
2b
2c
2b
2+ c
2Waves/instab. inhomogeneous plasmas: continuous spectrum (5)
•
three MHD waves exhibit a strong anisotropy depending on the direction of the wave vectork
with respect to the magnetic fieldB
0b
B
Alfvén
b cslow
fast
•
•
bcs A
f
b cB
n
slow
Alfvén fast
a 2 2 b+ c 2 2 b
+ c 2 2 b
+ c
Friedrichs diagrams: Schematic representation of (a) reciprocal normal surface (or phase diagram) and (b) ray surface (or group diagram) of the MHD waves (b < c).
Waves/instab. inhomogeneous plasmas: continuous spectrum (5)
⇒
in the corona the FMWs are the only waves that are able totransfer energy
across
the magnetic surfaces
b
B
Alfvén
b cslow
fast
•
•
bcs A
f
b cB
n
slow
Alfvén fast
a 2 2 b+ c 2 2 b
+ c 2 2 b
+ c
Friedrichs diagrams: Schematic representation of (a) reciprocal normal surface (or phase diagram) and (b) ray surface (or group diagram) of the MHD waves (b < c).
Waves/instab. inhomogeneous plasmas: continuous spectrum (6)
Finite
inhomogeneous
plasma slab
• B
0= B
0y(x) e
y+ B
0z(x) e
z,
ρ
0= ρ
0(x) , p
0= p
0(x)
•
influence of inhomogeneity on the spectrum of MHD waves?⇒
differentk
’s couple⇒
wave transformations can occur (e.g. fast wave character in one place, Alfv ´en character in another)Waves/instab. inhomogeneous plasmas: continuous spectrum (6)
Finite
inhomogeneous
plasma slab
• B
0= B
0y(x) e
y+ B
0z(x) e
z,
ρ
0= ρ
0(x) , p
0= p
0(x)
•
influence of inhomogeneity on the spectrum of MHD waves?⇒
differentk
’s couple⇒
wave transformations can occur (e.g. fast wave character in one place, Alfv ´en character in another)⇒
two new phenomena, viz. instabilities and continuous spectra•
wave or spectral equation can be written in terms ofξ
≡ e
x· ξ = ξ
x,
η
≡ ie
⊥· ξ, ζ ≡ ie
· ξ
⇒
eliminateη
andζ
with 2nd and 3rd component (algebraic inη
andζ
):d
dx
N
D
dξ
dx
+ [ ρ(ω
2− f
2b
2) ] ξ = 0
Waves/instab. inhomogeneous plasmas: continuous spectrum (7)
⇒
resulting wave or spectral equation for a plane slab:⎛ ⎜ ⎜ ⎜ ⎜ ⎝ d dx(γp + B 2) d dx − f 2B2 d dxg(γp + B 2) d dxf γp − g(γp + B2) d dx −g 2(γp + B2) − f2B2 −gfγp − fγp d dx −f g γp −f 2γp ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎝ ξ η ζ ⎞ ⎟ ⎟ ⎟ ⎠ = −ρω2 ⎛ ⎜ ⎝ ξ η ζ ⎞ ⎟ ⎠ where
ξ
≡ e
x· ξ = ξ
x,
η
≡ ie
⊥· ξ, ζ ≡ ie
· ξ
Waves/instab. inhomogeneous plasmas: continuous spectrum (7)
⇒
resulting wave or spectral equation for a plane slab:⎛ ⎜ ⎜ ⎜ ⎜ ⎝ d dx(γp + B 2) d dx − f 2B2 d dxg(γp + B 2) d dxf γp − g(γp + B2) d dx −g 2(γp + B2) − f2B2 −gfγp − fγp d dx −f g γp −f 2γp ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎝ ξ η ζ ⎞ ⎟ ⎟ ⎟ ⎠ = −ρω2 ⎛ ⎜ ⎝ ξ η ζ ⎞ ⎟ ⎠ where
ξ
≡ e
x· ξ = ξ
x,
η
≡ ie
⊥· ξ, ζ ≡ ie
· ξ
⇒
eliminateη
andζ
with 2nd and 3rd component (algebraic inη
andζ
):d
dx
N
D
dξ
dx
+ [ ρ(ω
2− f
2b
2) ] ξ = 0
whereN
= N(x; ω
2) ≡ ρ(ω
2− f
2b
2)
(b
2+ c
2) ω
2− f
2b
2c
2D
= D(x; ω
2) ≡ ω
4− k
02(b
2+ c
2) ω
2+ k
02f
2b
2c
2Waves/instab. inhomogeneous plasmas: continuous spectrum (8)
•
the coefficient factorN/D
of the ODE plays an important role in the analysis⇒
may be written in terms of the fourω
2’s introduced for homogeneous plasmas:N
D
= ρ(b
2+ c
2)
[ ω
2− ω
A2(x) ] [ ω
2− ω
S2(x) ]
[ ω
2− ω
2 s0(x) ] [ ω
2− ω
f20(x) ]
where ωA2(x) ≡ f2b2 ≡ F2/ρ , ωS2(x) ≡ f2 b 2c2 b2 + c2 ≡ γp γp + B2F 2/ρ , ωs20,f0(x) ≡ 12k02(b2 + c2) 1 ± 1 − 4f2b2c2 k02(b2 + c2)2⇒
onlytwo continuous spectra
(2 apparent singularities)Waves/instab. inhomogeneous plasmas: continuous spectrum (8)
•
the coefficient factorN/D
of the ODE plays an important role in the analysis⇒
may be written in terms of the fourω
2’s introduced for homogeneous plasmas:N
D
= ρ(b
2+ c
2)
[ ω
2− ω
A2(x) ] [ ω
2− ω
S2(x) ]
[ ω
2− ω
2 s0(x) ] [ ω
2− ω
f20(x) ]
where ωA2(x) ≡ f2b2 ≡ F2/ρ , ωS2(x) ≡ f2 b 2c2 b2 + c2 ≡ γp γp + B2F 2/ρ , ωs20,f0(x) ≡ 12k02(b2 + c2) 1 ± 1 − 4f2b2c2 k02(b2 + c2)2⇒
onlytwo continuous spectra
(2 apparent singularities)⇒
the four finite ‘limiting frequencies’ now spread out to a continuous range :0 ω 2 { }ω 2 S { }ω A 2 { }ω 2s0 { }ω 2f0 F ω 2 =∞
Waves/instab. inhomogeneous plasmas: continuous spectrum (9)
The continuous spectrum
•
assume slow and Alfv ´en continuum do NOT overlap•
assume Alfv ´en frequency is monotone⇒
inversion of the Alfv ´en frequency function: (a)ω
A2= ω
A2(x)
; (b)x
A= x
A(ω
2)
{
ω
2A } ω 2 A x x1 x0 x2 (b) (a) ω 2 A1 ω 2 ω 2 0 ω 2 A2 ω 2 A(x 0) xA xA( ω 20)Waves/instab. inhomogeneous plasmas: continuous spectrum (10)
•
expansion about the singularity:Waves/instab. inhomogeneous plasmas: continuous spectrum (10)
•
expansion about the singularity:ω
2− ω
A2(x) ≈ −ω
A2(x
s) (x − x
s) = −ω
A2(x
s)
[ x − x
A(ω
2) ]
⇒
close to the singularitys
≡ x − x
A(ω
2)
= 0
, the ODE then reduces tod
ds
[ s (1 + · · ·)
dξ
ds
] − α (1 + · · ·) ξ = 0
Waves/instab. inhomogeneous plasmas: continuous spectrum (10)
•
expansion about the singularity:ω
2− ω
A2(x) ≈ −ω
A2(x
s) (x − x
s) = −ω
A2(x
s) [ x − x
A(ω
2) ]
⇒
close to the singularitys
≡ x − x
A(ω
2) = 0
, the ODE then reduces tod
ds
[ s (1 + · · ·)
dξ
ds
] − α (1 + · · ·) ξ = 0
⇒
indicial equationν
2= 0
, so that the indices are equal:ν
1= ν
2= 0
⇒
ξ
1= u(s; ω
2)
(
small solution)
Waves/instab. inhomogeneous plasmas: continuous spectrum (10)
•
expansion about the singularity:ω
2− ω
A2(x) ≈ −ω
A2(x
s) (x − x
s) = −ω
A2(x
s) [ x − x
A(ω
2) ]
⇒
close to the singularitys
≡ x − x
A(ω
2) = 0
, the ODE then reduces tod
ds
[ s (1 + · · ·)
dξ
ds
] − α (1 + · · ·) ξ = 0
⇒
indicial equationν
2= 0
, so that the indices are equal:ν
1= ν
2= 0
⇒
ξ
1= u(s; ω
2)
(
small solution)
ξ
2= u(s; ω
2) ln |s| + v(s; ω
2) (
large solution) .
•
sinceWaves/instab. inhomogeneous plasmas: continuous spectrum (10)
•
logarithmic contribution inξ
-component⇒
but the dominant (non-square integrable) part of the eigenfunctions:ξA ≈ 0 , ηA ≈ P 1 x − xA(ω2) + λ(ω 2) δ(x − x A(ω2)) , ζA ≈ 0 , ξS ≈ 0 , ηS ≈ 0 , ζS ≈ P 1 x − xS(ω2) + λ(ω 2) δ(x − x S(ω2)) , x x x non-monotonic Sturmian anti-Sturmian continuum x x x x x x 0 ω 2 x x x x x x x { }ω 2s0 { }ω 2f0 x { }ω 2 S { }ω A 2 F ω 2 =∞