• No results found

European Venture Capital investment decisions and liquidity risk

N/A
N/A
Protected

Academic year: 2021

Share "European Venture Capital investment decisions and liquidity risk"

Copied!
57
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

Master  thesis  

Business  Economics:  

Finance  

     

European  Venture  Capital  investment  decisions  

and  liquidity  risk  

 

             

 

 

 

 

 

 

 

 

 

 

 

 

By:  Wouter  Floris,  10616004  

Date:  3  June  2015  

Supervisor:  Patrick  Tuijp  

(2)

Contents  

I.     Introduction  ...  1  

II.   Related  Literature  ...  4  

A.   Why  VC  investment  decisions  matter  ...  4  

B.   VC  investments  and  stock  market  liquidity  ...  5  

III.   Methodology  ...  8  

A.     Theory  of  thesis  ...  8  

B.   Liquidity  risk  ...  9  

C.   Overall  investments  and  investment  stages  ...  9  

I.

 

Hypothesis  overall  investments  and  stages  ...  9

 

II.

 

Regressions  overall  investments  and  stages  ...  11

 

D.   Extended  trade-­‐off  theory  ...  13  

E.   Combination  investment  stage  and  industries  ...  15  

I.

 

Identification  and  classification  industries  ...  15

 

II.

 

Hypothesis  combination  industries  and  investment  stages  ...  17

 

III.

 

Regressions  combination  industries  and  investment  stages  ...  18

 

IV.   Data  ...  20  

A.     Independent  variables  ...  20  

B.     Dependent  variables  ...  21  

V.   Results  ...  23  

A.   Technological  Risk:  Investment  Stage  ...  24  

B.   Combination  investment  stages  and  industry  ...  28  

VI.   Conclusion  and  limitations  ...  33  

VII.   Bibliography  ...  35  

 

Appendix  I:  Industry  regressions  ...  38  

Appendix  II:  VEIC  ...  40  

Appendix  III:  Industry  regressions  ...  47  

(3)

I.    

Introduction

 

Entrepreneurs  often  find  it  difficult  to  find  financing  through  the  traditional  channels  such  as  a  bank   loan  and/or  personal  savings.  Venture  Capital  firms  (VCs)  provide  financing  to  these  entrepreneurs   and   small   privately-­‐held   firms   in   return,   usually   for   a   minority   share   of   equity.   VCs   require   a   high   return   on   their   investments   and   are   therefore   quite   an   expensive   provider   of   financing   to   an   entrepreneur.  This  source  of  finance  also  has  its  benefits.  Zu Knyphausen-Aufsess (2005)  identifies   in  the  literature  five  types  of  contributions  beyond  the  funds  provided:  (1)  reputation  effects  from   co-­‐operation  with  an  established  VC  firm,  (2)  stimulation  of  initial  orders,  (3)  access  to  distribution   channels,  (4)  Research  and  development  support  and  (5)  industry  relationships,  which  is  affirmed  by   Sapienza  et  al.  (1996).      

VC  as  a  source  of  capital  is  believed  to  contribute  to  the  economic  growth  and  competitive   strength   of   the   US   by   promoting   the   development   of   innovative   start-­‐ups.   This   role   of   US   VCs   on   technological   innovation   has   been   well   documented   (Hellmann,   2000;   Kortum,   2000).   In   addition   there  is  a  consensus  among  economists,  business  leaders  and  policy-­‐makers  that  the  vibrant  capital   industry   is   one   of   the   cornerstones   of   the   leadership   in   the   commercialization   of   technological   innovation   in   the   US   (Bottazzi   &   Da   Rin,   2002).   European   politics   recognize   that   an   improved   European  VC  market  is  necessary  for  increasing  the  EU  performance  in  terms  of  innovation  (Kortum,   2000)  and  economic  growth  (Samila  &  Sorenson,  2011).  Policymakers  in  Brussels  and  within  nations   currently  try  to  bridge  this  gap  by  stimulating  VC  investments  and  its  environment.  

 

One  of  the  main  characteristics  of  VCs  is  that  they  need  to  disinvest  their   position  after  a  limited   period   of   time,   generally   two   to   seven   years,   with   the   intention   to   collect   a   return   on   their   investment.  There  are  several  exit  strategies  available  such  as  a  leveraged  buyout,  acquisition  by  a   strategic  buyer  or  through  an  Initial  Public  Offering  (IPO)  on  a  stock  exchange.  IPOs  generally  provide   the   highest   return   (Cumming   et   al.,   2005).   The   foundation   of   this   thesis   lies   in   this   relationship   between  VC  investments  and  the  exit  transaction  through  an  IPO.    

There  is  relatively  little  known  in  the  financial  literature  about  the  cyclicality  of  early-­‐stage   investment  and  what  the  external  drivers  of  these  investments  are.  Understanding  more  about  the   choices   and   drivers   behind   these   investments   may   contribute   to   the   decision-­‐making   of   policy   makers  around  the  globe.    

This  thesis  focuses  on  the  relation  between  different  investment  decisions  by  VCs  and  stock   market  conditions,  liquidity  in  particular,  in  Europe  over  the  period  2000-­‐2014.  The  possibility  and   profitability   of   an   IPO   depends   on   stock   market   conditions.   Therefore   it   is   natural   to   expect   a  

(4)

relationship   between   VC   investment   decisions   and   stock   market   liquidity.   Cumming   et   al.   (2005)   provide   a   trade-­‐off   theory   in   which   VCs   alter   their   investment   decisions   to   stock   market   liquidity   conditions  in  the  United  States.  This  trade-­‐off  is  based  on  the  liquidity  risk  VCs  face  in  the  market   and  the  technological  risk  of  the  projects  invested  in.  Liquidity  risk  refers  to  the  risk  of  not  being  able   to   effectively   exit   an   investment.   Technological   risk   refers   to   all   other   types   of   risk   investing   in   a   project  of  uncertain  quality.  In  this  study  technological  risk  refers  to  the  development  stage  of  the   project,  earlier  stages  versus  later  stages.  They  find  evidence  that  during  a  year  of  low  liquidity  and   with   an   expected   low   liquidity   in   the   year   thereafter   (high   liquidity   risk),   VCs   tend   to   invest   in   projects  with  low  technological  risk  (later-­‐stage  projects)  and  vice  versa.    

  This   thesis   builds   upon   this   trade-­‐off   between   liquidity   risk   and   technological   risk   and   provides   an   extended   empirical   implementation   of   the   theory   in   the   European   market.   Using   a   sample  of  18  European  countries  with  well-­‐developed  stock  markets  over  the  period  2000  to  2014,  I   will   examine   whether   this   trade-­‐off   theory   holds   for   Europe   as   well.   This   is   interesting   to   test   because   of   the   substantial   differences   of   the   capital   markets   in   Europe   and   the   US.   The   ratio   between   venture   capital   and   private   equity   investments   were   estimated   in   2009   to   be   17%   in   Europe  and  67%  in  the  US  and  the  overall  value  of  the  venture  capital  investments  over  the  GDP  is   nearly  three  times  higher  in  the  US  than  in  Europe  (Grilli,  2014).  Besides  the  difference  in  size  and   ratios  of  the  capital  markets,  Schwienbacher  (2005)  argues  that  the  main  difference  lies  in  the  exit   market  liquidity  relevant  for  VCs.  European  exit  markets  tend  to  be  less  liquid  compared  to  the  US,   therefore   VCs   may   respond   differently   to   different   levels   of   liquidity   risk.   Aside   from   the   geographical  difference  between  their  empirical  study  and  this  thesis,  there  are  mayor  differences  in   the  interpretation  of  the  theory  and  its  scope.  This  thesis  examines  whether  the  level  of  liquidity  risk   has  a  significant  effect  on  the  choice  of  investment  projects  with  varying  technological  risk  profiles  in   the  quarter  thereafter.  Thereby  using  different  liquidity  risk  and  technological  risk  measures.  I  have   narrowed  the  scope  of  technological  risk  to  a  more  detailed  segmentation  of  the  development  stage   of  the  project.  I  have  also  extended  the  definition  of  technological  risk  to  the  particular  industry  of   the   project.   I   argue   that   different   industries   have   a   different   risk   profile   and   therefore   could   be   included  in  the  trade-­‐off  theory  as  well.    

 

In  the  first  part  of  my  analysis  I  find  that  low  (high)  liquidity  risk  results  in  increased  investments  in   seed-­‐stage  (later-­‐stage)  projects  in  the  quarter  thereafter.  These  findings  are  in  line  with  the  trade-­‐ off   theory.   However   the   middle   two   stages   (early-­‐stage   and   expansion-­‐stage)   behave   exactly   opposite  to  what  would  be  expected.  These  findings  required  an  adjustment  in  the  trade-­‐off  theory   for  the  second  part  of  the  analysis.  I  found  that  VCs  tend  to  specialize  in  either  earlier  stages  (seed-­‐

(5)

stage   and   early-­‐stage)   or   later   stages   (expansion-­‐stage   and   later-­‐stage).   The   extended   trade-­‐off   theory   states   that   VCs   opt   for   low   (high)   technological   risk   projects   after   a   period   of   high   (low)   liquidity  risk  within  their  specialization.  Seed-­‐stage  and  expansion-­‐stage  are  considered  to  be  more   risky   because   they   have   a   longer   time   horizon   within   the   specialization.   Therefore   VCs   which   specialize   in   earlier   stages   opt   for   seed-­‐stage   (early-­‐stage)   projects   after   a   period   of   low   (high)   liquidity   risk   in   high-­‐risk   (low-­‐risk)   industries.   VCs   specialized   in   later   stages   choose   rationally   for   expansion-­‐stage  (later-­‐stage)  projects  after  a  period  of  low  (high)  liquidity  risk  in  high-­‐risk  (low-­‐risk)   industries.  I  find  that  investments  in  all  investment  stages  behave  according  to  the  extended  trade-­‐ off  theory.  However  I  cannot  find  any  evidence  that  VCs  choose  industries  with  different  risk  profiles   after  a  period  of  changed  liquidity  risk.    

  The   remainder   of   this   thesis   proceeds   as   follows.   In   Section   II   I   will   discuss   the   related   literature  of  VC  investments  in  general  and  the  determinants  of  VC  investments  decisions.  Section  III   is  divided  in  to  two  parts.  The  first  part  provides  the  basic  trade-­‐off  theory  and  the  methodology  of   the   investment   stages.   The   second   part   provides   the   extended   trade-­‐off   theory   and   the   methodology  of  the  combination  of  investment  stages  and  industries.  Section  IV  provides  the  data   and  descriptive  statistics.  The  results  are  given  in  Section  V.  Section  VI  provides  the  interpretation  of   the  results,  conclusion  and  limitations.    

(6)

II.  

Related  Literature  

The  decision-­‐making  of  VCs  is  a  relatively  unexplored  topic  in  the  scientific  literature.  Most  papers   examine  the  determinants  of  VC  investments  in  an  economy.  This  thesis  tries  to  identify  liquidity  as  a   determinant  of  overall  VC  investments  but  the  scope  is  mainly  on  explaining  VC  investment  choices   based  on  different  levels  of  stock  market  liquidity.  I  will  first  discuss  the  literature  on  the  importance   of   understanding   VC   investments   itself   before   going   into   more   depth.   The   second   part   of   the   literature   review   discusses   the   relation   between   VC   investments   and   stock   market   conditions/liquidity.    

 

A.   Why  VC  investment  decisions  matter  

 

First  of  all  I  discuss  the  importance  of  VC  investments  for  the  economy  as  a  whole.  The  effects  of  VC   on  macro-­‐economic  factors  such  as  innovation,  employment  and  economic  growth  is  well  covered  in   the  literature.  Kortum  and  Lerner  (2000)  studied  the  influence  of  VC  on  patented  inventions  in  the   US.  They  show  that  increases  in  VC  activity  in  a  particular  industry  are  associated  with  significantly   higher   patenting   rates.   These   findings   are   confirmed   by   Ueda   and   Hirukawa   (2008)   and   Tykvova   (2000)  who  find  a  similar  positive  relationship  in  the  US  and  Germany  respectively.  Rahman  et  al.   (working  paper,  year  unknown)  state  in  their  working  paper  several  plausible  reasons  to  explain  this   relationship.  First,  aside  from  the  supply  of  finance  VCs  often  bring  in  other  essential  resources,  such   as   legal   and   marketing   expertise,   VCs   are   capable   of   forging   linkages   among   other   networks   and   organizations  such  as  banks,  corporations  and  other  start-­‐ups.    Second,  the  reduction  of  asymmetric   information  because  VCs  tend  to  specialize  in  a  specific  sector  and  therefore  may  have  an  advantage   in  evaluating  the  business  accurately.  Besides  the  relationship  between  VC  activity  and  innovation  in   general,  Hellman  et  al.  (2000)  find  that  VC-­‐backed  firms  apply  more  innovative  strategies  compared   to   their   non-­‐VC-­‐backed   peers.   There   is   however   one   note   to   these   findings.   Some   argue   that   this   relationship  covers  only  one  side.  Hirukawa  and  Ueda  (2011)  find  in  a  later  study  a  reversed  causality   between  VC  activity  and  innovation.  They  find  that  total  production  growth  is  often  positively  and   significantly   related   with   future   VC   investments   and   therefore   argue   that   an   arrival   of   new   technology   increases   the   demand   for   VC.   It   is   possible   that   this   relationship   works   both   ways.   Increased   innovation   causes   an   increase   in   VC   activity   and   increased   VC   activity   causes   more   possibilities  for  innovation  within  a  country.    

  Through,  for  instance,  innovation  it  is  likely  that  VC  investments  increase  economic  growth   and  employment.  Samila  and  Sorenson  (2011)  find  that  increases  in  the  supply  of  VC  positively  affect  

(7)

firm  starts,  employment  and  aggregate  income  in  US  metropolitan  areas.  Their  findings  imply  that   VC  stimulates  the  creation  of  more  firms  through  two  mechanisms:  First,  when  the  supply  of  capital   expands,   would-­‐be   entrepreneurs   more   commonly   start   firms.   Second,   funded   companies   may   transfer  know-­‐how  to  their  employees,  thereby  enabling  spin-­‐offs  and  encourage  other  to  become   entrepreneurs.   Engel   (2002)   find   similar   evidence   on   the   positive   correlation   between   VC   finance   and  firm  performance.  

 

B.   VC  investments  and  stock  market  liquidity  

VC   clearly   has   an   impact   on   different   economical   aspects   but   what   are   its   key   determinants?   The   literature  has  identified  several  possible  determinants  of  VC  activity.  Black  and  Gilson’s  (1998)  were   the  first  to  link  stock  market  conditions  to  VC  markets.  Their  empirical  study  shows  the  importance   of   a   well-­‐developed   stock   market   for   a   strong   VC   market.   Stock   market-­‐centered   capital   markets,   such  as  the  US,  tend  to  have  a  much  stronger  VC  industry  in  comparison  to  bank-­‐centered  capital   markets,  because  firms  that  need  financing  must,  by  nature,  obtain  this  capital  with  equity  rather   than   debt.   Different   papers   went   further   on   these   findings   and   examined   effects   of   stock   market   conditions  on  VC  activity  and  investment  decisions,  specifically  the  effect  of  stock  market  liquidity.   The   rationale   behind   this   relationship   lies   in   the   nature   of   VC   strategies.   VCs   generally   have   an   investment  time  horizon  of  2  to  7  years.  In  order  to  derive  their  returns  on  investments  they  need  to   exit   the   investment   after   this   period   through   a   so   called   exit   transaction.   There   are   different   exit   transactions  possible  for  a  VC  such  as  selling  the  equity  to  a  strategic  buyer,  an  initial  public  offering   (IPO)   or   leveraged   buy-­‐out.   Cumming   et   al   (2005)   argue   that   an   IPO   provides   the   largest   return.   Therefore  VCs  face  the  risk  of  not  being  able  to  effectively  exit  the  investment  and  are  either  forced   to  sell  their  equity  at  a  high  discount  or  hold  their  position  in  the  firm.  Lerner  and  Schoar  (2004)  find   that  this  exit  risk  is  one  of  the  key  determinants  of  the  high  return  on  investment  required  by  VCs.   The   ability   to   exit   effectively   is   therefore   dependent   on   market   conditions,   hence   it   is   natural   to   expect  that  stock  market  liquidity,  thus  exit  market  liquidity,  affects  VC  investments.    

 

In  order  to  determine  whether  there  is  a  relationship  between  stock  market  liquidity  and  different   investment  stages  and  VC  activity  in  general,  the  literature  uses  different  proxies  for  stock  market   liquidity  because  it  is  not  possible  to  observe  stock  market  liquidity  directly.  Most  proxies  used  in  the   literature   are   based   on   the   concept   of   liquidity   of   traded   assets   provided   by   Kyle   (1985).   Harris   (1990)  expanded  this  definition  and  identifies  four  different  dimensions:    

• Width   is   based   on   the   bid-­‐ask   spreads.   Stock   market   is   liquid   when   trading   small   amounts   costs  little.  

(8)

• Immediacy  refers  to  the  time  needed  to  accomplish  a  trade.    

• Depth  refers  to  the  corresponding  volumes  of  the  different  bid-­‐ask  spreads  which  define  the   depth  of  the  order  book.  In  liquid  markets  large  trades  have  little  impact  on  the  price.   • Resiliency   refers   to   the   speed   with   which   prices   recover   after   a   large   transaction.   In   liquid  

markets  prices  correct  quickly  and  deviate  only  little  from  true  value.  

There  are  numerous  of  proxies  stock  market  liquidity  such  as  bid-­‐ask  spreads,  the  number  or  value   of  IPOs,  traded  volume  on  stock  markets  and  market  capitalizations.  Most  commonly  used  proxy  in   the  VC  investment  literature  are  the  IPOs.  The  rationale  behind  this  is  that  IPO  markets  are  highly   cyclical   and   are   characterized   by   “hot”   and   “cold”   issue   phases   (Brailsford   et   al.,   2000).   The   possibility   to   exit   the   investment   therefore   refers   to   the   immediacy   dimension   of   the   liquidity   concept.    

 

There   are   several   papers   which   examine   the   relationship   between   stock   market   liquidity   and   investment   activity   in   general   and   differences   within   these   investments.   Balboa   and   Martí   (2003)   examine   the   determinants   that   are   directly   related   to   the   private   equity   volume   of   funds   raised.   They   examine   market   liquidity   as   one   of   these   determinants   because   of   the   disinvestment   requirements  of  VCs.  They  find  that  an  increase  in  market  liquidity  in  the  previous  year  has  a  positive   and  significant  effect  on  annual  future  fundraising  activity.    

Besides  the  effect  of  market  liquidity  on  overall  private  equity  it  is  interesting  to  examine  the   effects   on   different   investment   characteristics   such   as   investment   stages.   In   general   papers   distinguish  four  different  VC  investment  stages,  as  provided  by  Thomson  One  database:  seed-­‐stage,  

early-­‐stage,   expansion-­‐stage   and   later-­‐stage.   Jeng   and   Wells   (2000)   examined   the   relationship  

between  liquidity  and  VC  investments  stages  using  IPOs  as  a  liquidity  proxy.  They  find  evidence  that   the   market   value   of   IPOs   is   the   most   important   determinant   of   European   VC   investments   in   later   stages   of   the   firms.   Shertler   (2003)   used   a   European   panel   to   examine   the   relationship   between   capitalization  of  stock  markets  and  VC  investments.  In  contrast  to  Jeng  and  Well  (2000)  he  finds  that   investments   in   earlier   stages   positively   depend   on   the   capitalization   of   stock   markets   but   not   on   later  stages.  Therefore  it  is  interesting  to  see  whether  my  proxy  for  liquidity  has  a  significant  effect   on  the  different  VC  investment  stages  in  Europe  in  the  period  thereafter.  

 

The  most  important  work  and  the  main  motivation  for  this  thesis  is  based  on  the  paper  of  Cumming   et  al.  (2005).  They  provide  a  theory  which  links  VC  investment  decisions  to  stock  market  liquidity.   Their  theory  is  based  on  the  risk  VCs  face  when  investing.  They  distinguish  two  types  of  risk:  liquidity  

(9)

all   other   types   of   risk   VC   face   when   investing   in   a   project   of   uncertain   quality.   They   introduce   a   theoretical  model    that  shows  that  VCs  will  rationally  trade-­‐off  liquidity  risk  against  technological  risk   by  investing  more  in  early-­‐stage  projects  when  the  liquidity  of  exit  markets  is  low  and  thus  the  exit   risk  is  high.  The  rationale  behind  this  theory  is  that  VCs  alter  their  portfolio  of  investments  according   to  the  exposure  to  the  liquidity  risk.  An  early-­‐stage  investment  has  a  greater  uncertainty  compared   to  a  later-­‐stage  investment,  thus  a  greater  exposure  to  liquidity  risk.  Therefore  the  theory  states  that   VCs  reduce  their  exposure  during  times  of  high  liquidity  risk.  Using  a  US  annual  dataset  they  explain   differences  in  VC  investment  choices  in  high  or  low  technological  risk  projects  by  changes  in  liquidity   risk   in   the   current   year   and   the   year   thereafter.   In   particular   whether   liquidity   risk   affects   the   amount  of  VC  investments  in  early-­‐stage  firms  [high  technological  risk].  They  use  the  number  of  IPOs   as  a  proxy  for  exit  market  liquidity.  Their  empirical  analysis  finds  evidence  for  the  theory.  US  VCs  will   rationally  trade-­‐off  liquidity  risk  against  technological  risk.  VCs  tend  to  invest  proportionally  more  in   early-­‐stage,  thus  riskier,  projects  in  order  to  postpone  exit  requirements  in  times  of  high  (expected)   liquidity   risk.   In   contrast,   with   low   liquidity   risk   VCs   tend   to   choose   projects   with   a   shorter   time   horizon,  hence  they  rush  for  an  exit  by  investing  in  later-­‐stage  projects.  

This  thesis  builds  on  the  same  trade-­‐off  principle  as  proposed  by  Cumming  et  al.  (2005)  for   the   European   VC   market.   However   it   is   important   to   note   that   the   European   and   United   States   capital  markets  differ  substantially.  Schwienbacher  (2005)  argues  that  although  there  are  numerous   similarities   between   the   US   and   European   capital   markets,   there   are   also   important   differences.   They  show  that  much  of  these  differences  have  one  common  denominator:  stock  market  liquidity.   The  exit  markets  relevant  for  VCs  are  less  liquid  in  Europe.  This  forces  European  venture  capitalists   to  “shop  around”  for  longer  periods  when  trying  to  sell  their  shares.  Because  both  capital  markets   differ   substantially   it   is   interesting   to   see   whether   European   VC   investment   decisions   also   change   with  different  levels  of  market  liquidity.  The  fact  that  European  VCs  have  to  “shop  around”  longer  in   order  to  exit  their  investments  could  lead  to  large  differences  in  investment  decisions  compared  to   the  US.  This  could  go  both  ways.  Because  European  exit  markets  are  less  liquid  one  could  expect  that   European  VCs  tend  to  attach  greater  value  to  the  exit  market  liquidity  and  “seize  the  moment”  when   possible.  On  the  other  hand  one  could  argue  that  VCs  in  Europe  attach  less  value  to  the  exit  market   liquidity  because  it  is  possible  that  they  depend  less  on  IPOs  as  an  exit  strategy.  Lerner  and  Schoar   (2003)  show  that  the  choice  of  exit  strategies  in  countries  that  lack  liquid  capital  markets  differ  from   the  US.  Therefore  it  could  be  reasonable  to  expect  that  exit  market  liquidity  is  of  less  influence  on  VC   investment  decisions  within  Europe.    

(10)

III.  

Methodology  

This   part   discusses   the   theory   and   methods   used   in   this   empirical   study.   Firstly,   I   will   discuss   the   theory  behind  the  analysis  in  part  A.  Part  B  provides  the  method  used  to  estimate  the  liquidity  risk.   Part   C   discusses   the   hypothesis   and   regressions   of   the   effect   of   liquidity   risk   on   overall   VC   investments  and  on  the  different  investment  stages.  The  regressions  discussed  in  Part  C  require  an   extension  of  the  trade-­‐off  theory.  Part  D  provides  an  explanation  for  this  extended  trade-­‐off  theory.   Part  E  discusses  the  second  component  of  technological  risk:  the  industry  of  the  investments.  First  I   provide  the  method  of  identification  and  classification  of  the  different  industries  before  discussing   the  hypothesis  and  regressions  concerning  both  technological  risk  components.  

 

A.    

Theory  of  thesis  

The  rationale  behind  this  thesis  is  based  on  the  same  basic  trade-­‐off  theory  introduced  by  Cumming   et  al.  (2005),  however  the  interpretation  of  this  theory  and  the  empirical  model  differ  substantially.   The  sample  period  and  geography  differ  and  I  have  extended  the  trade-­‐off  theory  by  including  an   additional  technological  risk  component  besides  the  investment  stage:  the  industry  of  the  project.   Each  industry  has  its  own  risk  level,  which  is  measured  as  the  standard  deviation  of  returns.  I  will  use   quarterly  data  for  all  variables  in  order  to  examine  whether  liquidity  risk  affects  the  technological   risk  taken  by  VCs  in  the  period  thereafter.  The  trade-­‐off  between  liquidity  risk  and  technological  risk   is  explained  below.    

 

  1      𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦  𝑟𝑖𝑠𝑘      VS      𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙  𝑟𝑖𝑠𝑘  

 

Liquidity  risk  is  measured  using  an  illiquidity  ratio.  High  illiquidity  on  the  stock  markets  results  in  a   large  liquidity  risk  for  VC  investments.  The  theory  states  that  VCs  prefer  investments  with  smaller   technological   risk   after   a   period   of   large   liquidity   risk.   The   technological   risk   consists   out   of   two   components:  (A)  the  investment  stage  and  (B)  industry  of  the  firm  invested  in.  The  theory  states  that   VCs  alter  their  investment  decision  after  a  period  of  high  liquidity  risk  towards  investments  with  less   technological   risk.   In   order   to   empirically   test   this   theory   one   needs   to   identify   and   measure   the   different  aspects  of  this  trade-­‐off.  First,  the  liquidity  risk  is  determined  using  a  proxy  for  illiquidity.   Second,   the   technological   risk   is   determined   by   identifying   different   investment   stages   and   by   calculating  the  industry  returns  over  the  14-­‐year  period  as  a  proxy  for  industry  risk.    

   

(11)

B.  

Liquidity  risk

 

Unfortunately  it  is  not  possible  to  observe  stock  market  liquidity  directly.  As  shown  in  the  literature   review   there   are   numerous   proxies   to   choose   from.   This   thesis   examines   the   effect   of   quarterly   liquidity   on   VC   investment   decisions   based   on   daily   data.   Fong   et   al.   (2014)   compare   different   liquidity  proxies  and  find  that  the  daily  version  of  Amihud  (2002)  liquidity  proxy  is  the  best.  I  will  use   this  measure  and  is  calculated  as  follows:  

  2      𝐴𝑚_𝑖𝑙𝑙𝑖𝑞!"=𝐷1 !" |𝑅!"#| 𝑉𝑂𝐿𝐷!"#$ !!" !!!    

This  measure  refers  to  the  liquidity  concepts  tightness  and  depth  provided  by  Kyle  (1985)  and  Harris   (1990),  where  𝐴𝑚_𝑖𝑙𝑙𝑖𝑞!"  measures  the  illiquidity  of  a  stock  i  in  year  y,  |𝑅!"#|  is  the  absolute  value  of   the  return  on  stock  i  on  day  d  of  year  y  and  𝑉𝑂𝐿𝐷!"#$  is  the  respective  daily  volume  traded  in  EUR   millions.  𝐷!"  is  the  number  of  days  for  which  data  are  available  for  stock  i  in  year  y.    

 

C.  

Overall  investments  and  investment  stages  

The   methods   to   obtain   and   measure   both   components   of   technological   risk   are   explained   below.   Thomson  One  identifies  four  different  stages  in  VC  investments;  seed-­‐stage,  early-­‐stage,  expansion-­‐ stage   and   later-­‐stage.   This   thesis   uses   these   stages   as   a   proxy   for   the   first   component   of   technological   risk.   In   the   seed-­‐stage   the   firm   sets   up   its   initial   concept,   builds   prototypes   and   explores  the  market.  The  early-­‐stage  is  one  step  further  in  the  progress  where  the  production  and   marketing   begins.   In   the   expansion-­‐stage   and   later-­‐stage   firms   sell   their   services   or   products   but   require  funding  because  the  internal  cash  flow  is  not  sufficient  to  finance  the  expenses  necessary  to   expand.   In   the   earlier   stages   the   firms   generally   do   not   generate   cash   nor   experienced   feedback   from   the   market   on   their   services/products.   Therefore   there   is   more   uncertainty   in   the   earlier   development  stages  of  the  projects.  Pintado  et  al.  (2007)  find  that  a  significant  higher  percentage  of   Spanish  VCs  required  a  higher  return  on  investments  in  the  earlier  stages  than  the  later  stages  of   development  and  vice  versa.  This  is  in  line  with  the  financial  theory  that  riskier  investments  should   be  associated  with  higher  (expected)  returns.  Therefore  the  earlier  stages  are  considered  to  be  risky.    

 

I.   Hypothesis  overall  investments  and  stages    

In   order   to   examine   whether   the   trade-­‐off   theory   holds   in   the   European   VC   market   different   hypothesis  are  tested.  The  hypothesis  can  be  divided  into  three  segments:  The  first  estimates  the  

(12)

effect  of  liquidity  risk  (increased  stock  market  illiquidity)  on  total  investments.  The  second  segment   focusses  on  estimating  the  effect  of  liquidity  risk  on  different  investment  stages,  the  first  component   of  technological  risk,  and  the  third  segment  of  the  hypothesis  estimates  the  effect  of  liquidity  risk  on   investments  in  high-­‐risk  and  low-­‐risk  industries.    

Overall  VC  investments  

The  first  step  in  this  analysis  is  to  examine  whether  the  VC  investments  change  with  different  levels   of   liquidity   risk.   Balboa   and   Martí   (2003)   find   a   significant   increase   in   overall   annual   fundraising   volume  after  an  increase  in  stock  market  liquidity  in  the  previous  year.  Therefore  one  might  expect   that   overall   VC   investments   decrease   with   high   liquidity   risk   in   the   stock   market   in   the   previous   period   as   well.   Cumming   et   al.   (2005)   find   in   their   full   sample   of   early-­‐stage   and   expansion-­‐stage   investments   a   positive   effect   of   IPO   volume   on   the   overall   propensity   to   invest   in   new   projects,   because  of  the  reduced  liquidity  risk.  Aside  from  this  it  is  important  to  analyze  the  overall  effects  of   liquidity  risk  on  VC  investments  before  analyzing  the  effects  on  differences  within  VC  investments   [technological  risk].  

 

Hypothesis  1:  High  liquidity  risk  will  decrease  the  total  number  and  total  money  amount  of   VC  investments  in  the  period  thereafter.    

 

Investment  stages  

In  order  to  test  whether  the  trade-­‐off  theory  holds  I  will  examine  whether  liquidity  risk  affects  the   first  component  of  technological  risk.  The  effect  on  the  different  investment  stages  is  tested  with   hypothesis  2  to  5.  I  expect  that  high  liquidity  risk  in  the  previous  period  results  in  the  preference  for   low  technological  risk  projects  in  the  period  thereafter,  hence  more  investments  in  expansion-­‐stage   and  later-­‐stage  projects.  Conversely  I  expect  that  low  liquidity  risk  in  the  previous  period  results  in   the  preference  for  low  technological  risk  projects  in  the  period  thereafter,  hence  more  investments   in  seed-­‐stage  and  early-­‐stage  projects.  Cumming  et  al.  (2005)  show  that  during  illiquid  stock  markets   VCs  tend  to  prefer  early-­‐stage  investments.  In  times  of  liquid  stock  markets  VCs  tend  to  opt  for  later-­‐ stage  investments.  The  rationale  behind  this  is  that  in  times  of  illiquid  stock  markets  VCs  choose  to   postpone  liquidity  requirements  by  investing  in  a  project  with  a  longer  time  horizon  and  vice  versa.   Jeng   and   Wells   (2000)   found   evidence   that   the   market   value   of   IPOs   explains   differences   in   VC   investments  in  later  stages,  not  the  earlier  stages.  Schoar  (2003),  on  the  contrary,  finds  a  positive   impact   of   liquidity   of   stock   markets   on   early-­‐stage   investments.   These   different   studies   all   use   different  locations,  time  horizons  and  proxies.  It  is  therefore  interesting  to  estimate  the  effect  of  the  

(13)

Amihud  (2002)  illiquidity  measure  on  the  different  investment  stages  and  test  if  the  trade-­‐off  theory   holds  in  the  European  VC  market.    

 

Hypothesis   2:   Low   liquidity   risk   increases   seed-­‐stage   investments   in   the   period   thereafter   (increase  technological  risk).

 

 

Hypothesis   3:   Low   liquidity   risk   increases   early-­‐stage   investments   in   the   period   thereafter   (increase  technological  risk).  

 

Hypothesis   4:   High   liquidity   risk   increases   expansion-­‐stage   investments   in   the   period   thereafter  (reduce  technological  risk).  

 

Hypothesis   5:   High   liquidity   risk   increases   later-­‐stage   investments   in   the   period   thereafter   (reduce  technological  risk).  

 

II.   Regressions  overall  investments  and  stages    

The  five  different  hypotheses  are  tested  using  OLS  regressions.  Table  A  on  the  next  page  provides  a   description  of  the  tested  variables  and  the  independent  variables.  Each  dependent  variable  has  four   different  testable  versions  and  thus  four  different  regressions.  The  first  version  is  the  logarithm  of   one  plus  the  absolute  number  of  investments  in  that  period.  This  is  a  conventional  method  of  testing   the   number   and   amount   of   VC   investments   (Gompers   et   al.   2006).   The   second   version   is   the  

proportion  of  all  investments  made  in  the  given  period.  The  third  version  is  the  logarithm  of  one  plus  

the  absolute  money  amount  invested  in  the  given  period.  The  fourth  version  is  the  money  proportion   invested  of  all  investments  in  that  period.  The  logarithm  is  used  to  measure  the  overall  effect.  The   proportion   variable   is   the   proportion   of   the   particular   investment   stage   to   all   stages   investments.   This  is  used  to  control  for  overall  effects  of  the  independent  variables  and  as  a  robustness  check.   Appendix  I:  Descriptive  Statistics  provides  an  overview  and  descriptive  statistics  of  each  tested  and   independent  variable.  The  dependent  variables  each  have  four  different  versions  thus  four  different   regressions  as  given  below:    

 

3      𝐿𝑛_𝑁𝑢𝑚_𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡!=    𝛼 + 𝛽!𝐴𝑚_𝑖𝑙𝑙𝑖𝑞!!! +  𝛽!𝑊𝐺𝐷𝑃!!! +  𝛽!𝑆𝑇𝑂𝑋𝑋!!! + 𝜀!    

 

(4)      𝑃𝑟𝑜𝑝_𝑁𝑢𝑚_𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡!=    𝛼 + 𝛽!𝐴𝑚_𝑖𝑙𝑙𝑖𝑞!!! +  𝛽!𝑊𝐺𝐷𝑃!!! +  𝛽!𝑆𝑇𝑂𝑋𝑋!!! + 𝜀!    

(14)

5      𝐿𝑛_𝐸𝑈𝑅_𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡!=    𝛼 + 𝛽!𝐴𝑚_𝑖𝑙𝑙𝑖𝑞!!! +  𝛽!𝑊𝐺𝐷𝑃!!! +  𝛽!𝑆𝑇𝑂𝑋𝑋!!! + 𝜀!  

 

(6)      𝑃𝑟𝑜𝑝_𝐸𝑢𝑟_𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡!=    𝛼 + 𝛽!𝐴𝑚_𝑖𝑙𝑙𝑖𝑞!!! +  𝛽!𝑊𝐺𝐷𝑃!!! +  𝛽!𝑆𝑇𝑂𝑋𝑋!!! + 𝜀!  

 

𝐴𝑚_𝑖𝑙𝑙𝑖𝑞!!!  is  the  illiquidity  ratio  in  the  quarter  before,  𝑊𝐺𝐷𝑃!!!  is  the  weighted  average  GDP  growth  

in  percentages  of  the  European  countries  included  in  the  sample  in  the  quarter  before.  This  variable   is   included   to   control   for   general   economic   conditions.  𝑆𝑇𝑂𝑋𝑋!!!  is   the   percentages   growth   of   the  

STOXX   Europe   600   in   the   period   before.   This   variable   is   included   in   order   to   control   for   general   market  effects,  𝛼  measures  the  intercept  and  𝜀!  is  the  error  term.  

There  are  two  regressions  on  the  total  investments:  total  absolute  number  of  investments   and  total  money  amount  of  investments  and  four  versions  on  each  of  the  four  different  investment   stages:   absolute   number   of   investments,   proportion   of   investments,   money   amount   invested   and   money   proportion   invested,   thus   16   regressions.   An   overview   of   the   variables   is   given   in   Table   A   below.  

 

   

Table  A.  Overview  variables  overall  investments  and  investment  stages  

Independent    

Amihud   The  Amihud  illiquidity  ratio  as  a  measure  for  liquidity  risk   WGDP   Weighted  average  European  GDP  growth  in  percentages   STOXX   The  STOXX  Europe  600  market  index  growth  in  percentages  

Dependent    

Ln_Num_Investments   Total  number  of  VC  investments  in  that  quarter  

EUR_Num_Investments   Total  money  amount  invested  in  a  given  quarter  in  Euros  

Ln_Num_[Stage]   The  logarithm  of  the  number  of  investments  in  the  particular  investment  stage    

Prop_Num_[Stage]   The   number   of   investments   in   the   particular   investment   stage   as   a   proportion   of   total   number  of  investments  in  that  period  

Ln_EUR_[Stage]   The  logarithm  of  the  money  amount  of  investments  in  that  particular  investment  stage   Prop_Eur_[Stage]   The  money  amount  of  investments  in  that  particular  investment  stage  as  a  proportion  of  

the  whole  money  amount  invested  in  that  period  

(15)

D.  

Extended  trade-­‐off  theory  

After  the  first  part  of  my  analysis  I  found  that  the  outermost  two  stages  (seed-­‐stage  and  later-­‐stage)   behaved  according  to  the  trade-­‐off  theory.  The  middle  two  stages  (early-­‐stage  and  expansion-­‐stage)   behaved  exactly  opposite.  These  findings  had  a  significant  effect  on  my  thesis  because  half  of  the   found  effects  were  without  explanation.  The  other  studies  mentioned  in  the  literature  review  such   as   Cumming   et   al.   (2005)   and   Schertler   (2003)   did   not   include   all   four   investment   stages   in   their   analysis  and  therefore  I  had  to  go  back  to  the  literature  to  find  an  explanation  for  these  anomalies.    

After  some  research  I  found  that  a  possible  explanation  of  the  effects  may  lie  in  the  fact  that   VCs  tend  to  specialize.  Robinson  (1987)  was  one  of  the  first  to  find  that  VC  firms  differ  significantly  in   the  stage  in  which  they  invest.  These  findings  are  consistent  with  other  papers  such  as  Elango  et  al.   (1995).  They  show  that  VCs  specialize  in  earlier  stages  or  in  later  stages,  where  VC  firms  in  earlier   stages  tend  to  be  smaller  compared  to  the  larger  VC  firms  specialized  in  later  stages.  They  show  that   earlier  stages  VCs  are  interested  in  unique,  proprietary  products  with  high  growth  potential.  Later   stages  VCs  require  investments  with  market-­‐proven  products/services.    

I   extended   the   trade-­‐off   theory   according   to   these   findings.   It   is   possible   that   specialized   VCs,  in  either  earlier  stages  (seed-­‐stage  and  early-­‐stage)  or  later  stages  (expansion-­‐stage  and  later-­‐ stage)  alter  their  investment  decisions  according  to  liquidity  risk,  but  only  within  their  specialization.   VCs  specialized  in  earlier  stages  will  rush  for  liquidity  after  a  period  of  high  liquidity  risk  by  investing   in  the  less  risky  option  of  the  two;  the  early-­‐stage.  After  a  period  of  low  liquidity  risk  they  will  choose   rationally  for  the  riskier  option  of  the  two;  the  seed-­‐stage.  The  VCs  specialized  in  later  stages  will  do   the  same  within  their  two  investment  stage  options  and  rationally  opt  for  projects  in  the  later-­‐stage   after  a  period  of  high  liquidity  risk.  After  a  period  of  low  liquidity  risk  they  will  opt  for  the  option  with   a   higher   risk:   the   expansion-­‐stage.   To   summarize:   the   specialized   VCs   increase   (decrease)   the   exposure   to   technological   risk   after   a   period   of   low   (high)   liquidity   risk.   This   extended   trade-­‐off   theory   explains   all   the   findings   on   investment   stages.   The   next   section   also   includes   the   second   component  of  technological  risk  in  the  theory.  The  extended  theory  of  specialized  VCs  expects  the   following  trade-­‐off  between  liquidity  risk  and  technological  risk:  

 

7      High  𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦  𝑟𝑖𝑠𝑘!= Decrease    investments  in  𝑆𝑒𝑒𝑑 − 𝑠𝑡𝑎𝑔𝑒!!!  in  𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠!!!  

                                                                                                                     Incease  investments  in  𝐸𝑎𝑟𝑙𝑦 − 𝑠𝑡𝑎𝑔𝑒!!!  in  𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠!!!  

 

8      Low  𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦  𝑟𝑖𝑠𝑘!=  Increase  investments  in  𝑆𝑒𝑒𝑑 − 𝑠𝑡𝑎𝑔𝑒!!!  in  𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠!!!  

     Decrease  investments  in  𝐸𝑎𝑟𝑙𝑦 − 𝑠𝑡𝑎𝑔𝑒!!!  in  𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠!!!  

   

(16)

A  similar  trade-­‐off  is  expected  for  VCs  specialized  in  the  later  stages:    

9      High  𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦  𝑟𝑖𝑠𝑘!= Decrease  investments  in  𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 − 𝑠𝑡𝑎𝑔𝑒!!!  in  𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠!!!  

     Increase  investments  in  𝐿𝑎𝑡𝑒𝑟 − 𝑠𝑡𝑎𝑔𝑒!!!  in  𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠!!!  

 

10      Low  𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦  𝑟𝑖𝑠𝑘!=  Increase  investments  in  𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 − 𝑠𝑡𝑎𝑔𝑒!!!  in  𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠!!!  

                                                                                                                       Decrease  investments  in  𝐿𝑎𝑡𝑒𝑟 − 𝑠𝑡𝑎𝑔𝑒!!!  in  𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠!!!  

   

Where  𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠  consist   of   the   identified   industries   with   an   above   average   standard   deviation  in  returns  and  𝐿𝑜𝑤 − 𝑟𝑖𝑠𝑘  𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠  below  average  standard  deviation  in  returns  over  the  

sample  period  2000  –  2014,  as  shown  in  Table  B  in  the  following  section.      

(17)

E

.  

Combination  investment  stage  and  industries  

The   effects   of   the   specialized   VCs   on   investment   stages   are   significant.   In   the   second   part   of   my   analysis  I  examine  whether  this  extended  theory  holds  for  the  combination  of  both  technological  risk   components:  investment  stage  and  industry.  First  I  shall  explain  the  method  used  in  identifying  and   classifying  the  different  industries  before  providing  the  hypothesis  and  regressions  in  section  II  and   III  respectively.      

 

I.   Identification  and  classification  industries    

The  second  component  of  technological  risk  is  the  industry  of  the  particular  project  invested  in.  The   VC   investments   dataset   used   is   obtained   from   Thomson   One,   which   uses   the   Venture   Economics   Identification   Codes   (VEIC)   as   a   sector   identifier.   VEIC   identifies   firms   on   three   levels:   9   broad   industries   (Level   1),   86   subsectors   (Level   2)   and   271   specific   branches   (Level   3).   For   a   detailed   overview  please  refer  to  Appendix  II:  VEIC.  This  thesis  distinguishes  the  investments  on  the  following   level  1  industries:    

1   Communications   2   Computer  related   3   Other  electronics  related  

4   Genetic  engineering/Molecular  biology   5   Medical/Health  related  

6   Energy  

7   Consumer  related   8   Industrial  products  

9   Other  (transport,  financial  sector  etc.)  

It   is   likely   that   each   industry   has   its   own   risk   profile.   This   thesis   calculates   and   measures   the   technological   risk   for   each   industry   with   the   volatility   in   returns.   Each   of   the   nine   industries   is   classified  with  high  or  low-­‐risk  using  the  quarterly  standard  deviation  of  daily  returns  of  the  industry   indices.  The  STOXX  Europe  Industry  indices  are  used  to  calculate  the  return  of  each  VEIC  industry.   However  the  VC  investments  dataset  consists  of  VEIC  codes  and  stock  market  industry  indices,  such   as  STOXX  Europe  Industry  indices,  are  based  on  the  Industry  Classification  Benchmark  (ICB)  codes   instead.   ICB   identifies   firms   on   four   levels;   10   industries   (Level   1),   19   supersectors   (Level   2),   41   sectors  (Level  3)  and  114  subsectors  (Level  4).  There  are  no  perfect  identical  matches  between  ICB   and  VEIC  codes.  Therefore  I  had  to  match  them  by  hand,  as  shown  in  Table  B.  In  some  cases  the  VEIC   industry  (Level  1)  corresponds  roughly  to  an  ICB  industry  (Level  1)  code.  This  does  not  hold  for  four   industries.  In  these  cases  the  ICB  (Level  1)  code  was  broader  than  the  VEIC  (Level  1).  Therefore  I  have   merged  these  VEIC  industries  to  correspond  to  the  ICB  industries.  ICB  industry  Technology  includes  

(18)

VEIC   industries   Computer   Related   and   Other   Electronics   Related.   VEIC   industries   Genetic   Engineering/Molecular   Biology   and   Medical/Health   related   are   merged   to   correspond   to   ICB   industry  Health  Care.    

 

Table  B:  Composition  and  risk  measure  of  each  identified  industry  

       

Identified  Industry:   VEIC  (Level  1):   ICB  Industry  (Level  1):   Average  Std.  Dev.   1   1.  Communications   1.  Telecommunications  (6000)   2.22  

2   2.  Computer  related   3.  Other  electronics  related  

2.  Technology  (9000)   1.43  

3   4.  Genetic  engineering/Molecular   biology  

5.  Medical/Health  related  

3.  Health  Care  (4000)   2.79  

4   6.  Energy   4.  Oil  &  Gas  (0001)   4.80  

5   7.  Consumer  related   5.  Consumer  Services  (5000)   6.  Consumer  Goods  (3000)  

4.46  

6   8.  Industrial  products   7.  Basic  materials  (1000)   8.  Industrials  (2000)  

6.60  

7   9.  Other     9.  Utilities  (7000)   10.  Financials  (9000)  

4.17   Note:  VEIC  are  the  identifiers  used  in  Venture  Capital  database  retrieved  from  Thomson  One.  ICB  are  the  codes  used  in  the   industry  stock  market  indices.  These  industries  do  not  correspond  in  some  cases.  This  table  provides  the  composition  of  the   identified   industries   used   in   the   thesis.   The   average   standard   deviation   is   calculated   as   the   average   quarterly   standard   deviation  from  each  STOXX  Europe  industry  index  based  on  daily  stock  price  deviations.    In  the  cases  of  identified  industry  5,   6   and   7   the   industry   consists   of   two   STOXX   Europe   industry   indices   and   are   therefore   calculated   as   the   average   of   both   average  standard  deviations.  

   

The  risk  profile  per  ICB  industry  is  calculated  using  the  average  quarterly  standard  deviations  of  the   daily  STOXX  Europe  600  industry  (STOXX  industry)  return  index.  Industry  1,  2,  3  and  4  correspond   directly   to   a   STOXX   industry   index.   Industry   5,   6   and   7   require   an   extra   step   in   the   calculation   because  they  contain  two  STOXX  industry  indices.  For  these  industries  I  have  calculated  the  average   of   the   quarterly   standard   deviations   of   both   STOXX   industry   indices.   These   averages   in   standard   deviation   of   a   particular   identified   industry   is   used   as   a   proxy   for   the   risk   as   shown   in   the   fourth   column  of  Table  B.  The  industries  with  above  average  standard  deviation  are  considered  to  be  high-­‐

risk.  Industries  with  below  average  standard  deviations  are  considered  to  be  low-­‐risk.  The  identified  

industries  are  grouped  in  the  low-­‐risk  and  high-­‐risk  categories.  The  low-­‐risk  industry  group  consists   of  identified  industry  1,  2,  3  and  4.  The  high-­‐risk  industry  group  consist  out  of  identified  industry  5,  6   and  7.    

(19)

II.   Hypothesis  combination  industries  and  investment  stages  

In  the  trade-­‐off  theory  a  high  liquidity  risk  will  result  in  investments  in  low  technological  risk  in  the   period   thereafter   and   vice   versa.   Cumming   et   al   (2005)   used   the   early-­‐stage   and   expansion-­‐stage   investments  as  a  proxy  for  high  and  low  technological  risk  respectively.  As  explained  in  the  theory   technological  risk  includes  all  other  types  of  risk  when  investing  in  a  project  of  uncertain  quality.  It  is   interesting  to  examine  whether  the  trade-­‐off  theory  holds  for  the  industry  of  the  project  as  well.  I   expect   that   VCs   specialized   in   earlier   stages   adjust   their   investment   decisions   according   to   the   liquidity   risk   they   face   and   reduce   investments   with   high   technological   risk   after   a   period   of   high   liquidity  risk.  Thereby  choosing  early-­‐stage  projects  as  the  less  risky  option  of  the  two  in  a  low-­‐risk   industry.  Conversely  I  expect  the  specialized  VCs  to  opt  for  seed-­‐stage  projects  in  high-­‐risk  industries   after  a  period  of  low  liquidity  risk.      

 

Hypothesis   6:   Low   liquidity   risk   increases   investments   in   seed-­‐stage   projects   in   high-­‐risk   industries  in  the  period  thereafter  (increase  technological  risk).  

 

Hypothesis  7:  High  liquidity  risk  increases  investments  in  early-­‐stage  investments  in  low-­‐risk   industries  in  the  period  thereafter  (reduce  technological  risk).  

 

I  expect  the  same  relation  for  the  VCs  specialized  in  later  stages,  which  is  tested  with  the  following   hypothesis:  

 

Hypothesis   8:   Low   liquidity   risk   increases   investments   in   expansion-­‐stage   investments   in   high-­‐risk  industries  in  the  period  thereafter  (increase  technological  risk).  

 

Hypothesis  9:  High  liquidity  risk  increases  investments  in  later-­‐stage  investments  in  low-­‐risk   industries  in  the  period  thereafter  (decrease  technological  risk).  

Referenties

GERELATEERDE DOCUMENTEN

tussen filialen: Binnen 500 meter Verder dan 1000 meter Aanbiedingen: Geen aanbiedingen Aanbiedingen aanwezig Product assortiment: Alleen ZZG's ZZG's, Beauty Care,

Reset Type Gives the user the option to set to default all VoIP related configuration (mainly everything located on FXS/Profile page), all ISP (Internet Service

In standby mode press one of the Memory dial keys (M1 ~ M5), the display will show the corresponding number.. Lift the handset or press the key to dial

Except for ZB version for items marked with an asterisk *). Dialling method *) PD or DTMF mode can be set via the menu. DTMF mode in accordance with ITU-T recommendation

Zodra het gewenste telefoonnummer op de display verschijnt, neemt u de telefoon- hoorn op of druk op de toets.. Het gekozen telefoonnummer

DOTTS, Dutch Obstetric Telephone Triage System; ESI, Emergency Severity Index; IOTI, Iranian Obstetric Triage Index; ICC, Intraclass correlation coefficient; IRR, Inter-

By separating the most frequent letter combinations within the Dutch language and by as- signing the most frequent letters a low string number on a key, the number of keystrokes

To investigate in surgical gynaecological patients the types of health problems arising or persisting up to six weeks after discharge and the effectiveness of telephone