• No results found

The biocalcification of mollusk shells and coral skeletons: Integrating molecular, proteomics and bioinformatics methods - References

N/A
N/A
Protected

Academic year: 2021

Share "The biocalcification of mollusk shells and coral skeletons: Integrating molecular, proteomics and bioinformatics methods - References"

Copied!
21
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

The biocalcification of mollusk shells and coral skeletons: Integrating molecular,

proteomics and bioinformatics methods

Sequeira dos Ramos Silva, P.

Publication date

2013

Link to publication

Citation for published version (APA):

Sequeira dos Ramos Silva, P. (2013). The biocalcification of mollusk shells and coral

skeletons: Integrating molecular, proteomics and bioinformatics methods.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

References  

 

1. Lowenstam HA, Weiner S (1989) On Biomineralization. 1st ed. New York: Oxford University Press. p.

2. Knoll AH (2003) Biomineralization and Evolutionary History. Rev Mineral Geochemistry 54: 329–356.

3. Glimcher MJ (2006) Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in Their Formation. Rev Mineral Geochemistry 64: 223–282.

4. Boyde A (n.d.) http://www.ectsoc.org/.

5. Lemloh M-L, Marin F, Herbst F, Plasseraud L, Schweikert M, et al. (2013) Genesis of amorphous calcium carbonate containing alveolar plates in the ciliate Coleps hirtus (Ciliophora, Prostomatea). J Struct Biol 181: 155–161. 6. Weaver JC, Aizenberg J, Fantner GE, Kisailus D, Woesz A, et al. (2007)

Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J Struct Biol 158: 93–106.

7. Marie B, Marie A, Jackson DJ, Dubost L, Degnan BM, et al. (2010) Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci 8: 54.

8. Nothdurft LD, Webb GE (2006) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling. Facies 53: 1–26.

9. Sumper M, Brunner E (2008) Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana. Chembiochem 9: 1187–1194. 10. Mann S (2001) Biomineralization Principles and Concepts in Bioinorganic

Materials Chemistry. Compton RG, Davies SG, Evans J, editors New York: Oxford University Press. p.

11. Lowenstam H (1981) Minerals formed by organisms. Science (80- ) 211: 1126–1131.

12. López-García P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, et al. (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9: 263–274.

13. Bernhard JM, Edgcomb VP, Visscher PT, McIntyre-Wressnig A, Summons RE, et al. (2013) Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas. Proc Natl Acad Sci U S A 110: 9830–9834.

(3)

 

14. Gonzalez-Munoz MT, Rodriguez-Navarro C, Martinez-Ruiz F, Arias JM, Merroun ML, et al. (2010) Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation. Geol Soc London, Spec Publ 336: 31–50.

15. Bazylinski DA, Frankel RB, Heywood BR, Mann S, King JW, et al. (1995) Controlled Biomineralization of Magnetite ( Fe ( inf3 ) O ( inf4 )) and Greigite ( Fe ( inf3 ) S ( inf4 )) in a Magnetotactic Bacterium . Controlled Biomineralization of Magnetite ( Fe 3 O 4 ) and Greigite ( Fe 3 S 4 ) in a Magnetotactic Bacterium. Appl Environ Microbiol 61: 3232–3239.

16. Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet 42: 83–107.

17. Marsh M. (2003) Regulation of CaCO3 formation in coccolithophores. Comp Biochem Physiol Part B Biochem Mol Biol 136: 743–754.

18. Wilbur K., Saleuddin AS. (1983) Shell formation. In: Wilbur K., Saleuddin AS., editors. The Mollusca, Vol. 4. Physiology, Part 1. Academic Press, New York. pp. 235–287.

19. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142: 419–426.

20. Marin F, Luquet G (2004) Molluscan shell proteins. Comptes Rendus Palevol 3: 469–492.

21. Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80: 209–276.

22. Marin F, Le Roy N, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci (Schol Ed) 4: 1099–1125.

23. Awaji M, Machii A (2011) Fundamental Studies on in vivo and in vitro Pearl Formation—Contribution of Outer Epithelial Cells of Pearl Oyster Mantle and Pearl Sacs. Aqua-BioScience Monogr 4: 1–39.

24. Hippler D, Witbaard R, van Aken HM, Buhl D, Immenhauser A (2013) Exploring the calcium isotope signature of Arctica islandica as an environmental proxy using laboratory- and field-cultured specimens. Palaeogeogr Palaeoclimatol Palaeoecol 373: 75–87.

25. O’Malley M a (2010) The first eukaryote cell: an unfinished history of contestation. Stud Hist Philos Biol Biomed Sci 41: 212–224.

26. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342.

27. Pearse VB, Muscatine L (1971) Role of Symbiotic Algae ( Zooxanthellae ) in Coral Calcification. Biol Bull 141: 350–363.

(4)

28. Tambutté S, Tambutté E, Zoccola D, Allemand D (2008) Organic Matrix and Biomineralization of Scleractinian Corals. Handbook of Biomineralization. Wiley-VCH Verlag GmbH. pp. 243–259

29. Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté É, et al. (2011) Coral biomineralization: From the gene to the environment. J Exp Mar Bio Ecol 408: 58–78.

30. Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, et al. (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. Comptes Rendus Palevol 3: 453– 467.

31. Muscatine L, Tambutté E, Allemand D (1997) Morphology of coral desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs 16: 205–213.

32. Goldberg WM (2001) Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi. Tissue Cell 33: 376–387.

33. Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral Calcification , Cells to Reefs. In: Dubinsky Z, Stambler N, editors. Coral Reefs: An Ecosystem in Transition. Springer. pp. 119–150.

34. Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203: 3445–3457.

35. Venn AA, Tambutté E, Holcomb M, Laurent J, Allemand D, et al. (2013) Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc Natl Acad Sci U S A 110: 1634–1639. 36. Barnes DJ (1970) Coral Skeletons  : An Explanation of Their Growth and

Structure. Science (80- ) 170: 1305–1308.

37. Constantz BR (1986) Coral Skeleton Construction  : A Physiochemically Dominated Process. Palaios 1: 152–157.

38. Johnston IS (1980) The Ultrastructure of Skeletogenesis in Hermatypic Corals. In: Bourne GH, Danielli JF, editors. International Review of Cytology. Academic Press, Vol. 67. pp. 171–214.

39. Gladfelter EH (1982) Skeletal Development in Acropora cervicornis  : I . Patterns of Calcium Carbonate Accretion in the Axial Corallite. Coral Reefs 1: 45–51.

40. Veis A (2005) Materials science. A window on biomineralization. Science 307: 1419–1420.

41. Cuif J-P, Dauphin Y (1998) Microstructural and physico-chemical characterization of ’ centers of calcification ' in septa of some Recent scleractinian corals. Palfiontologische Zeitschrift 72.

(5)

 

42. Cohen AL, Layne GD, Hart SR (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy. Paleoceanography 16: 20–26.

43. Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “ vital effects .” Geochim Cosmochim Acta 67: 1129–1143.

44. Clode PL, Marshall AT (2003) Skeletal microstructure of Galaxea fascicularis exsert septa: a high-resolution SEM study. Biol Bull 204: 146– 154.

45. Cuif J-P, Dauphin Y, Doucet J, Salome M, Susini J (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67: 75–83.

46. Cuif J-P, Dauphin Y (2005) The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. J Struct Biol 150: 319–331.

47. Stolarski J (2003) Three − dimensional micro − and nanostructural characteristics of the scleractinian coral skeleton  : A biocalcification proxy. Acta Palaeontol Pol 48: 497–530.

48. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci U S A 82: 4110–4114.

49. Gotliv B-A, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. Chembiochem 4: 522–529.

50. Mass T, Drake JL, Haramaty L, Kim JD, Zelzion E, et al. (2013) Cloning and Characterization of Four Novel Coral Acid-Rich Proteins that Precipitate Carbonates In Vitro. Curr Biol 23: 1126–1131.

51. Marin F, Corstjens P, de Gaulejac B, de Vrind-De Jong E, Westbroek P (2000) Mucins and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, pteriomorphia). J Biol Chem 275: 20667–20675.

52. Albeck S, Weiner S, Addadi L (1996) Polysaccharides of Intracrystalline Glycoproteins Modulate Calcite Crystal Growth In Vitro. Chem - A Eur J 2: 278–284.

53. Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, et al. (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A 93: 9657–9660.

54. Marie B, Joubert C, Tayalé A, Zanella-Cléon I, Belliard C, et al. (2012) Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci U S A 109: 20986–20991.

(6)

55. Shen X, Belcher a M, Hansma PK, Stucky GD, Morse DE (1997) Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 272: 32472–32481. 56. Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, et al. (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Commun 304: 11–17.

57. Luz GM, Mano JF (2009) Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philos Trans A Math Phys Eng Sci 367: 1587–1605.

58. Almqvist N (1999) Methods for fabricating and characterizing a new generation of biomimetic materials. Mater Sci Eng C 7: 37–43.

59. Chen R, Wang C, Huang Y, Le H (2008) An efficient biomimetic process for fabrication of artificial nacre with ordered-nanostructure. Mater Sci Eng C 28: 218–222.

60. Ji B (2004) Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 52: 1963–1990.

61. Richter BI, Kellner S, Menzel H, Behrens P, Denkena B, et al. (2011) Mechanical characterization of nacre as an ideal-model for innovative new endoprosthesis materials. Arch Orthop Trauma Surg 131: 191–196.

62. Almeida MJ, Milet C, Peduzzi J, Pereira L, Haigle J, et al. (2000) Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. J Exp Zool 288: 327–334.

63. Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392: 861–862.

64. Chamberlain JA (1978) Mechanical Properties of Coral Skeleton  : Compressive Strength and its Adaptive Significance. Paleobiology 4: 419– 435.

65. Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, et al. (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12: 15–35.

66. Cuif J-P, Dauphin Y, Sorauf JE (2010) Compositional data on mollusc shells and coral skeletons. Biominerals and Fossils Through Time. Cambridge University Press. pp. 57–118.

67. Mokhtar M Bin, Praveena SM, Aris AZ, Yong OC, Lim AP (2012) Trace metal (Cd, Cu, Fe, Mn, Ni and Zn) accumulation in Scleractinian corals: a record for Sabah, Borneo. Mar Pollut Bull 64: 2556–2563.

68. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, et al. (1999) Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs. Science (80- ) 284: 118–120.

(7)

 

69. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65: 414–432.

70. Kleypas JA, Yates KK (2009) Coral Reefs and Ocean Acidification. Oceanography 22: 108–117.

71. Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp J a, et al. (2013) Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob Chang Biol: 3011–3023.

72. Ramos-Silva P, Benhamada S, Le Roy N, Marie B, Guichard N, et al. (2012) Novel molluskan biomineralization proteins retrieved from proteomics: a case study with Upsalin. Chembiochem 13: 1067–1078. 73. Ramos-Silva P, Marin F, Kaandorp J, Marie B (2013) Biomineralization

toolkit: The importance of sample cleaning prior to the characterization of biomineral proteomes. Proc Natl Acad Sci U S A: 3–5.

74. Ramos-Silva P, Kaandorp J, Huisman L, Marie B, Zanella-Cléon I, et al. (2013) The Skeletal Proteome of the Coral Acropora millepora: The Evolution of Calcification by Co-Option and Domain Shuffling. Mol Biol Evol 30: 2099–2112.

75. Marie B, Ramos-Silva P, Marin F, Marie A (2013) Proteomics of CaCO3 biomineral-associated proteins: how to properly address their analysis. Proteomics: 1–8.

76. Simkiss K (1965) The organic matrix of the oyster shell. Comp Biochem Physiol 16: 427–435.

77. Keith J, Stockwell S, Ball D, Remillard K, Kaplan D, et al. (1993) Comparative analysis of macromolecules in mollusc shells. Comp Biochem Physiol B 105: 487–496.

78. Marie B, Luquet G, Pais De Barros J-P, Guichard N, Morel S, et al. (2007) The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida). Involvement of acidic polysaccharides from glycoproteins in nacre mineralization. FEBS J 274: 2933–2945.

79. Zhang C, Zhang R (2006) Matrix proteins in the outer shells of molluscs. Mar Biotechnol 8: 572–586.

80. Evans JS (2008) “Tuning in” to mollusk shell nacre- and prismatic-associated protein terminal sequences. Implications for biomineralization and the construction of high performance inorganic-organic composites. Chem Rev 108: 4455–4462.

81. Marin F, Pereira L, Westbroek P (2001) Large-scale fractionation of molluscan shell matrix. Protein Expr Purif 23: 175–179.

82. Marie B, Luquet G, Bédouet L, Milet C, Guichard N, et al. (2008) Nacre calcification in the freshwater mussel Unio pictorum: carbonic anhydrase

(8)

activity and purification of a 95 kDa calcium-binding glycoprotein. Chembiochem 9: 2515–2523.

83. Marin F, Amons R, Guichard N, Stigter M, Hecker A, et al. (2005) Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J Biol Chem 280: 33895–33908. 84. Suzuki M, Murayama E, Inoue H, Ozaki N, Tohse H, et al. (2004)

Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem J 382: 205– 213.

85. Montagnani C, Marie B, Marin F, Belliard C, Riquet F, et al. (2011) Pmarg-pearlin is a matrix protein involved in nacre framework formation in the pearl oyster Pinctada margaritifera. Chembiochem 12: 2033–2043.

86. Zhang C, Xie L, Huang J, Liu X, Zhang R (2006) A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochem Biophys Res Commun 344: 735–740. 87. Simison W, Boore JL (2008) Molluscan Evolutionary Genomics. In: Ponder

W, Lindberg DR, editors. Phylogeny and Evolution of the Mollusca. Berkeley and Los Angeles: University of California Press. pp. 447–462. 88. Joubert C, Piquemal D, Marie B, Manchon L, Pierrat F, et al. (2010)

Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 11: 613. 89. Marie B, Trinkler N, Zanella-Cleon I, Guichard N, Becchi M, et al. (2011)

Proteomic identification of novel proteins from the calcifying shell matrix of the manila clam venerupis philippinarum. Mar Biotechnol (NY) 13: 955– 962.

90. Marie B, Le Roy N, Zanella-Cléon I, Becchi M, Marin F (2011) Molecular Evolution of Mollusc Shell Proteins: Insights from Proteomic Analysis of the Edible Mussel Mytilus. J Mol Evol: 531–546.

91. Marie B, Zanella-Cléon I, Guichard N, Becchi M, Marin F (2011) Novel Proteins from the Calcifying Shell Matrix of the Pacific Oyster Crassostrea gigas. Mar Biotechnol (NY) 13: 1159–1168.

92. Marin F, Luquet G (2007) Unusually Acidic Proteins in Biomineralization. In: Bauerlein E, editor. Handbook of Biomineralization - Biological Aspects and Structure Formation. pp. 273–290.

93. Maurer P, Hohenester E, Engel J (1996) Extracellular calcium-binding proteins. Curr Opin Cell Biol 8: 609–617.

94. Yano M, Nagai K, Morimoto K, Miyamoto H (2006) Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 144: 254–262.

(9)

 

95. Marie B, Joubert C, Belliard C, Tayale A, Zanella-Cléon I, et al. (2011) Characterization of MRNP34, a novel methionine-rich nacre protein from the pearl oysters. Amino Acids.

96. Marie B, Zanella-Cléon I, Le Roy N, Becchi M, Luquet G, et al. (2010) Proteomic analysis of the acid-soluble nacre matrix of the bivalve Unio pictorum: detection of novel carbonic anhydrase and putative protease inhibitor proteins. Chembiochem 11: 2138–2147.

97. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

98. Bendtsen JD, Nielsen H, Heijne G Von, Brunak S (2004) Improved Prediction of Signal Peptides  : SignalP 3 . 0. J Mol Biol 340: 783–795. 99. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, et al. (2005)

Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM, editor. The Proteomics Protocols Handbook. Humana Press. pp. 571–608.

100. Blom N, Gammeltoft S, Brunak S (1999) Sequence and Structure-based Prediction of Eukaryotic Protein Phosphorylation Sites. J Mol Biol 294: 1351–1362.

101. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symp Biocomput 7: 310–322.

102. Sakaidani Y, Nomura T, Matsuura A, Ito M, Suzuki E, et al. (2011) O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat Commun 2: 583.

103. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, et al. (2005) InterProScan  : protein domains identifier. Nucleic Acids Res 33: 116–120. 104. Letunic I, Doerks T, Bork P (2011) SMART 7  : recent updates to the

protein domain annotation resource. Nucleic Acids Res 40: 302–305. 105. Rice P, Longden I, Bleasby A (2000) The European Molecular Biology

Open Software Suite EMBOSS  : The European Molecular Biology Open Software Suite. Trends Genet 16: 276–277.

106. Notredame C, Higgins D, Heringa J (2000) T-Coffee  : A Novel Method for Fast and Accurate Multiple Sequence Alignment. J Mol Biol 302: 205–217. 107. Gouet P, Courcelle E, Stuart DI, Métoz F (2000) ESPript  : analysis of

multiple sequence alignments in PostScript. Bioinformatics 15: 305–308. 108. Laemmli UK (1970) Cleavage of structural proteins during the assembly of

the head of bacteriophage T4. Nature 227: 680–685.

109. Morrissey JH (1981) Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117: 307–310.

(10)

110. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350–4354.

111. Marie B, Marin F, Marie A, Bédouet L, Dubost L, et al. (2009) Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus. Chembiochem 10: 1495–1506. 112. Clark MF, Adams a N (1977) Characteristics of the microplate method of

enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34: 475–483.

113. Marin F, Pokroy B, Luquet G, Layrolle P, De Groot K (2007) Protein mapping of calcium carbonate biominerals by immunogold. Biomaterials 28: 2368–2377.

114. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767: 1073–1101.

115. Silverstein R, Bassler G., Morrill T. (1981) Spectrometric Identification of Organic Compounds. 4th ed. New York: John Wiley & Sons. p.

116. Marxen JC, Hammer M, Gehrke T, Becker W (1998) Carbohydrates of the Organic Shell Matrix Tissue of the Snail Biomphalaria glabrata ( Say ). Biol Bull 194: 231–240.

117. Knörle R, Schnierle P, Koch a, Buchholz NP, Hering F, et al. (1994) Tamm-Horsfall glycoprotein: role in inhibition and promotion of renal calcium oxalate stone formation studied with Fourier-transform infrared spectroscopy. Clin Chem 40: 1739–1743.

118. Kono M, Hayashi N, Samata T (2000) Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun 269: 213–218.

119. Samata T, Hayashi N, Kono M, Hasegawa K, Horita C, et al. (1999) A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett 462: 225–229.

120. Miyashita T, Takagi R, Okushima M, Nakano S, Miyamoto H, et al. (2000) Complementary DNA Cloning and Characterization of Pearlin , a New Class of Matrix Protein in the Nacreous Layer of Oyster Pearls. Proteins: 409–418.

121. Kong Y, Jing G, Yan Z, Li C, Gong N, et al. (2009) Cloning and characterization of Prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. J Biol Chem 284: 10841–10854.

122. Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose R a, et al. (2010) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27: 591–608.

(11)

 

123. Addadi L, Moradian J, Shay E, Maroudas NG, Weiner S (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. Proc Natl Acad Sci U S A 84: 2732–2736.

124. Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297: 249–260.

125. Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, et al. (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325: 1388–1390.

126. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425: 365.

127. Kline DI, Teneva L, Schneider K, Miard T, Chai A, et al. (2012) A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Sci Rep 2: 1–9.

128. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.

129. Cohen AL, McCorkle DC, de Putron S, Gaetani G a., Rose K a. (2009) Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification. Geochemistry Geophys Geosystems 10. 130. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, et al. (2013)

Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19: 1884– 1896.

131. Cusack M, Freer a (2008) Biomineralization: elemental and organic influence in carbonate systems. Chem Rev 108: 4433–4454.

132. Milliman JD, Droxler a. W (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol Rundschau 85: 496–504.

133. Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and Carbonate Metabolism in Coastal Aquatic Ecosystems. Annu Rev Ecol Syst 29: 405– 434.

134. Cohen AL, Mcconnaughey TA (2003) Geochemical Perspectives on Coral Mineralization. In: Rosso JJ, editor. Reviews in Mineralogy & Geochemistry. Mineralogical Society of America, Vol. 54. pp. 151–188. 135. Langdon C, Atkinson MJ (2005) Effect of elevated pCO 2 on

photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110: 1–16.

(12)

136. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323: 116–119.

137. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333: 418–422.

138. Chan NCS, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Chang Biol 19: 282–290.

139. Zoccola D, Tambutté E, Kulhanek E, Puverel S, Scimeca J-C, et al. (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochim Biophys Acta 1663: 117–126. 140. Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, et al. (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization, and role in biomineralization. J Biol Chem 283: 25475–25484.

141. Zoccola D, Moya A, Béranger GE, Tambutté E, Allemand D, et al. (2009) Specific expression of BMP2/4 ortholog in biomineralizing tissues of corals and action on mouse BMP receptor. Mar Biotechnol (NY) 11: 260–269. 142. Meyer E, Aglyamova G V, Matz M V (2011) Profiling gene expression

responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol 20: 3599– 3616.

143. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, et al. (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476: 320–323.

144. Moya A, Huisman L, Ball EE, Hayward DC, Grasso LC, et al. (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO₂-driven acidification during the initiation of calcification. Mol Ecol 21: 2440–2454.

145. Sunagawa S, DeSalvo MK, Voolstra CR, Reyes-Bermudez A, Medina M (2009) Identification and gene expression analysis of a taxonomically restricted cysteine-rich protein family in reef-building corals. PLoS One 4: e4865.

146. Dauphin Y, Cuif JP (1997) Isoelectric properties of the soluble matrices in relation to the chemical composition of some Scleractinian skeletons. Electrophoresis 18: 1180–1183.

147. Farre B, Cuif J-P, Dauphin Y (2010) Occurrence and diversity of lipids in modern coral skeletons. Zoology (Jena) 113: 250–257.

148. Cuif J-P, Dauphin Y, Gautret P (1999) Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization and diagenesis. Int J Earth Sci 88: 582–592.

(13)

 

149. Cuif J., Dauphin Y, Freiwald a, Gautret P, Zibrowius H (1999) Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comp Biochem Physiol - Part A Mol Integr Physiol 123: 269–278.

150. Ingalls AE, Lee C, Druffel ER. (2003) Preservation of organic matter in mound-forming coral skeletons. Geochim Cosmochim Acta 67: 2827–2841. 151. Puverel S, Tambutté E, Pereira-Mouriès L, Zoccola D, Allemand D, et al.

(2005) Soluble organic matrix of two Scleractinian corals: partial and comparative analysis. Comp Biochem Physiol B Biochem Mol Biol 141: 480–487.

152. Goffredo S, Vergni P, Reggi M, Caroselli E, Sparla F, et al. (2011) The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation. PLoS One 6: e22338.

153. Falini G, Reggi M, Fermani S, Sparla F, Goffredo S, et al. (2013) Control of aragonite deposition in colonial corals by intra-skeletal macromolecules. J Struct Biol.

154. Helman Y, Natale F, Sherrell RM, Starovoytov V, Gorbunov MY, et al. (2008) Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. PNAS 105: 54–58.

155. Veis A (2011) Organic Matrix-related mineralization of sea urchin spicules, spines, test and teeth. Front Biosci 16: 2540.

156. Drake JL, Mass T, Haramaty L, Zelzion E, Bhattacharya D, et al. (2013) Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci U S A 110: 3788–3793.

157. Debreuil J, Tambutté E, Zoccola D, Deleury E, Guigonis J-M, et al. (2012) Molecular cloning and characterization of first organic matrix protein from sclerites of red coral, Corallium rubrum. J Biol Chem 287: 19367–19376. 158. Azizur Rahman M, Isa Y (2005) Characterization of proteins from the

matrix of spicules from the alcyonarian, Lobophytum crassum. J Exp Mar Bio Ecol 321: 71–82.

159. Rahman MA, Isa Y, Uehara T (2005) Proteins of calcified endoskeleton: II partial amino acid sequences of endoskeletal proteins and the characterization of proteinaceous organic matrix of spicules from the alcyonarian, Synularia polydactyla. Proteomics 5: 885–893.

160. Rahman MA, Isa Y, Takemura a, Uehara T (2006) Analysis of proteinaceous components of the organic matrix of endoskeletal sclerites from the alcyonarian Lobophytum crassum. Calcif Tissue Int 78: 178–185. 161. Rahman MA, Isa Y, Uehara T (2006) Studies on two closely related species

of octocorallians: biochemical and molecular characteristics of the organic matrices of endoskeletal sclerites. Mar Biotechnol (NY) 8: 415–424.

(14)

162. Gaffey SJ, Bronnimann CE (1993) Effects of bleaching on organic and mineral phases in biogenic carbonates. J Sediment Res 63: 752–754. 163. Wendt J (1990) Corals and coralline sponges. In: Carter J, editor. Skeletal

Biomineralization: Patterns, Processes and Evolutionary Trends, Volume I. Van Nostrand Reinhold (New York). pp. 45–66.

164. Bayer T, Aranda M, Sunagawa S, Yum LK, Desalvo MK, et al. (2012) Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS One 7: e35269.

165. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. J Mol Biol 215: 403–410.

166. Wootton JC, Federhen S (1993) Statistics of local complexity in amino acid sequences and sequence databases. Comput Chem 17: 149–163.

167. Song N, Joseph JM, Davis GB, Durand D (2008) Sequence similarity network reveals common ancestry of multidomain proteins. PLoS Comput Biol 4: e1000063.

168. Joseph JM, Durand D (2009) Family classification without domain chaining. Bioinformatics 25: i45–53.

169. Mann K, Poustka AJ, Mann M (2008) In-depth, high-accuracy proteomics of sea urchin tooth organic matrix. Proteome Sci 6: 33.

170. Mann K, Wilt FH, Poustka AJ (2010) Proteomic analysis of sea urchin ( Strongylocentrotus purpuratus ) spicule matrix. Proteome Sci 8: 1–12. 171. Mann K, Poustka AJ, Mann M (2008) The sea urchin (Strongylocentrotus

purpuratus) test and spine proteomes. Proteome Sci 6: 22.

172. Mann K, Macek B, Olsen J V (2006) Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics 6: 3801– 3810.

173. Miksík I, Sedláková P, Lacinová K, Pataridis S, Eckhardt A (2010) Determination of insoluble avian eggshell matrix proteins. Anal Bioanal Chem 397: 205–214.

174. Marie B, Jackson DJ, Ramos-Silva P, Zanella-Cléon I, Guichard N, et al. (2013) The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. FEBS J 280: 214–232.

175. Zhang G, Fang X, Guo X, Li L, Luo R, et al. (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490: 49–54.

176. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, et al. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4: 1265–1272.

(15)

 

177. Wheeler AP, George JW, Evans C a (1981) Control of calcium carbonate nucleation and crystal growth by soluble matrx of oyster shell. Science 212: 1397–1398.

178. Waterhouse AM, Procter JB, Martin DM a, Clamp M, Barton GJ (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191.

179. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.

180. Reyes-Bermudez A, Lin Z, Hayward DC, Miller DJ, Ball EE (2009) Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evol Biol 9: 178.

181. Engel J (1991) Common structural motifs in proteins of the extracellular matrix. Curr Opin Cell Biol 3: 779–785.

182. Mosher DF, Adams JC (2012) Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol 31: 155–161.

183. Jonchère V, Réhault-Godbert S, Hennequet-Antier C, Cabau C, Sibut V, et al. (2010) Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg. BMC Genomics 11: 57.

184. Hincke MT, Gautron J, Panheleux M, Garcia-ruiz J, Mckee MD (2000) Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix. Matrix Biol 19: 443–453.

185. Bieber a J, Snow PM, Hortsch M, Patel NH, Jacobs JR, et al. (1989) Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 59: 447–460.

186. Frank M, Kemler R (2002) Protocadherins. Curr Opin Cell Biol 14: 557– 562.

187. Glimcher M (1959) Molecular Biology of Mineralized Tissues with Particular Reference to Bone. Rev Mod Phys 31: 359–393.

188. Veis A, Sabsay B (1987) The collagen of mineralized matrices. Bone and Mineral Research Vol. 5. Elsevier Science: Amsterdam. pp. 1–63.

189. Goldberg WM (1974) Evidence of a sclerotized collagen from the skeleton of a gorgonian coral. Comp Biochem Physiol Part B Comp Biochem 49: 525–529.

190. Kingsley RJ, Tsuzaki M, Watabe N, Mechanic GL (1990) Collagen in the spicule organic matrix of the gorgonian Leptogorgia virgulata. Biol Bull 179: 207–213.

191. Isa Y, Yamazato K (1984) The distribution of carbonic anhydrase in a staghorn coral, Acropora hebes (Dana). Galaxea 3: 25–36.

(16)

192. Tambutté S, Tambutté E, Zoccola D, Caminiti N, Lotto S, et al. (2006) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151: 71–83.

193. Bertucci A, Tambutté S, Supuran CT, Allemand D, Zoccola D (2011) A new coral carbonic anhydrase in Stylophora pistillata. Mar Biotechnol (NY) 13: 992–1002.

194. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, et al. (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21: 195–199.

195. Lang M, Braun CL, Kanost MR, Gorman MJ (2012) Multicopper oxidase-1 is a ferroxidase essential for iron homeostasis in Drosophila melanogaster. Proc Natl Acad Sci U S A 109: 13337–13342.

196. Brown BE, Tudhope AW, Le Tissier MDA, Scoffin TP (1991) A novel mechanism for iron incorporation into coral skeletons. Coral Reefs 10: 211– 215.

197. Brinkman DL, Mulvenna J, Konstantakopoulos N, Hodgson WC, Isbister GK, et al. (2012) 106. Molecular Diversity of Box Jellyfish Toxins. Toxicon 60: 148–149.

198. Frazão B, Vasconcelos V, Antunes A (2012) Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 10: 1812–1851. 199. Gochfeld D, Aeby G (2008) Antibacterial chemical defenses in Hawaiian

corals provide possible protection from disease. Mar Ecol Prog Ser 362: 119–128.

200. Geffen Y, Ron EZ, Rosenberg E (2009) Regulation of release of antibacterials from stressed scleractinian corals. FEMS Microbiol Lett 295: 103–109.

201. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.

202. Van Oppen MJ, McDonald BJ, Willis B, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18: 1315–1329. 203. Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian

life cycles. J Evol Biol 15: 418–432.

204. Ball EE, Hayward DC, Saint R, Miller DJ (2004) A simple plan--cnidarians and the origins of developmental mechanisms. Nat Rev Genet 5: 567–577. 205. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M (2006)

Medusozoan Phylogeny and Character Evolution Clarified by New Large and Small Subunit rDNA Data and an Assessment of the Utility of Phylogenetic Mixture Models. Syst Biol 55: 97–115.

(17)

 

206. Ueda A, Nagai H, Ishida M, Nagashima Y, Shiomi K (2008) Purification and molecular cloning of SE-cephalotoxin, a novel proteinaceous toxin from the posterior salivary gland of cuttlefish Sepia esculenta. Toxicon 52: 574–581.

207. Ptitsyn A, Moroz LL (2012) Computational workflow for analysis of gain and loss of genes in distantly related genomes. BMC Bioinformatics 13 Suppl 1: S5.

208. Bork P (1992) Mobile modules and motifs. Curr Opin Struct Biol 2: 413– 421.

209. Doolittle RF (1992) Reconstructing history with amino acid sequences. Protein Sci 1: 191–200.

210. Mitterer RM (1978) Amino acid composition and metal binding capability of the skeletal protein of corals. Bull Mar Sci 28: 173–180.

211. Constantz B, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248: 253–258. 212. Stolarski J, Kitahara M V, Miller DJ, Cairns SD, Mazur M, et al. (2011)

The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol Biol 11: 316.

213. Nakahara H (1991) Nacre Formation in Bivalve and Gastropod Molluscs. In: Suga S, Nakahara H, editors. Mechanisms and Phylogeny of Mineralization in Biological Systems. Springer Japan. pp. 343–350.

214. Cartwright JHE, Checa AG (2007) The dynamics of nacre self-assembly. J R Soc Interface 4: 491–504.

215. Wilt FH (2002) Biomineralization of the Spicules of Sea Urchin Embryos. Zoolog Sci 19: 253–261.

216. Gilbert PUPA, Wilt FH (2011) Molecular Aspects of Biomineralization of the Echinoderm Endoskeleton. In: Müller WEG, editor. Molecular Biomineralization, Progress in Molecular and Subcellular Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, Vol. 52.

217. Mann K, Edsinger-Gonzales E, Mann M (2012) In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea. Proteome Sci 10: 28.

218. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2: 953–971.

219. Kirkham GR, Cartmell SH (2007) Genes and Proteins Involved in the Regulation of Osteogenesis. In: Ashammakhi N, Reis R, Chiellini E, editors. Topics in Tissue Engineering. Vol. 3. pp. 1–22.

220. Mann K, Gautron J, Nys Y, McKee MD, Bajari T, et al. (2003) Disulfide-linked heterodimeric clusterin is a component of the chicken eggshell matrix and egg white. Matrix Biol 22: 397–407.

(18)

221. Kang Y-J, Stevenson AK, Yau PM, Kollmar R (2008) Sparc protein is required for normal growth of zebrafish otoliths. J Assoc Res Otolaryngol 9: 436–451.

222. GOREAU T (1956) Histochemistry of Mucopolysaccharide-Like Substances and Alkaline Phosphatase in Madreporaria. Nature 177: 1029– 1030.

223. Vandermeulen JH (1975) Studies on Reef Corals . III . Fine Structural Changes of Calicoblast Cells in Pocillopora damicornis during Settling and Calcification. Mar Biol 31: 69–77.

224. Koch G Von (1882) Über die Entwicklung des Kalkskelettes von Asteroides calycularis und dessen morphologische Bedeutung. Mitt zool Stn Neapel 3: 282–292.

225. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39: 160–183.

226. Puverel S, Tambutté E, Zoccola D, Domart-Coulon I, Bouchot A, et al. (2004) Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24: 149–156.

227. Allemand D, TambuttE E, Girard J, Jaubert J (1998) Organic matrix synthesis in the scleractinian coral stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin. J Exp Biol 201 (Pt 13: 2001–2009.

228. Todd P a. (2008) Morphological plasticity in scleractinian corals. Biol Rev 83: 315–337.

229. Meibom A, Yurimoto H, Cuif J-P, Domart-Coulon I, Houlbreque F, et al. (2006) Vital effects in coral skeletal composition display strict three-dimensional control. Geophys Res Lett 33: L11608.

230. Bryan WH, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc R Soc Queensl 52: 78–91.

231. Ogilvie MM (1896) Microscopic and Systematic Study of Madreporarian Types of Corals. Proceeedings R Soc London 59: 9–18.

232. Wainwright SA (1964) STUDIES OF THE MINERAL PHASE OF CORAL SKELETON. Exp Cell Res 34: 213–230.

233. Cohen A, Holcomb M (2009) Why Corals Care About Ocean Acidification: Uncovering the Mechanism. Oceanography 22: 118–127.

234. Young SD (1971) Organic material from scleractinian coral skeletons—I. Variation in composition between several species. Comp Biochem Physiol Part B Comp Biochem 40: 113–120.

235. Marin F, Gautret P (1994) Le teneurs en acides aminés acides des matrices organiques solubles associées aux squelettes clacaires des démosponges et

(19)

 

des cnidaires: une implication possible dans leur transformation diagénétique. Bull Soc Géeo 165: 77–84.

236. Cuif J-P, Dauphin Y, Denis A, Gautret P, Marin F (1996) The organomineral structure of coral skeletons: a potential source of new criteria for Scleractinian taxonomy. Bull Inst Oceanogr Monaco 14: 359–367. 237. Wainwright SA (1963) Skeletal organization in the coral, Pocillopora. Q J

Microsc Sci 104: 169–183.

238. Fricain JC, Alouf J, Bareille R, Rouais F, Rouvillain JL (2002) Cytocompatibility study of organic matrix extracted from Caribbean coral porites astroides. Biomaterials 23: 673–679.

239. Dauphin Y, Cuif J-P, Williams CT (2008) Soluble organic matrices of aragonitic skeletons of Merulinidae (Cnidaria, Anthozoa). Comp Biochem Physiol B Biochem Mol Biol 150: 10–22.

240. Isa Y, Okazaki M (1987) Some observations on the Ca2+-binding phospholipid from scleractinian coral skeletons. Comp Biochem Physiol Part B Comp Biochem 87: 507–512.

241. Watanabe T, Fukuda I, China K, Isa Y (2003) Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp Biochem Physiol Part B Biochem Mol Biol 136: 767– 774.

242. Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development 138: 1447–1458.

243. Hayward DC, Hetherington S, Behm C a., Grasso LC, Forêt S, et al. (2011) Differential Gene Expression at Coral Settlement and Metamorphosis - A Subtractive Hybridization Study. PLoS One 6: e26411.

244. Maruyama K, Mikawa T, Ebashi S (1984) Detection of Calcium Binding Proteins by 45Ca Autoradiography on Nitrocellulose Membrane after Sodium Dodecyl Sulfate Gel Electrophoresis. J Biochem 95: 511–519. 245. Barth A, Zscherp C (2002) What vibrations tell about proteins. Q Rev

Biophys 35: 369–430.

246. D’Souza SE, Ginsberg MH, Plow EF (1991) Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci 16: 246–250.

247. Koivunen E, Wang B, Ruoslahti E (1994) Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J Cell Biol 124: 373–380.

248. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12: 697–715.

249. Xyla AG, Koutsoukos PG (1989) Quantitative analysis of calcium carbonate polymorphs by infrared spectroscopy. J Chem Soc Faraday Trans 1 85: 3165.

(20)

250. Jones GC, Jackson B (1993) Infrared Transmission Spectra of Carbonate Minerals. London: Springer, 1st edition. p.

251. Pavat C, Zanella-Cléon I, Becchi M, Medakovic D, Luquet G, et al. (2012) The shell matrix of the pulmonate land snail Helix aspersa maxima. Comp Biochem Physiol B Biochem Mol Biol 161: 303–314.

252. Gaspard D, Marin F, Guichard N, Morel S, Alcaraz G, et al. (2008) Shell matrices of Recent rhynchonelliform brachiopods: microstructures and glycosylation studies. Earth Environ Sci Trans R Soc Edinburgh 98. 253. Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient

fluxes in carbonate sands. Mar Ecol Prog Ser 287: 87–98.

254. Marin F, Smith M, Isa Y, Muyzer G, Westbroek P (1996) Skeletal matrices, muci, and the origin of invertebrate calcification. Proc Natl Acad Sci U S A 93: 1554–1559.

255. Pramod SN, Venkatesh YP (2006) Utility of pentose colorimetric assay for the purification of potato lectin, an arabinose-rich glycoprotein. Glycoconj J 23: 481–488.

256. Iwai H, Ishii T, Satoh S (2001) Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells. Planta 213: 907–915.

257. Mosele MM, Hansen AS, Engelsen SB, Diaz J, Sørensen I, et al. (2011) Characterisation of the arabinose-rich carbohydrate composition of immature and mature marama beans (Tylosema esculentum). Phytochemistry 72: 1466–1472.

258. Moore JP, Farrant JM, Driouich A (2008) A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress. Plant Signal Behav 3: 102–104.

259. Eisenhaber B, Bork P, Eisenhaber F (1998) Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng 11: 1155–1161. 260. Wilt F, Killian CE, Croker L, Hamilton P (2013) SM30 protein function

during sea urchin larval spicule formation. J Struct Biol 183: 199–204. 261. Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM, et al. (2005)

Highly efficient endogenous human gene correction using

262. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, et al. (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27: 851–857.

263. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe S a (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26: 695–701.

(21)

 

264. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, et al. (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491: 114–118.

265. Wood AJ, Lo T-W, Zeitler B, Pickle CS, Ralston EJ, et al. (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333: 307. 266. Gilbert L a, Larson MH, Morsut L, Liu Z, Brar G a, et al. (2013)

CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154: 442–451.

Referenties

GERELATEERDE DOCUMENTEN

We worden dus geconfronteerd met twee verschillende stromingen binnen het onderzoek naar onderwijseffecten, één die zich richt op de vergelijking van landen wat betreft de sterkte

The specific heat exhibits a large peak, and the magnetic susceptibility as well as the electrical resistivity show steps as a function of temperature.. The temperature width D T ord

When the second synthesis is the dominant contraction of time, we also get a different conception of the future, which is now conceived from the past as well; based on the

Part B will determine whether the nature of digital blueprints makes them compatible with Creative Commons licences as subject matter, and Part C will consider whether the

Phase-contrast microscopy allows us to observe at the single spore level the process of germination by assessing the transition of spores from phase-bright to phase-dark,

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons.. In case of

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons.. In case of