• No results found

Mimicking the Articular Joint with In Vitro Models

N/A
N/A
Protected

Academic year: 2021

Share "Mimicking the Articular Joint with In Vitro Models"

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Review

Mimicking

the

Articular

Joint

with

In

Vitro

Models

Susanna

Piluso

,

1,2,3

Yang

Li

,

1,3

Florencia

Abinzano,

1,3

Riccardo

Levato

,

1,3

Liliana

Moreira

Teixeira

,

2,3,4

Marcel

Karperien

,

2

Jeroen

Leijten

,

2

René

van

Weeren

,

3,4

and

Jos

Malda

,

1,3,4,

*

Treatingjointdiseasesremainsasignificantclinicalchallenge.Conventionalin

vitro cultures and animal models have been helpful, but suffer from limited

predictive power for the human response. Advanced models are therefore

requiredtomimicthecomplexbiologicalinteractionswithinthehumanjoint.

However,theintricatestructureofthejointmicroenvironmentandthecomplex

natureofjointdiseaseshavechallengedthedevelopmentofinvitromodelsthat

canfaithfullymimictheinvivophysiologicalandpathologicalenvironments.In

thisreview,wediscussthecurrentinvitromodelsofthejointandtheprogress

achievedinthedevelopmentofnovelandpotentiallymorepredictivemodels,

and highlight theapplication ofnew technologiesto accurately emulate the

articularjoint.

TheSynovial Joint:AComplexOrgan

The proper functioning of the joint depends on the maintenance of joint homeostasis, a dynamicequilibrium between anabolic andcatabolic processeswithin all the components ofthejoint[1,2].Thejointisacomplexmultitissueorganencompassingthearticularcartilage, thesubchondralbone,thesynovialmembrane,and,insomejoints,additionalintra-articular structures,suchasligamentsandmenisci(Box1).Thesynoviumisessentialforjoint homeo-stasis;infact,synovialmacrophagesareresponsibleforthemaintenanceofafinebalance betweenproinflammatoryandanti-inflammatorycytokines(seeGlossary)inthesynovialfluid [3].Synovialinflammation is nowrecognized to play a key role inthe progression of joint diseases,withthereleaseofinflammatorycytokinesbeingmediatedbythecrosstalkbetween synoviumandcartilage[4].Further,alterationsinthecompositionandstructureofthe sub-chondralbonecanaffectthebehavioroftheoverlyingcartilage,suggestingtheexistenceofa physical and molecular crosstalk between the two tissues [5,6]. The intricate interaction betweenthesedifferenttissuestructuresandcelltypesmakesitquitechallengingto recapitu-latebothhealthyandpathological[e.g.,inthecase ofosteoarthritis(OA)orrheumatoid arthritis(RA)] jointphysiology inamodel. Clearly,conventional2Dinvitro static cultures cannotaccuratelyrecreatethislevelofcomplexity.

Therefore,tounravel theintricatemechanismsinvolvedinjointhomeostasisanddisease,a widerangeofinvivomodelshavebeenused[7,8].Examplesincludemodelsinsmallanimals(i. e.,inthemouse,rat,rabbit,orguineapig)thatareoftenusedforinitialdrugscreening,asthese aregenerallycheaperandeasiertohandlethan thelargeanimalmodels.Incontrast,large animals(i.e.,inthedog,goat,sheep,pig,orhorse)showmoresimilaritiestohumansintermsof joint anatomy and cartilage morphology, but are more expensive and require specialized facilities[9,10].Nevertheless,animalmodels allowforthe studyofdiseasesinthe naturally

Highlights

Whiledifferentinvitroandinvivo

mod-elsofjointdisordershavebeen

devel-oped,therearenoeffectivetoolsfor

theevaluationofnewtherapiesforjoint

diseases,suchasosteoarthritis(OA).

Recent advances in (bio)fabrication

technologies enable the generation

ofinvitromodelsthancanfurther

reca-pitulatearticular physiology with the

potentialofreplacinganimalmodels.

Thevalidation oftheseadvancedin

vitromodelsiscrucialtoexploittheir

translationalpotential.

1

DepartmentofOrthopaedics,

UniversityMedicalCenterUtrecht,

UtrechtUniversity,Utrecht,The

Netherlands 2

DepartmentofDevelopmental

BioEngineering,TechnicalMedical

Centre,UniversityofTwente,

Enschede,TheNetherlands

3

RegenerativeMedicineUtrecht,

UtrechtUniversity,Utrecht,The

Netherlands 4

DepartmentofEquineSciences,

FacultyofVeterinaryMedicine,

UtrechtUniversity,Utrecht,The

Netherlands

*Correspondence:

j.malda@umcutrecht.nl(J.Malda).

(2)

occurringenvironmentofthewholejoint.However,duetospecies-specificdifferences[10,11], manytherapeutictreatmentsfailwhentranslatinganimalstudiestohumanclinicaltrials[12]. Furthermore,ethicalconcernsandthesocietalambitiontoreduceanimalexperimentationhave driventhedevelopmentofadvancedinvitromodelsthatcanmoreaccuratelyrepresentstages ofhumandisease.

Recentadvancesinengineeringandbiologyhaveresultedinthedevelopmentoffunctional microscaleunits ofhuman organsthatare ableto recapitulate humandiseases[13,14].A uniquefeatureofthesesystemsistheirabilitytorecreatethecomplextissue microenviron-mentsandfacilitatecommunicationbetweendifferenttissues,accuratelymimickingtheinvivo situation[15].Invivo,cellsresideinahighlysophisticated3Dmicroenvironmentthatprovides biochemicalandbiomechanicalcuesguidingtheirbehavior,includingmigration,proliferation, anddifferentiation[16].Alterationsofaspecificextracellularmatrix(ECM)componentcan alreadygreatlyimpactthebiochemical–biomechanicalbalance,disruptingtissuehomeostasis andfunction[17,18].

Glossary

3Dbioprinting:theautomated

processofpatterningand

assemblinglivingandnon-living

materialswithaspatiallycontrolled

organization,toproduce

bioengineeredstructuresfor

applicationinregenerativemedicine.

Chondrocytes:cartilagemature

residentcells.Theyproduceand

maintaintheextracellularmatrixthat

keepscartilagehealthyand

functional.

Cytokinesandgrowthfactors:

signalingmoleculesreleasedbycells,

withtheobjectiveofaffectingthe

behaviorofothercells,including

growth,proliferation,migration,

inflammatorystate,and

differentiation.

Explant:extractedpiecesofnative

tissuesororgansthatcanbe

culturedinthelaboratory.

Extracellularmatrix(ECM):dense

networkofmacromolecules,suchas

proteinsandpolysaccharides,that

providesstructuralandbiochemical

supporttothesurroundingcells.

Hydrogel:hydrophilicpolymer

networks,whichabsorbandretaina

largeamountofwater.

Mesenchymalstromalcells

(MSCs):multipotentadultcellsthat

candifferentiateintobone,cartilage,

adipose,andmuscletissue.They

canbeobtainedfrombonemarrow,

adiposetissue,andothersources.

Microfluidics:amultidisciplinary

fieldbetweenchemistry,physics,

engineering,andmicro/

nanotechnologywhichdealswiththe

precisemanipulationoffluidsat

submillimeterscale.

Organ-on-a-chip:amultichannel

microfluidicdevicewithintegrated

microscalecellularco-culturesthat

offersphysiologicalbiochemicaland/

orbiophysicalstimulationtomore

realisticallyrecapitulatethenative

microenvironment.

Osteoarthritis(OA):degenerative

jointdiseaseassociatedwith

cartilagedestruction,inflammationof

thesynovialmembrane,and

subchondralboneremodeling.

Rheumatoidarthritis(RA):a

systemicinflammatorydiseasethat

involvessynovialcellproliferationand

structuraldamagetocartilage,bone,

andligaments.

Box1.TissuesoftheJoint

Articularcartilageisahighlyspecializedconnectivetissuethatcoverstheendsofourlongbones.Itisanavascular,

alymphatic,andaneuraltissuethatconsistsofadenseECMwithalowdensityofcells(about1–2%)[5].Subchondral

boneisthelayerofbonebeneaththecartilage.Togetherwiththecartilageitformsabiocomposite,knownasthe

osteochondralunit,which isspecializedtotransfer loadduringweight-bearingandjoint motion.Thesynovium

constitutestheenvelopeofthearticularjointsand,byactingasaninterfacewiththesystemicbloodcirculation,

ensuresnutrientsupplytothearticularcartilageviathesynovialfluid.Moreover,itsupplementsthesynovialfluidwiththe

keymoleculesnecessaryforjointfunction(i.e.,lubricin,hyaluronan,andimmunomodulatorycytokines)[5].Thesynovial

membraneconsistsoftwocelltypes,synovialfibroblasts,whichconstituteupto75%ofallcellsinahealthysynovium,

andmacrophages.Themacrophagescanbeclassifiedintoclassicallyactivated(M1)andalternativelyactivated(M2).

Thelattersubtypeisinvolvedintheproductionofimmunoregulatoryfactors[e.g.,IL-10andchemokineligand

(CCL)-18],whereasM1macrophagesproduceproinflammatorymediatorssuchasTNF-a,IL-1b,andIL-6,whichplayakey

roleinsynovialinflammation[88].Thenumberofmacrophagesincreasesdrasticallyduringinflammationand,together

withsynovialfibroblasts,secreteproinflammatorycytokinesandECM-degradingenzymes.Theproductionofcytokines

attractinflammatorycells(Tcells,macrophages,monocytes)intothesynovium,resultingintheformationofamassof

inflamedtissueorpannus[3].

Additionalcomponentsofahealthykneejointarethemenisci(i.e.,wedge-shapedtissuesthatperformcomplex

functionsinload-bearing,loadtransmission,stabilizationofthejoint,shockabsorptionduringmovements,nutritionof

articularcartilage,andlubrication[89]).Lubricin,asuperficialzoneprotein,whichhasakeyroleinthemaintenanceof

jointintegrity,ishighlyexpressedinhealthykneemenisci.Theexpressionoflubricinisdownregulatedintheknee

menisciandsynovialfluidofOApatients,leadingtoincreasedfrictioninthejointandcartilagedegeneration[80].Further,

meniscuscellsincreasedtheirproductionofmatrix-degradingenzymes,cytokines,andchemokinesinresponseto

stimulationwithproinflammatoryfactors(IL-1b,IL-6,orfibronectinfragments).Thissuggeststhattheroleofthe

meniscusinOAgoesbeyondthemechanicalaspectandmightbeduetobiologicalinteraction[90].

Tendonsandligamentsaresoftconnectivetissuescomposedofcloselypacked,highlyalignedcollagenfiberbundles

thatjoinbonetomuscleandbonetobone,respectively.Thesestructurestransfertensileloadstoguidemotionand

stabilizethediarthrodialjoint[91].Tendonorligamentfailuremayresultinjointdestabilizationandhenceleadtodamage

byalteringthebiomechanicalbalancebetweenneighboringtissues(e.g.,meniscusandarticularcartilage)inthejoint

[92].Further,afteranteriorcruciateligamentinjuries,thegeneexpressionofkeydegradativeenzymes(MMPs)was

upregulatedintheligamentsandthesynovium,suggestingacloseinteractionbetweenthesetissuesinresponseto

injuriesandakeyroleincartilagedegradation[93].

ThekneejointalsocontainsHoffa’sfatpadorinfrapatellarfatpad(IFP),asofttissueinterposedbetweenthejoint

capsuleandthesynovium.TheIFPisahighlyinnervatedtissueand,therefore,acommonsourceofkneepain.Although

itsphysiologicalfunctioninthekneeremainsstillelusive,earlystudiessuggestthatinflammationofthisadiposetissue

(3)

Ideally,invitro models ofthe joint mustrecapitulate the intricate microenvironment ofthe synovialcavityandcapturetheinteractionsbetweenthevariousjointelements(Figure1,Key Figure).Thetissuesthatthejointiscomposedofareextremelysensitivetotheirmechanical environment,andloadingplaysakeyroleinthemaintenanceofjointhomeostasis[19].While moderate mechanicalloading contributes to the maintenance of tissueintegrity, reduced loadingoroverloadingcantriggerpathologicalchangesinjointtissues[20].Therefore,invitro modelsofthejointshouldideallyallowfortheinclusionofmechanicalstimulationand repro-ducetheinteractionsbetweenthedifferenttissues.

Here, we reviewthe existingin vitro models and we propose newavenues for the future developmentofmoresophisticatedmodelsofthearticulatingjoint.

KeyFigure

Schematic

of

the

Synovial

Joint

Femur Femur

Tendon Tendon

Synovial membrane Synovial membrane

Hoffa’s fat pad Hoffa’s fat pad

Tibia Tibia

Ar cular car lage Ar cular car lage

Meniscus Meniscus

Healthy

joint

Damaged

+ diseased

joint

Joint-on-chip Ligament-on-chip Meniscus-on-chip Tendon-on-chip Synovial membrane-on-chip Osteochondral

unit-on-chip Hoffa’s fat pad-on-chip

Figure1.Thesynovialjointconsistsofseveraltissuesthatworkcloselytogethertorealizeandmaintainjointfunctionandhomeostasis.Thesetissuescomprise

articularcartilage,subchondralbone,synovium,menisci,tendon,ligamentandfatpad,whichallarecharacterizedbyaspecificstructureandwhichareexposedto

differentbiochemicalandbiomechanicalstimulations.Impairmentoffunctionofonetissueleadstoalteredbehavioroftheothertissues,whichcanleadtojoint

degeneration.Theidealinvitromodelmustrecapitulatethiscomplexenvironment;themostsuitableapproachtorealizesuchamodelisthedevelopmentofseveraljoint

(4)

TheState oftheArt:InVitroModelsofTissuesintheJoint

2DMonolayerCultureModels

Todate,limitedinvitromodelsexisttostudytheinteractionsbetweenthedifferenttissuesofthe joint.Withinthemajorityofcurrentinvitromodels,thesimulationofinteractionsisoftenlimited totheintroductionofbiochemicalcuesortoco-cultureofcellsortissues[21].Forexample, interactionswiththesynoviumareoftensimulatedbysupplementingtheculturemediawith cytokines[22],orbyadditionofsynovialfluid[23].Alternatively,fibroblast-likesynoviocytescan beincludedinthemodel[24].Recently,aninvitromodelusingsynovialcellswasdevelopedto studytheresponseofthesynoviumtocartilagewearparticles[25].Themodelconsistedofa densecellsheetoffibroblast-likesynoviocytesinculturewithcartilageparticles.Theco-culture resulted inan increased production ofcytokines and thickeningof the cell sheet through increasedcollagencontent.Interestingly,theseresultscorrelatewithdatafrompreviousanimal studiesshowingthatcartilagedebriscaninducesynovitis[25].

Choosing a cell source that is representative can, however,be a challenge, withprimary chondrocytesand chondrogenicallydifferentiated mesenchymalstromal cells(MSCs) beingthemostcommonlychosencellsforthissimplifiedviewofthejoint[21].Additionally,cells culturedon2Dsurfacesarepronetochangetheirphenotypecomparedwiththeirnativeinvivo milieu.Tounderstandthepathwaysleadingtode-differentiation,changesingeneexpression wereinvestigatedinmonolayerculturesofhumanchondrocytes[26].

Notwithstandingtheirrelative simplicity,thesemodels doprovidevaluableinsightsthatcan enhanceourunderstandingoftheeventsinvolvedinjointdiseases. However,thesesimple models provide information only on isolatedevents within a specific tissue and allow for changingonlyonefactoratatime(cytokines,growthfactors,osmoticpressure,etc.).

Biomaterial-Based3DCultureModels

Themost simplistic 3D culture model is basedon aggregation of cells into spheres [27]. Previousstudieshave,indeed,shownthatchondrospheresoutperformsinglecellsintermsof cartilagematrixproduction[28],allowingthestudyofcell-to-cellandcell-to-matrixinteractions. Thisprovidesapowerfulyetsimpletooltostudycartilageformationandtopreliminarilyscreen drugsfor OA[29].Combiningmicroaggregateswithhydrogels furtherexploits thenatural environmentalcuesto promote growth factor-freechondrogenic differentiation [30].These constructscanalsobesubjectedtomechanicalloadstoinvestigatethecellresponsetothese typesofstimuli[31,32].Mechanicalloadscaninducechangesinthepericellularandterritorial matrixofchondrocytes[33].Further,cellularresponsetomechanicalstimulidependsonthe materialwithinwhichcellsareencapsulated[34].Forexample,hydrogelsprovide3Dmatrices withpropertiessimilartonaturalECMs,suchashighwatercontent,porosity,and biocompati-bility[35].TocapturethebiologicalfeaturesofECM,hydrogelscanbemodifiedto provide bioactivecues,suchasthearginine-glycine-asparticacid(RGD)adhesivemotiforthepeptide bindingmotifofN-cadherinthatmimicscell–cellinteractions,whichmightenhance chondro-genesisofMSCs[36,37].Further,thedynamicremodelingofECMthroughcell-responsive enzymaticdegradation canbereplicatedbycrosslinkinghydrogels withdifunctionalmatrix metalloproteinase (MMP)-degradable peptides [38]. The inclusion of protease-degradable crosslinksinhyaluronicacidhydrogelssignificantlyaffectedthemorphologyofencapsulated MSCs,whichdisplayedanelongatedshape.Meanwhile,cellsremainedroundedinhydrogels thatinhibitedcellularremodeling[38].

Additionally, hydrogel mechanical properties can be reinforced and tailored to match the stiffnessofthetargettissue, forexample,bycombining thehydrogelwithpolymericfibers

(5)

[39].Thefiberscouldalsomimictissuetopography,whichisknowntoinfluencecellbehavior. Forexample,compositesofelectrospunfiberswithbioglass-derivedfoamsorbiphasic scaf-foldshavebeenusedtorepairosteochondraldefects[40].Recently,anengineeredscaffold consistingofhydrogelsandelectrospunfiberswasdevelopedtosimulatethemechanicaland topographical characteristics of native tendon tissue [41]. Additionally, hydrogels can be fabricatedto mimic structuralfeatures oftissueinterfaces,suchas thetendon/ligament-to boneinterface,byusingbiphasicscaffoldsthatmimicthealignmentofcollagenmolecules[42]. Further,thecombinationofmicrofluidicmixingtechnologieswithhydrogelfunctionalization approachesenablethepreparationofhydrogelswithacontrolledspatialgradientofcellsand biomoleculesignals[43].

Table1.RepresentativeExamplesofInVitroModelsofJointTissues

Tissue Model Findings Refs

Fibroblast-likesynoviocytes

2Dmonolayer

culture

Treatmentoffibroblast-likesynoviocytesresultedincelldeathandproduction

ofproinflammatorymediators(IL–1b,IL-6,andTNF-a)

[24]

2Dmonolayer

culture

Culturingfibroblast-likesynoviocyteswithcartilagewearparticlesresultedinan

increaseinproliferationandECMcontent,similartothethickeningofsynovial

liningobservedinOApatients

[25]

Periostealstemcells Biomaterial-based3Dculture Encapsulationofmacroaggregatedperiostealstemcellsintobiomaterials

resultedinimprovedinvivocartilagetissueformation,comparedwithsingle

cell-ladenhydrogels

[30]

Cartilage Tissueexplants

CollagenasewasusedoncartilageexplantstoimitateearlyOA;mechanical

loadingaffectedthedegradedcartilagemorethanhealthyexplants

[44]

AgeingaffectedTGFandbonemorphogeneticprotein(BMP)signaling

pathways,whichmightcontributetothedevelopmentofOA

[82]

Combininginsulin-likegrowthfactor-1(IGF-1)anddexamethasone(Dex)

preventedmatrixlossinaninflammatoryenvironment

[45]

Bone Tissueexplants Trabecularboneexplantsweresubmittedtoinducedshearstresstoanalyze

theeffectsonciliaexpressionofbonemarrowcells

[83]

Meniscus Tissueexplants

Cytokinesinhibitedmeniscalrepairofexplantsinvitro [84]

InducingoverexpressionofTGF-bviarecombinantadeno-associatedvirus

(rAAV)-mediatedgenetransferstimulatedinvitrohealingofmeniscusexplants

[85]

Tendon Tissueexplants Cyclicloadinginducedexpressionofinflammatorymarkersontendon

fascicles

[86]

Synovium Tissueexplants Synovialexplantsfromrheumatoidarthritispatientswereusedtoevaluatethe

effectsofbiologicdiseasemodifyingantirheumaticdrugtreatmentinvitro;

theseresultswerecorrelatedtoclinicalperformanceofthedrugs

[87]

Cartilageandsynovium

Co-culture Addingosteoarthritissynoviumtocartilageexplantsinhibited

glycosaminoglycanproduction,andthiseffectwascounteractedbythe

additionoftriamcinolone

[55]

Osteochondralplug Anosteochondralplugmodelwithindependentcompartmentsforcartilage

andbonewasusedtoevaluatetheeffectofcelldistributionwithinahydrogel

forcartilagerepairapplications

[51–53]

Osteochondralmicrotissue Multichamber

bioreactor

TheeffectsofIL-1bwereevaluatedonanosteochondralmicrotissuemodel,

whereMSCsseededwithinahydrogelweremaintainedusingseparate

chondralandosseouscompartmentsinwhichthecellsdifferentiatedinto

cartilageandbone-liketissues

[50]

Osteochondralunitandsynoviallining Multichamberbioreactor ThesynovialliningwasreproducedbyincorporatingMSCsseededwithina

polyethyleneglycolhydrogelontheosteochondralinterface,consistingofa

collagenhydrogel

(6)

TissueCultureModels

Tissueexplants,however,keepthecellsintheirnaturalmicroenvironment(Table1).Cartilage explantshaveprovidedvaluableinformationonthewholetissueresponsetoseveralstimuli, recreatingbothphysiologicalandpathologicalenvironmentsindiversejointtissues.Forexample, toemulatethedamageobservedinearlystagesofOA,cartilageexplantswerefirsttreatedwith collagenaseandthen subjectedto repetitive mechanicalstress. This modelprovidednovel informationonthemechanismsassociatedwithcartilagedegeneration(e.g.,mechanicalloading) [44].In anotherstudy to elucidatethe mechanismof actionofdexamethasone, a potential therapeuticdrug,cartilageexplantsweretreatedwith inflammatorycytokinesandsubjected tomechanicalinjurytosimulateearlystagesofOA[45].Amajordrawbackisthatonlyalimited numberofexplantscanbeobtainedfromeachdonorandthereisahighintradonorvariability betweensamples,dependingonthelocationofextractionfromthejoint[46].Thisvariationiseven greaterbetweendonors,presentingachallengeforreproducibility.Explantscommonlyfeature celldeathontheedgeswherethetissuewascut[21].Long-termstudiesarealsocomplicated,as thepropertiesofcartilageandboneexplantschangeovertimeintermsofmechanicalproperties andECMcomposition[47].Moreover,althoughitisrelativelyeasytoobtainexplantsfromanimal sources,availabilityofhealthyhumandonortissueislimited.

Bioreactors

Bioreactorsaredevicesabletoculturecellsunderacontrolledenvironment(e.g.,temperature, pH,nutrientsupply,mechanicalstimuli).Differenttypesofbioreactorshavebeendeveloped basedontissueandapplication,suchasspinnerflasks,rotatingwallvessels,andperfusion bioreactors[48,49].Inarecentwork,abioreactorconsistingoftwoseparatecompartments hasbeenused to recreate anengineered osteochondralunit.Thetwo microenvironments couldbeindividuallycontrolled,thusallowingcontrolofconditionsintheboneandcartilage part,followingexposuretoproinflammatorycytokines[50].Further,thedesignofthis bioreac-torwasfurtheradvancedtoenablecontinuousopticalmonitoringduringculture[48]. Preservingtheintegrity ofanosteochondralunitduring invitro culturehasbeenshown to extendthelifeandqualityofexplants[51].Previousworkonosteochondralexplants demon-stratedthatbioreactorplatforms(six-wellplateformat)providingdistinctmediatothecartilage andboneregionsoftheimplantallowforlong-termcultureoftheosteochondralplugs,while maintainingcartilagetissuecontent,structure,andmechanicalproperties[52].Thisplatform wasalsousedtoinvestigatetheeffectofthespatialchondrocytedistributionincartilagerepair mechanisms[53].Despitethefactthatthisosteochondralplug-basedmodelprovidednew insightintotheinteractionbetweentissues,itisstilllimitedtotheinterplaybetweenboneand cartilageandhasnotbeenyetadaptedtorepresentinflammatoryjointconditions.

Co-CultureofTissueExplants

Theabove-describedinvitromodelsfocusonindividualtissuesofthejointortheosteochondral unit,withoutincludinginteractionswithotherelementsofthejoint.Thisaspectwashighlighted inarecentstudydescribingco-culturesofbovinecartilageexplantswithexplantsoffibrousjoint capsuleandsynovium[54].Specifically,theco-incubationofmechanicallyinjuredcartilagewith fibrousjointcapsuleandsynoviumresultedinincreasedproteolyticdegradationofaggrecanby both MMPs and aggrecanase.This enhanced proteolyticactivity was notobserved when cartilagewasculturedalone[54].Similarly,theco-incubationofexplantsofhumanarticular cartilagewithhumansynoviumresultedintheproductionofMMPsandinflammatorycytokines thatwerenotdetectedinthecartilageexplantmonoculture[55].Thecytokinesanddegradative enzymesdetectedinthe synovium–cartilage co-culturesweresimilarto thosefoundinthe synovialfluidofpatientswithOA,suggestingthatco-cultureshaveahigherpredictivepower

(7)

comparedwithmonocultures.Thisfurthersuggeststhatinvitromodelsofthejointmustbe multitissuesystemsinwhichthesynoviumplaysacrucialrole.

TheChallenge:MoreAdvanced InVitroTechnologies forMimickingArticular Function

Although static culture of tissue explants and co-cultures can recapitulate some in vivo functionalitiesofthejointtissues,thesemodelsstilllackmechanicalstimuli,suchastension, compression,andshearstressthatcellsexperienceinvivo.

Advancesinbiofabricationandmicrofluidicstechnologiesprovidetheopportunitytorecreate dynamicflowconditionsandmechanicalstimulation(Figure2)thatmayaidthedevelopmentof more predictive models of the human synovial joint. To this end,a variety of 3D culture techniques,including3Dhumanorganoids,humanorgan-on-a-chip[56],andbiofabricated tissue-likestructures[57],havebeenexploredtomodelphysiologicalandpathologicalhuman conditions.

Anoverviewofthecurrentinvitromodelsusedtoculturearticularjointtissuesisdepictedin Figure 3, highlighting advantages and limitations of each model type, thereby enablinga

Sy nov ia l me mbr ane Os te ochondr al unit

Joint ssue

Main cells

Type of mechanical load

Fibroblast-like synovial cells

Macrophage-like synovial

cells

T and B cells

Chondrocytes

Osteoblasts, osteocytes, and

osteoclasts

Microvascular and nerve cells

Tension

Fluid induced shear strain

Li ga m en t te nd on

Shear stress

Tension

Compression

Ligamentoblast/

ligamentocytes

Tenoblasts/tenocytes

Fibrochondrocytes

Vascular cells

Ho ffa’ s f at pad M eni sc us

Adipocytes

Vascular and immune cells

Pericytes and mesenchymal

progenitor cells

Fibroblast-like cells

Chondrocyte-like cells

Nerve and vascular cells

Shear, tension, and

compression

Tension

Fluid induced shear

Tension

Fluid induced shear stress

Figure2.MechanicalStimulationoftheSynovialJoint.Illustrativetablewithrepresentativeexamplesofthejoint

(8)

Reproducibility and compaƟbility with high-throughput screening Simple and easy to work Models isolated events

ReducƟonisƟc ReducƟonisƟc No Ɵssue–Ɵssue interface No gradients of chemicals and oxygen StaƟc StaƟc

Includes interacƟons with other cells/Ɵssues

Limited 3D environment No direct Ɵssue–Ɵssue interface

Higher predicƟve power compared with monocultures

2D monolayer

Current in vitro models Advantages LimitaƟons

Tissue explants Bioreactors 2D cell culture 3D cell culture Tissue complexity Dynamic culture MulƟƟssue Organs-on-chips Ex vivo mulƟƟssue 3D biomaterial based Limited number of explants from each donor High intra- and

interdonor variaƟon; reproducibility challenge No gradients of chemicals and oxygen No Ɵssue–Ɵssue interface Lacks mechanical actuaƟon

Cells prone to change their phenotype Challenge to select a representaƟve cell source

Semidynamic 3D culturing

Extended culture Ɵme and quality of explants/Ɵssues Enables whole Ɵssue response to several sƟmuli The cells are cultured in their 3D naƟve microenvironment Can provide natural environmental cues Allow the study of cell-to-cell and cell-to-cell-to-matrix interacƟons

(A)

(B)

Figure3.CurrentandEnvisionedModelsoftheArticularJointTissues.(A)Illustrativetablewithmostrelevantin

vitrocell/tissueculturemodelsofthejoint,highlightingtheadvantagesanddrawbacksofeachmodel.(B)Schematic

(9)

comparisonbetweenmodels(A).Theevolutionthroughoutthemodelsystemsisillustratedin Figure3B,featuringincreasingcomplexitystepstowardsorgan-on-chipplatforms. Organs-on-chiparemicrofluidicdevicesthatcansimulatephysiologicalfunctionsoftissuesandorgans [14].Numerousorgans-on-chipmodelshavebeendevelopedsofar,however,therearestill issuestobeaddressed.First,weshouldchooseamatrix(e.g.,ahydrogel)withasuitable compositionandtopographytomimictheECMofthedifferenttissues.Forexample,cartilage exhibitsa highly organized structure which is differentfrom the bone or synoviumtissue. Further,the stiffnessof the matrixis also an importantfactor, since themechanicalloads experiencedbythecellsmightbeaffectedbythestiffnessofthematrix(i.e.,shielding)[58].The needtofindsuitableflowratesforeachofthedifferenttissuemodelswillalsobechallenging, especiallywhen connecting the differenttissues.Anotherimportant issue isrelated to the sourceofcells.Themajorityofthemicrofluidicdeviceshavebeenoperatedusingcelllines, eventhoughhuman-derivedprimarycellswouldbeabettermimicofthehumanphysiology. Themainlimitationsforusinghumanprimarycellsarethelimiteddonoravailability,potential variability,andtheircosts[59].

Basedonthefundamentalunderstandingoffunctionalandpathologicalorgans,acombination oftechnologicalapproaches(e.g.,softlithography,microfluidics,3Dbioprinting)isadoptedto simulateinvitrothenative3Dorganizationbyincorporatingbiomaterialscaffolds,continuous vascular-likeperfusion,mechanicalstimulation,andchemicalcueswithinthesameplatform. 3Dbioprintingrepresentsapromisingtechnologyforreplicatingtissue–tissueinterfacesdueto itsinherentcapabilitytodepositheterogeneousbioinks(livingcellsand/orbiomaterials)ina definedspatiotemporalmannerrelevanttobiologicalarchitectures.Biofabricated3Dinvitro modelsofferagreatopportunitytoinvestigatethephysiologicalandpathologicalprocessesof multitissues, as well as to perform drug screening and toxicological studies. Up to now, numerousinvitromodelsoftissuesandorgans,rangingfrombonetomicrovasculature,have beendevelopedwithavarietyofshapes,lengthscales,resolutions,andmechanicalproperties ofbiomaterialsandmostlyusinghuman-derivedcells[56,60].Recently,theperformanceofan osteochondralbioreactorwassignificantlyimprovedbyusing3Dprinting.Specifically,thenew modelenabledthefluidtransportthroughthecentralchambertobemaximizedandallowedfor opticalaccesswithinthe3Dconstruct,whilemaintainingdimensionscompatiblewitha96-well plate[48].Additionally,arecentlydescribed3Dprinterbioreactorallowsfortheprintingof3D constructs directly inside the bioreactor, reducing both contamination risk and the riskof damagetotheconstruct[61].3D-printingtechnologyhasgainedincreasedattentioninthe fabricationofmicrofluidicsystems.Thesedevicesarecommonlyfabricatedusing polydime-thylsiloxane (PDMS), which is easyto mold,biocompatible, transparent,and inexpensive. Additionally,PDMSmoldinghasveryhighresolution.However,thefabricationofthedevices involvesstackingandbondingdifferentlayerstogether,whichincreasesthefinalcostandlimits the 3Dcomplexity that can be achieved[62].Although, 3D-printingis an automated and assembly-freetechnology,withlow-costset-ups,limitedonlybytheresolutionoftheprinting process.Printingtechnologiessuchasstereolithography(SLA)ormeltelectrospinningwriting (MEW) could significantly improve the resolution of perfusable channels. For example, a custom-built projection SLA has been recently used to prepare complex 3D structures withpatterningfeaturesof<5mmresolution[63],whileMEWenablesthefabricationoffibers of4–7mm[64].

Organ-on-ChipTechnology

Microfluidicsystemscanbeconnectedwitheachothertoformmulticompartmentmicrofluidic devices.Animportantchallengewhenconnectingdifferentmicrofluidicdevicesinvolvesthe requirementforacommonmedia,orbloodsubstitute,suitableforeachtissueoftheinteracting

(10)

system[65].Thismulticompartmentorganizationisidealforthedesignofinvitromodelsofthe joint,amultitissueorganwherecellsareexposedtodifferenttypesofmechanicalstimuli.For example,withinthesynovialjoint,cellsexperienceahighmechanicalstress,boththrough load-bearingandbyshearforcescreatedbythemotionofthesynovialfluidduringexercise[66].The magnitude,direction,andtypeofstressappliedwasfoundtoaffectthetypeandseverityof inflammationofthejoints[67].However,thebiochemicaleffectsofshearforceonthesynovial membranehavenotbeenstudiedsystematicallyinaninvitroplatform,andamulticompartment microfluidicchamberwouldbeapromisingsolution.

Dependingontheorientationofthecompartmentalizedchannels,mainlytwotypesof con-figurationshave beendeveloped(Figure4C,D)(i.e.,upper–lowerchambersseparatedbya semiporous,stretchablemembraneandlateralchambersobtainedbyanarrayofmicroposts [68–70]oraremovabletemplate[69]).Inaddition,dynamiccompressivebioreactorshavebeen

Figure4.RecreatingMicrophysiologicallyArticularJoint-RelevantEnvironmentswithOrgan-on-Chips.(A)Generationoftheboneperivascularnichefor

studiesofbreastcancercolonization.Humanbonemarrow-derivedmesenchymalstemcells(MSCs)andendothelialcells(ECs)wereculturedinmonolayersandin3D

decellularizedbonematrix.Imagereproducedwithpermission,from[78].(B)Multiple‘organs-on-a-chip’platformtomodelmetastasisfromlungtobrain,bone,and

liverdownstreamorgans.Thismodularstrategycanbeusedtomodelthetissuesfromthearticularjoint.Imagereproducedwithpermission,from[79].(C)Schemeofa

microfluidicvascularizedbonetissuemodelformimickingrealboneangiogenesis.Thebone-mimickingchannelconsistsofamixtureoffibrinwithhydroxyapatite.

Imagereproducedwithpermission,from[69].(D)Schematicdrawingandphotographofthemicrofluidickidneyglomeruluschip,withtheurinaryandcapillary

compartmentsoftheglomerulusseparatedbyapolydimethylsiloxanemembrane.Cyclicstrainisappliedonthesidechanneltomimicthetissuestretch.Itisenvisioned

thatasimilardesigncanbeusedforjointarticulartissues,whichinvolvesimilarmechanicaltension,suchasthesynovialmembraneorthetendons.Imagereproduced

withpermission,from[80].(E)Pictureofacompleteactuatorchipimplementedinmechano-stimuliresponsivestudiesofneuronalcellnetworksonchip.Theimages

representaschematicdrawingofitsmechanismofactuationusinggasflow.Itisenvisionedthatasimilardesigncanbeusedforjointarticulartissuesinvolvingsimilar

(11)

developed to screen the effect of biomaterials and of mechanical stimulation on cellular behaviors(Figure4E)[71].

RecapitulatingtheMicrophysiologicalEnvironmentoftheSynovialJoint Thecurrentdevelopmentsdescribedaboveopenupnewwaystorecapitulatewholeorgansor combinationsof multiple organs ina body-on-a-chip fashion. However, the integrationof different organs still faces some challenges, including maintaining the functionality of the differentorgansandthestudyofintertissueresponsestodrugadministration.The develop-mentofthesemulticompartmentsystems,thatcaninteractwitheachotherinaphysiologically relevantmanner,wouldbecrucialforthedevelopmentofmodelsofthejoint,forexamplea joint-on-a-chip.

Organ-on-chiptechnologyprovides a platformto recreate physiologicallyrelevant environ-ments.Althoughthisnoveltechnologyhasbeenusedtodevelopbiomimeticsystemsofseveral organs(lung,kidney,liver),boneistheonlytissueofthejointthathasbeendevelopedonchip thusfar.Tomimictheinvivomicroenvironmentofbone,amicrofluidicapproachwasusedto developa vascularized bone tissuemodel. Fibrin was used as a model of the ECM and combined with various concentrations of hydroxyapatite nanocrystals to mimic the bone structure.Thepresenceofhydroxyapatiteresultedinenhancedangiogenicproperties, induc-ingimprovedsproutlength,sproutspeed,andlumendiameter[72].Otherstudiesfocused mainlyonbonemarrow-on-chip.Forexample,abonemarrow-on-a-chipsystemwas devel-opedbyfirstengineeringnewboneinvivoandthenperfusingitinamicrofluidicdeviceableto reconstitutethehematopoieticnichephysiology[73].Totestthefunctionalityandorgan-level response,theengineeredbonemarrowwasexposedtovaryingdosesofg-radiation,andthe resultscloselymimickedtheeffectsobservedinthebonemarrowoflivemice[73]. Toreconstitutethemicroenvironmentofthearticularjoint,aninvitro3Dmicrosystemmodelof theosteochondralunitwasdevelopedbyfittingamultichamberbioreactorintoamicrofluidic base[50].Tomimicthechondrogenicandosteogenictissues,humanbonemarrowstemcells (hBMSCs)wereseededwithinahyaluronicacid-basedhydrogelandagelatin/hydroxyapatite construct, respectively. The two compartments were supplied by two different medium streamsto reconstitutethechondral andosseousmicroenvironments andpromote tissue-specific differentiationof hBMSCs.In anextstep, theosteochondralunit was exposedto interleukin-1b(IL-1b)toevaluatetheresponsetoproinflammatorycytokinesandthe commu-nicationbetweenthetwocompartments.TheIL-1btreatmentoftheosseouscompartment resultedinastrongcatabolicresponseinthechondrallayer,whichwassignificantlyhigherthan the response observed after local exposure to IL-1b, suggesting an active biochemical communicationbetweenthetwolayers.Tobettermimicthejointenvironment,themicrotissue modelwasimprovedbyincorporatinganosteochondralinterface,consistingofanMSC-laden collagenhydrogel,andasynovialliningproducedwithMSCsseededonapolyethyleneglycol hydrogel[74].Althoughthismicrotissuerepresentsavaluablemodeloftheosteochondralunit, somekeyelementssuchasotherjointcomponents(menisci/tendons)andmechanical stimu-lation(e.g.,compression,shearstress)arestillmissing.

Besidesarticularcartilage,subchondralbone,menisci,tendons,andfatpad,akeycomponent ofthejointorganisthesynovium.Indeed,synovialinflammationisintimatelyassociatedwith jointdegenerationindiseasessuchasOAandRA[3].RecentstudiesindicatethatOAtissue andsynovialfluidcontainhighlevelsofcytokines,andthatchondrocytesandsynovialcellsin OA overproduce several inflammatory mediators, including IL-1b, tumor necrosis factor-a (TNF-a),andnitricoxide,whicharecharacteristicofinflammatoryarthritis.Further,the lipid

(12)

metabolismmightalsocontributetothepathogenesisofOAthroughinflammatorymediators, forinstance,adipokinesproducedbyadiposetissuesuchaspresentinHoffa’sfatpad[75].It becomesclearthatthesynoviumtogetherwiththeosteochondralunit,menisci,tendons,and fatpadareessentialcomponentsforthedevelopmentofanadvancedinvitromodelofthejoint. Further,synovialinflammationalsorepresentsaneffectivetargetforthedevelopmentofnovel therapeuticstrategies.However,amajorlimitationsofaristheinabilitytospecificallytarget synovialcells,without affectingthe whole-organismphysiology[3].Thislimitation couldbe overcomebyfabricatingindividualjointcomponentsusingmicrofluidictechnologyonchipto reconstitutethephysiologicalcontextofeachtissue,includingmechanicalandbiochemical stimulation,andcombinetheseindividualtissuesonchipinamultimodulardevice:the joint-on-chip.Thisapproachprovidestheopportunitytounderstandthemolecularpathwaysinvolvedin thephysiology andetiologyofeach tissueindividuallyandmay, asan example,aidinthe discoveryofsynovium-targetingtherapies.Furthermore,bydesigninginterconnectable organ-on-chipmodelsofcartilage,bone,synovium,tendons,andfatpadandarrangingthemasin vivo,itisalsopossibletostudycrosstalkbetweenthevarioustissues.Aninterconnectedmodel of the joint could be valuable for understanding joint homeostasis and to develop novel therapiestopreventandslowtheprogressionofjointdiseases.

ValidationofInVitroModelsoftheJoint

Theseadvancedmodels,duetotheirgreatlevelofphysiologicalmimicry,havethepotentialto replace or be integrated with animal studies for preclinical testing. To achieve this, one importantchallengestillneedstobeaddressedtotranslatethe‘on-chip’resultstotheclinic; thatis,thevalidationofthemodel.

Here,akeystepwillbetodemonstratethepredictivepowerofthemultitissuemodelofthejoint forhumandisease.Therefore,thereisastrongneedtodevelopvalidationmethodsthatcan assessthereproducibility, reliability,and thetranslationalpotential ofthose models[60].A possiblestrategycouldbethetestingofarangeofdrugswithknowneffectagainstRA(inthe caseofthejointmodels)andcomparetheresultswithdataobtainedfrominvitrotissue co-culturemodels, animal studies,and efficacy studiesin patients.Forinstance, celecoxib,a nonsteroidalanti-inflammatorydrugusedforthetreatmentofOAandRA,hasbeenusedto evaluatetheaccuracyofamodelbasedontheco-cultureofatissue-engineeredcartilage constructwithsynovialfibroblastsandmacrophages.Thesystemcouldreplicateonlysomeof theinvivoresponsesofthedrug[76].Animportantlimitation,however,isthatthismodelonly mimicscartilage–synoviuminteractions,whilenumerousstudiesdemonstratedaclose inter-actionbetweencartilage–subchondralboneandvasculature[49].Thisfurtherhighlightsthe necessityto developmultitissue modelsthat can bettermimic the invivo behavior.These multitissuedevicescouldbeadvantageousfordrugscreening,enablingthetestingofvarying concentrationsof adrugor combinationsof drugs,simultaneously andina cost-effective manner.Most importantly,these devicescan beoperated withhuman cells and thusare capableoffurthermimickingthehumanphysiologyandmetabolism[77].

ConcludingRemarksandFuturePerspectives

Understandingthemolecularmechanismsinvolvedinjointhomeostasisanddiseaseis funda-mentalforthedevelopmentofnoveltherapeutictreatments.Amajorchallengesofarhasbeen thelackofmodelsthatcanfaithfullymimicjointphysiologyinhealthanddisease.Thelimited predictivepowerofexistinganimalmodelshasdriventheneedtodevelopadvancedinvitro modelsthatcanmoreaccuratelyrepresenttheinvivo-likeenvironment.Recentadvancesin engineeringandbiologyhave enabledthe developmentofinvitromodels thatrecapitulate

OutstandingQuestions

Canthecomplexmicroenvironmentof

thesynovialjointbefaithfully

recapitu-lated using the organ-on-chip

technology?

Isitpossible tostudyonsetofjoint

diseasesandthesequenceof

patho-logicaleventsrecapitulatingthe

com-plexity of human disease using a

multicompartmentjoint-on-a-chip?

Willsuchahumanizedjointmodelbe

abletopredicttheefficacyandtoxicity

ofnoveltreatmentsforarthritis?

Can a multicompartment

joint-on-a-chipenablethediscoveryofearly

(13)

complex 3D organ-level structures with integrated mechanical, biochemical, and physical stimulation(see OutstandingQuestions). This technologyhasthe potential to emulatethe variouscomponentsofthejointorganandtheinterplaybetweenthedifferentelementsofthe joint.Inadditiontoa‘humanized’jointmodel,thedevelopmentofjointmodelsforanimalsis alsoimportantfortheapplicationinveterinarymedicine.Specifically,theuseofhumanand animalmodelsunderasimilarexperimentalsettingcouldbringtolightspecies-specific differ-ences.Ultimately,the developmentofan advancedinvitro modelofthe jointwill assistin reducingorreplacingtheuseofanimalmodelsinbiomedicalresearch,personalizedmedicine, andpharmaceuticalstudies.

Acknowledgments

TheauthorsacknowledgethefinancialsupportprovidedbytheDutchArthritisFoundation(LLP12,LLP22,andLLP25)and

thefinancialsupportofthestrategicallianceprogramentitled:Advancedbiomanufacturing,fundedbytheUniversityof

Twente,UtrechtUniversityandUniversityMedicalCenterUtrecht,projecttitle:Bioprintingfunctionaltissuesfromstem

cellsandenablingbiomaterials.

References

1. teMoller,N.C.andvanWeeren,P.R.(2017)Howexercisein flu-encesequinejointhomeostasis.Vet.J.222,60–67

2. McIlwraith,C.W.andvanWeeren,R.(2015)JointDiseaseinthe Horse,ElsevierHealthSciences

3. Bhattaram,P.andChandrasekharan,U.(2017)Thejoint syno-vium:acriticaldeterminantofarticularcartilagefatein inflamma-toryjointdiseases.Semin.CellDev.Biol.62,86–93

4. Pearson,M.J.etal.(2017)IL-6secretioninosteoarthritispatients ismediatedbychondrocyte-synovialfibroblastcross-talkandis enhancedbyobesity.Sci.Rep.7,3451

5. Goldring,S.R.andGoldring,M.B.(2016)Changesinthe osteo-chondral unit during osteoarthritis: structure, function and cartilage–bonecrosstalk.Nat.Rev.Rheumatol.12,632

6. Findlay,D.M.andKuliwaba,J.S.(2016)Bone–cartilagecrosstalk: aconversationforunderstandingosteoarthritis.BoneRes.4, 16028

7. Hu,Y.etal.(2013)Advancesinresearchonanimalmodelsof rheumatoidarthritis.Clin.Rheumatol.32,161–165

8. McCoy,A.(2015)Animalmodelsofosteoarthritis:comparisons andkeyconsiderations.Vet.Pathol.52,803–818

9. Thysen,S.etal.(2015)Targets,modelsandchallengesin oste-oarthritisresearch.Dis.Model.Mech.8,17–30

10.McNamee,K.etal.(2015)Animalmodelsofrheumatoidarthritis: howinformativearethey?Eur.J.Pharmacol.759,278–286

11.Denayer,T.etal.(2014)Animalmodelsintranslationalmedicine: validationandprediction.NewHoriz.Transl.Med.2,5–11

12.Wang,K.etal.(2015)Investigationaldrugsforthetreatmentof osteoarthritis.ExpertOpin.Investig.Drugs,24,1539–1556

13.Esch,E.W.etal.(2015)Organs-on-chipsatthefrontiersofdrug discovery.Nat.Rev.DrugDiscov.14,248

14.Bhatia,S.N.andIngber,D.E.(2014)Microfluidic organs-on-chips.Nat.Biotechnol.32,760

15.Skardal,A.etal.(2016)Organoid-on-a-chipandbody-on-a-chip systemsfordrugscreeninganddiseasemodeling.DrugDiscov. Today,21,1399–1411

16.Das,R.K.etal.(2016)Stress-stiffening-mediatedstem-cell com-mitmentswitchinsoftresponsivehydrogels.Nat.Mater.15,318

17.Gattazzo,F.etal.(2014)Extracellularmatrix:adynamic micro-environmentforstemcellniche.Biochim.Biophys.Acta,1840, 2506–2519

18.Gilbert,P.M.andWeaver,V.M.(2017)Cellularadaptationto biomechanicalstressacrosslengthscalesintissuehomeostasis anddisease.Semin.CellDev.Biol.67,141–152

19.Sun,H.B.(2010)Mechanicalloading,cartilagedegradation,and arthritis.Ann.N.Y.Acad.Sci.1211,37–50

20.O’Conor,C.J.etal.(2014)TRPV4-mediated mechanotransduc-tion regulates the metabolic response of chondrocytes to dynamicloading.Proc.Natl.Acad.Sci.U.S.A.111,1316–1321

21.Johnson,C.I.etal.(2016)Invitromodelsforthestudyof osteo-arthritis.Vet.J.209,40–49

22.Li,Y.etal.(2015)Effectsofinsulin-likegrowthfactor-1and dexamethasoneoncytokine-challengedcartilage:relevanceto post-traumaticosteoarthritis.Osteoarthr.Cartil.23,266–274

23.Beekhuizen,M.etal.(2013)InhibitionofoncostatinMin osteoar-thriticsynvialfluidenhancesGAGproductioninosteoarthritic cartilagerepair.Eur.CellMater.26,80–90

24.Braun,H.J.etal.(2014)Theeffectofplatelet-richplasma for-mulationsandbloodproductsonhumansynoviocytes: implica-tionsforintra-articularinjuryandtherapy.Am.J.SportsMed.42, 1204–1210

25.Silverstein,A.M.etal.(2017)Towardunderstandingtheroleof cartilageparticulatesinsynovialinflammation.Osteoarthr.Cartil. 25,1353–1361

26.Ma,B.etal.(2013)Geneexpressionprofilingofdedifferentiated humanarticularchondrocytesinmonolayerculture.Osteoarthr. Cartil.21,599–603

27.Johnstone,B.etal.(1998)Invitrochondrogenesisofbone marrow-derivedmesenchymalprogenitorcells.Exp.CellRes. 238,265–272

28.Teixeira,L.M.etal.(2012)Highthroughputgenerated micro-aggregatesofchondrocytesstimulatecartilageformationinvitro andinvivo.Eur.CellMater.23,387–399

29.Pothacharoen,P.etal.(2014)Effectsofsesaminonthe biosyn-thesisofchondroitinsulfateproteoglycansinhumanarticular chondrocytesinprimaryculture.Glycoconj.J.31,221–230

30.Leijten,J.etal.(2016)Bioinspiredseedingofbiomaterialsusing threedimensionalmicrotissuesinduceschondrogenicstemcell differentiationandcartilageformationundergrowthfactorfree conditions.Sci.Rep.6,36011

31.Zellner,J.etal.(2015)Dynamichydrostaticpressureenhances differentiallythechondrogenesisofmeniscalcellsfromtheinner andouterzone.J.Biomech.48,1479–1484

32.Fahy,N.etal.(2018)Mechanicalstimulationofmesenchymal stemcells:implicationsforcartilagetissueengineering.J.Orthop. Res.36,52–63

33.Gilbert,S.J.andBlain,E.J.(2018)Cartilagemechanobiology: howchondrocytesrespondtomechanicalload.In Mechanobi-ologyinHealthandDisease(Verbruggen,S.,ed.),pp.99–126, Elsevier

34.Steward,A.J.andKelly,D.J.(2015)Mechanicalregulationof mesenchymalstemcelldifferentiation.J.Anat.227,717–731

(14)

35.Yang,J.etal.(2017)Cell-ladenhydrogelsforosteochondraland cartilagetissueengineering.ActaBiomater.57,1–25

36.Cosgrove,B.D.etal.(2016)N-cadherinadhesiveinteractions modulatematrixmechanosensingandfatecommitmentof mes-enchymalstemcells.Nat.Mater.15,1297

37.Bian,L.etal.(2010)Dynamicmechanicalloadingenhances functionalpropertiesoftissue-engineeredcartilageusingmature caninechondrocytes.TissueEng.A,16,1781–1790

38.Holloway,J.L.etal.(2014)Modulatinghydrogelcrosslinkdensity anddegradationtocontrolbonemorphogeneticproteindelivery andinvivoboneformation.J.Control.Release,191,63–70

39.Visser,J.etal.(2015)Reinforcementofhydrogelsusing three-dimensionallyprintedmicrofibres.Nat.Commun.6,6933

40.Khorshidi,S.andKarkhaneh,A.(2018)Areviewongradient hydrogel/fiberscaffoldsforosteochondralregeneration.J.Tissue Eng.Regen.Med.12,e1974–e1990

41.Yang,G.etal.(2016)Multilayeredpolycaprolactone/gelatin fiber-hydrogelcompositefortendontissueengineering.Acta Bio-mater.35,68–76

42.FontTellado,S.etal.(2017)Fabricationandcharacterizationof biphasicsilkfibroinscaffoldsfortendon/ligament-to-bonetissue engineering.TissueEng.A,23,859–872

43.Mahadik,B.P.etal.(2014)Microfluidicgenerationofgradient hydrogelstomodulatehematopoieticstemcellculture environ-ment.Adv.Healthc.Mater.3,449–458

44.Grenier,S.etal.(2014)Aninvitromodelforthepathological degradationofarticularcartilageinosteoarthritis.J.Biomech.47, 645–652

45.Wang,Y.et al.(2017) Dexamethasonetreatmentaltersthe responseofhumancartilageexplantstoinflammatorycytokines andmechanicalinjuryasrevealed bydiscoveryproteomics. Osteoarthr.Cartil.25,S381–S382

46.Brama,P.etal.(2000)Topographicalmappingofbiochemical propertiesofarticularcartilageintheequinefetlockjoint.Equine Vet.J.32,19–26

47.vanCaam,A.P.etal.(2015)TGFb1blockschondrocyte hyper-trophyandmaintainscellviabilityinculturedcartilageexplantsbut doesnotprotectagainstproteoglycanloss.Osteoarthr.Cartil.23, A137–A138

48.Nichols,D.A.etal.(2018)Designandvalidationofan osteochon-dralbioreactorforthescreeningoftreatmentsforosteoarthritis. Biomed.Microdevices,20,18

49.Pirosa,A.etal.(2018)Engineeringin-vitrostemcell-based vas-cularizedbonemodelsfordrugscreeningandpredictive toxicol-ogy.StemCellRes.Ther.9,112

50.Lin,H.etal.(2014)Stemcell-basedmicrophysiological osteo-chondralsystemtomodeltissueresponsetointerleukin-1b.Mol. Pharm.11,2203–2212

51.DeVries-vanMelle,M.L.etal.(2011)Anosteochondralculture modeltostudymechanismsinvolvedinarticularcartilagerepair. TissueEng.CMethods,18,45–53

52.Schwab,A.etal.(2017)Exvivocultureplatformforassessment ofcartilagerepairtreatmentstrategies.ALTEX,34,267–277

53.Mouser,V.H.etal.(2018)Exvivomodelunravellingcell distribu-tioneffectinhydrogelsforcartilagerepair.ALTEX,35,65–76

54.Swärd,P.etal.(2017)Cocultureofbovinecartilagewith syno-viumandfibrousjointcapsuleincreasesaggrecanaseandmatrix metalloproteinaseactivity.ArthritisRes.Ther.19,157

55.Beekhuizen,M.etal.(2011)Osteoarthriticsynovialtissue inhibi-tionofproteoglycanproductioninhumanosteoarthriticknee cartilage:establishment and characterizationof along-term cartilage–synoviumcoculture.ArthritisRheum.63,1918–1927

56.Zhang,B.etal.(2018)Advancesinorgan-on-a-chipengineering. Nat.Rev.Mater.3,257–278

57.Moroni,L.etal.(2018)Biofabricationstrategiesfor3Dinvitro modelsandregenerativemedicine.Nat.Rev.Mater.3,21–37

58.Lee,S.H.etal.(2017)Hydrogel-basedthree-dimensionalcell culturefororgan-on-a-chipapplications.Biotechnol.Prog.33, 580–589

59.Kimura,H.etal.(2018)Organ/body-on-a-chipbasedon micro-fluidictechnologyfordrugdiscovery.DrugMetab. Pharmacoki-net.33,43–48

60.Ahadian,S.etal.(2017)Organ-on-a-chipplatforms:a conver-genceofadvancedmaterials,cells,andmicroscaletechnologies. Adv.Healthc.Mater.PublishedonlineOctober16,2017.http:// dx.doi.org/10.1002/adhm.201700506PublishedonlineOctober 16,2017

61.Smith,L.J.etal.(2018)FABRICA:abioreactorplatformfor printing,perfusing,observing,& stimulating3D tissues.Sci. Rep.8,7561

62.Bhattacharjee,N.etal.(2016)Theupcoming3D-printing revolu-tioninmicrofluidics.LabChip,16,1720–1742

63.Raman,R.etal.(2016)High-resolutionprojection microstereo-lithographyforpatterningofneovasculature.Adv.Healthc.Mater. 5,610–619

64.Castilho,M.etal.(2017)Meltelectrospinningwritingof poly-hydroxymethylglycolide-co-e-caprolactone-based scaffolds for cardiactissueengineering.Adv.Healthc.Mater.6,1700311

65.Coppeta,J.etal.(2017)Aportableandreconfigurable multi-organplatformfordrugdevelopmentwithonboardmicrofluidic flowcontrol.LabChip,17,134–144

66.Schett,G.etal.(2001)Thestressedsynovium.ArthritisRes.Ther. 3,80

67.Manunta,A.F.etal.(2014)Sports-relatedchangesofthesynovial membrane.Joints,2,181

68.Adriani,G.etal.(2017)A3Dneurovascularmicrofluidicmodel consistingofneurons,astrocytesandcerebralendothelialcellsas ablood–brainbarrier.LabChip,17,448–459

69.Yamada,A.etal.(2016)Transientmicrofluidic compartmentali-zationusingactionablemicrofilamentsforbiochemicalassays, cellcultureandorgans-on-chip.LabChip,16,4691–4701

70.Mi,S.etal.(2018)Constructionofaliversinusoidbasedonthe laminarflowonchipandself-assemblyofendothelialcells. Bio-fabrication,10,025010

71.Seo,J.etal.(2018)Interconnectabledynamiccompression bio-reactorsforcombinatorialscreeningofcellmechanobiologyinthree dimensions.ACSAppl.Mater.Interfaces,10,13293–13303

72.LiáJeon,N.(2015)Microfluidicvascularizedbonetissuemodel withhydroxyapatite-incorporatedextracellularmatrix.LabChip, 15,3984–3988

73.Torisawa,Y.S.etal.(2014)Bonemarrow–on–a–chipreplicates hematopoieticnichephysiologyinvitro.Nat.Methods,11,663

74.Lozito, T.P.et al. (2013) Three-dimensional osteochondralmicrotissue tomodelpathogenesisofosteoarthritis.StemCellRes.Ther.4,S6

75.Robinson,W.H.etal.(2016)Low-gradeinflammationasakey mediatorofthepathogenesisofosteoarthritis.Nat.Rev. Rheu-matol.12,580–592

76.Peck,Y.etal.(2018)Establishmentofaninvitro three-dimen-sionalmodelforcartilagedamageinrheumatoidarthritis.J. TissueEng.Regen.Med.12,e237–e249

77.Esch,M.B.etal.(2014)Howmulti-organmicrodevicescanhelp fosterdrugdevelopment.Adv.DrugDeliv.Rev.69,158–169

78.Marturano-Kruik,A.etal.(2018)Humanboneperivascular niche-on-a-chipforstudyingmetastaticcolonization.Proc.Natl.Acad. Sci.115,1256–1261

79.Ma,Y.-H.V.etal.(2018)Areviewofmicrofluidicapproachesfor investigatingcancerextravasationduringmetastasis.Microsyst. Nanoeng.4,17104

80.Musumeci,G.etal.(2014)Lubricinexpressioninhuman oste-oarthritickneemeniscusandsynovialfluid:amorphological, immunohistochemicalandbiochemicalstudy.ActaHistochem. 116,965–972

81.Xie,S.etal.(2018)Nanoscalemembraneactuatorforinvitro mechano-stimuliresponsivestudiesofneuronalcellnetworkson chip.J.Micromech.Microeng.28,085011

82.vanCaam,A.etal.(2016)ExpressionofTGFb-familysignalling componentsinageingcartilage:age-relatedlossofTGFband BMPreceptors.Osteoarthr.Cartil.24,1235–1245

(15)

83.Coughlin,T.etal.(2016)Primaryciliaexpressioninbonemarrow inresponsetomechanicalstimulationinexplantbioreactor cul-ture.Eur.CellMater.32,111–122

84.Hennerbichler,A.etal.(2007)Interleukin-1andtumornecrosis factoralphainhibitrepairoftheporcinemeniscusinvitro. Osteo-arthr.Cartil.15,1053–1060

85.Cucchiarini,M.etal.(2015)OverexpressionofTGF-bvia rAAV-mediatedgenetransferpromotesthehealingofhumanmeniscal lesionsexvivoonexplantedmenisci.Am.J.SportsMed.43, 1197–1205

86.Spiesz,E.M.etal.(2015)Tendonextracellularmatrixdamage, degradationandinflammationinresponsetoinvitrooverload exercise.J.Orthop.Res.33,889–897

87.Andersen,M.etal.(2018)AssociationbetweenIL-6productionin synovialexplantsfromrheumatoidarthritispatientsandclinical andimagingresponsetobiologictreatment:apilotstudy.PLoS One,13,e0197001

88.Fahy,N.etal.(2014)Humanosteoarthriticsynoviumimpacts chondrogenicdifferentiationofmesenchymalstemcellsvia mac-rophagepolarisationstate.Osteoarthr.Cartil.22,1167–1175

89.Makris,E.A.etal.(2011)Thekneemeniscus:structure–function, pathophysiology,currentrepairtechniques,andprospectsfor regeneration.Biomaterials,32,7411–7431

90.Stone,A.V.etal.(2014)Pro-inflammatorystimulationofmeniscus cellsincreasesproductionofmatrixmetalloproteinasesand addi-tionalcatabolicfactorsinvolvedinosteoarthritispathogenesis. Osteoarthr.Cartil.22,264–274

91.Woo,S.L.etal.(2019)Functionaltissueengineeringofligament andtendoninjuries.InPrinciplesofRegenerativeMedicine(Atala, A.,ed.),pp.1179–1198,Elsevier

92.Jung,H.-J.etal.(2009)Roleofbiomechanicsinthe understand-ingofnormal,injured,andhealingligamentsandtendons.BMC SportsSci.Med.Rehabil.1,9

93.Haslauer,C.M.etal.(2013)Lossofextracellularmatrixfrom articularcartilageismediatedbythesynoviumandligamentafter anteriorcruciateligamentinjury.Osteoarthr.Cartil.21,1950– 1957

94.Ioan-Facsinay,A.andKloppenburg, M.(2013)Anemerging playerinkneeosteoarthritis:theinfrapatellarfatpad.Arthritis Res.Ther.15,225

Referenties

GERELATEERDE DOCUMENTEN

Previous results showed an increased susceptibility to bacterial adhesion and invasion in Detroit cells after an influenza infection, compared to uninfected cells treated

In het projectvoorstel zijn de volgende vragen geformuleerd: - Welke informatie moet verzameld worden om voor middelgrote gebieden het referentie grondwaterregime RGR en het

De nieuw beschreven soort komt mogelijk ook voor in het Lutetien van Frankrijk.. Er is in ieder geval

contact opnemen.Er zal een bijdrage worden ge- vraagd om de toelatingskosten te dekken.. 17 en 18 september

• If the species adapted to the fossil diesel (B0) (adaptation induced at various concentrations of fossil diesel and exposure times), then the species would not rely most

Within the turbulent layer, there is still flow that remains attached to the surface of the body, called the laminar sub-layer or viscous sub-layer.. This layer only accounts

7 18 Bruin Geel-Grijs Gevlekt Langwerpig drainagebuis serre 7 19 Donker Bruin Lichtbruin Gevlekt Rechthoekig Paalspoor serre 7 20 Donker Bruin Lichtbruin Gevlekt Rechthoekig

Als mensen met dementie te weinig of te veel prikkels krijgen worden ze onrustig en kunnen zij op zoek gaan naar een plek waar de prikkels wél passen bij hun gemoedstoestand..