• No results found

Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor

N/A
N/A
Protected

Academic year: 2021

Share "Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Carbohydrate

Polymers

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Fast

ultrasound

assisted

synthesis

of

chitosan-based

magnetite

nanocomposites

as

a

modified

electrode

sensor

T.M.

Freire

a

,

L.M.U.

Dutra

b,d

,

D.C.

Queiroz

b

,

N.M.P.S.

Ricardo

b

,

K.

Barreto

b

,

J.C.

Denardin

c

,

Frederik

R.

Wurm

d

,

C.P.

Sousa

e

,

A.N.

Correia

e

,

P

de

Lima-Neto

e

,

P.B.A.

Fechine

a,∗

aGroupofChemistryofAdvancedMaterials(GQMAT)-DepartmentofAnalyticalChemistryandPhysical-Chemistry,FederalUniversityofCeará-UFC,

CampusdoPici,CP12100,CEP60451-970Fortaleza,CE,Brazil

bDepartmentofOrganicandInorganicChemistry,FederalUniversityofCeará-UFC,CampusdoPici,CP12100,CEP60451-970Fortaleza,CE,Brazil cDepartmentofPhysical,UniversityofSantiagodeChile,USACH,Av.Ecuador3493,Santiago,Chile

dMaxPlanckInstituteforPolymerResearch,Ackermannweg10,55128Mainz,Germany

eGroupofElectrochemistryandCorrosion(GELCORR)-DepartmentofAnalyticalChemistryandPhysical-Chemistry,FederalUniversityofCeará-UFC,

CampusdoPici,CP12100,CEP60451-970Fortaleza,CE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28January2016

Receivedinrevisedform25May2016 Accepted26May2016

Availableonline3June2016 Keywords: Nanocomposites Magnetite Chitosan Superparamagnetic Ultrasound

a

b

s

t

r

a

c

t

Chitosan-basedmagnetitenanocompositesweresynthesizedusingaversatileultrasoundassistedinsitu methodinvolvingonequickstep.Thissyntheticrouteapproachresultsintheformationofspheroidal nanoparticles(Fe3O4)withaveragediameterbetween10and24nm,whichwerefoundtobe superparam-agneticwithsaturationmagnetization(Ms)rangesfrom32–57emug−1,dependingontheconcentration. TheincorporationofFe3O4intochitosanmatrixwasalsoconfirmedbyFTIRandTGtechniques.Thishybrid nanocompositehasthepotentialapplicationaselectrochemicalsensors,sincetheelectrochemicalsignal wasexcepitionallystable.Inaddition,theinsitustrategyproposedinthisworkallowedustosynthesize thenanocompositesysteminashorttime,around2minoftime-consuming,showinggreatpotentialto replaceconvencionalmethods.Herein,theprocedurewillpermitafurtherdiversityofapplicationsinto nanocompositematerialsengineering.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Development of organic-inorganic nanocomposites has attracted attention of many researchers, since these materials canbeappliedindifferentareasofscience.Magneticnanoparticles (MNPs),suchas magnetite (Fe3O4), have shown hugepotential for differentapplications: enzyme immobilization,waste water treatment,targeteddeliveryofdrugsandbiosensors(Limetal., 2015; Wang,Li, Luo,Wang,&Duan, 2016; Zhanget al., 2010), owing to their superparamagnetic behavior and low toxicity. However,thelargesurfacearea-to-volume ratioinFe3O4 MNPs exhibitsahighsurfaceenergyandtheytendtoaggregate,limiting

∗ Correspondingauthor.

E-mailaddresses:tiagomfreire.ufc@gmail.com(T.M.Freire),

lmudutra@hotmail.com(L.M.U.Dutra),daniloqueiroz46@gmail.com(D.C.Queiroz),

nagilaricardo@gmail.com(N.M.P.S.Ricardo),kambarreto@yahoo.com.br

(K.Barreto),juliano.denardin@usach.cl(J.C.Denardin),wurm@mpip-mainz.mpg.de

(F.R.Wurm),pinheiro.cs@gmail.com(C.P.Sousa),adriana@ufc.br(A.N.Correia),

pln@ufc.br(P.deLima-Neto),fechine@ufc.br(P.B.A.Fechine).

theirrangeofapplications(Gregorio-Jaureguietal.,2012;Yallapu etal.,2011).

Herein,controllingand/orpreventingparticlesagglomeration makestheirproductionatrulychallengeintoindustryfield.Thus, organiccompoundshavebeenusedtocoverMNPs,promoting sta-bilityandsurfacefunctionalization(Nicolásetal.,2013;Zhangetal., 2012).Severalworksprovedthatmagnetitenanoparticlescoated bychitosan(Sheteetal.,2014), poly(vinylalcohol)(Mahmoudi, Simchi,&Imani,2009),poly(acrylicacid)(Xu,Zhuang,Lin,Shen, &Li,2013),DNA(Navarathne,Ner,Jain,Grote,&Sotzing,2011), orproteins(Bayrakcietal.,2014Bayrakci,Gezici,Bas,Ozmen,& Maltas,2014),promoteswhetherelectrostaticorstericrepulsion, stabilizingMNPsdispersion.Chitosanhasbecomeoneofmostused naturalpolymer,beingbiocompatible,biodegradableand bioac-tive.Additionally,thispolyaminosaccharidehasintrinsicchemical properties,whichitsfreeaminogroupsallowtheformationof posi-tivelychargedcomplexes,providingreactivesitestobindFe-based MNPs(Shen,Shen,Wen,Wang,&Liu,2011;Zhangetal.,2010).

Somestudieshavebeendemonstratedthatnanosizeand sur-face effects display significantrules in NP’smagnetic behavior.

http://dx.doi.org/10.1016/j.carbpol.2016.05.095

(2)

Innumerous strategies have been developed in order to mod-ulate a hybrid functional metal oxide with desired properties, suchas co-precipitation (Silva et al., 2013), hydrothermal syn-thesis(Gyergyek,Drofenik,&Makovec,2012)andsonochemistry (Barkade,Pinjari,Nakateetal.,2013;Barkade,Pinjari,Singhetal., 2013;Theerdhalaetal.,2010).However,thesemethodsareenergy andtime-consuming,andthusitisimportanttohighlighttheuse ofultrasoundforsynthesisinvolvingawiderangeof nanomateri-als,suchassilvernanoparticles(Heetal.,2014),magnesiumferrite (Chen,Li,zhang,&Kang,2013)andironoxide(Dolores,Raquel,& Adianez,2015).Thetechniquehasbecomeaneasyandsimpletool, thatmaypromotesultrahighsurfacearea(organic/inorganic)with synthesis ofinorganicmaterialduring process(in situmethod), whichtheformationofamonodispersecantailorhybridmaterials, controllingthecrystalgrowthandformingparticleswith nanome-tersizedistribution(Barkade,Pinjari,Singhetal.,2013; Carroll, Ulises-Reveles,Shultz,Khanna,&Carpenter,2011).

Ingeneral,chitosan-basedmagnetitesynthesisresultsintwo typesofdifferentstructures:asinglemagnetitecoresurroundedby achitosanlayer,and/ormagnetite“multi-cores”dispersedina chi-tosanmatrix(Patiletal.,2014;Reddy&Lee,2013;Safari&Javadian, 2015).Recently, Safariand Javadiansynthesized Fe3O4-chitosan nanoparticlesbyco-precipitationmethodunderultrasound irra-diationintwodifferentsteps.Firstly,theyobtainedthemagnetic nanoparticlesbychemicalco-precipitation,followedbya subse-quentfunctionalizationwithchitosanbyaidofultrasound.Even though,cavitationphenomenonprovidesanincreaseinreactions rate,theultrasoundirradiation(US)isusedonlyinthesecondstep. Thereby,theadaptedmethodisstillbeingtime-consuming,since thesynthesisiscarriedoutintwosequentialsteps,namelyparticle precipitationandfunctionalization(Safari&Javadian,2015).

In this work, we present a rapid ultrasonic assisted in situ routetoproducemagneticFe3O4-chitosannanocomposites,where thechemicalco-precipitationandfunctionalizationoccuratthe same time, i.e., in one quick step. Besides the in situ method synthesizesMNPswithlowcrystallitesize,highcrystallinityand saturationmagnetization,thenanocompositematerialhasshown optimalelectrochemicalresponseduetodevelopmentofmodified electrodes.Furthermore,ourmethodminimizestheoxidationof magnetiteanddrasticallydecreasesthesynthesistimefrom sev-eralminutesand/orhoursfor theconventional co-precipitation methodtoafewminutes(∼2min).Additionally,inthesenseof electrochemicalsensorsapplication,theproposedrouteis poten-tiallyidealtoproducealargeamountofmaterial,i.e.,scalingupto industriallevel,sincesensorsofhybridmaterialsbasedonchitosan andFe3O4havebeendevelopedfordetectionofglucose(Kaushik etal.,2008),urea(Kaushiketal.,2009)andassensorsfordiseases diagnosis(Tranetal.,2011).

2. Experimentalprocedure

2.1. Materials

Chitosan(DPN−DeltaProdutosNaturaisLtda)was character-izedregardingtomolecularweight(Mw),31kDa,anddeacetylation degree (DD), 92%, by gel permeation chromatography (GPC) and potenciometry, respectively. Ferric chloride hexahydrate (FeCl3·6H2O, 97%), potassium ferrocyanide (K4Fe(CN)6, 98.5%), potassiumferricyanide(K3Fe(CN)6,99%),potassiumchloride(KCl, 99%)and glacial acetic acid(CH3COOH, 99.7%)were purchased fromVETEC.Ferroussulfateheptahydrate(FeSO4·7H2O,99%)and ammonium hydroxide solution (NH4OH, 30%) were purchased fromDINAMICA, and glutaraldehyde solution 25%from Sigma-Aldrich.Allusedreagentsareanalyticalgrade.

2.2. Preparationofchitosan/Fe3O4nanocomposites

Themagneticchitosannanocompositesweresynthesizedas fol-low. Firstly,differentamounts ofchitosan (0.1,0.05and 0.01g) weredissolvedin15mLofaceticacid1%(v/v)understirringat 50◦Cfor10min.Subsequently,10mLofFesolution0.33molL−1 (FeCl3.6H2O/FeSO4.7H2OFeCl3·6H2O/FeSO4·7H2O (Fe3+:Fe2+, 2:1 molarratio)wasaddedintochitosansolutions.After homogeniza-tion,2mLofNH4OHwasslowlyaddedunderUSirradiationfor 2min(50%amplitude,inapulseregime20son–10soff)usinga G.HeinemannUltraschall−undLabortechinikSonifier.The resul-tantprecipitatedchitosan-basedmagnetitewasremovedfromthe solutionbymagneticdecantation.Then,obtainedchitosan/Fe3O4 nanoparticleswerewashedseveraltimeswithdistilledwaterand redispersedin aglutaraldehyde (GL)solution(chitosan: GL,2:1 molarratio)at50◦Cfor2hundermechanicalstirring.Thefinal productwaswashedseveraltimeswithdistilledwateranddried inanovenat50◦Cfor48h.Thesampleswerecollectedasablack powderandlabeledasChM0.1,ChM0.05andChM0.01,where thenumbers0.1,0.05and0.01correspondtothemassofchitosan usedinthesynthesis.Thesamestrategywasusedinthesynthesis of“naked”Fe3O4nanoparticles.

2.3. Characterizationmethods

X-ray Powder Diffraction (XRPD) analysis was performed to confirm the crystalline structures of magnetite present in chitosan/Fe3O4 nanocomposites.The sampleswereanalyzedby X-raypowder diffractometerXpertPro MPD(Panalytical)using Bragg–Brentanogeometryintherangeof15◦–70◦witharateof 1◦min−1. CuK␣radiation (k=1.54059Å)wasusedand thetube operatedat40kVand30mA.

Fourier Transform Infrared Spectroscopy (FTIR)analysis was carried out in a PerkinElmer 2000 spectrophotometer used to recordspectraintherangebetween4000and400cm−1.Previously measurements,thesamplesweredriedandgroundedtopowder andpressed(∼10mgofsampleto100mgofKBr)indiskformat.

ThemorphologicstudywasperformedbyTransmission Elec-tronMicroscopy(TEM).TheimageswererecordedbyusingaJEOL JEM-1400electronmicroscopeoperatingatanacceleratingvoltage of120kV.Thesampleswerepreparedbydilutingnanoparticles dispersionindistillatedwater. Then,one dropletofthesample was placed on300mesh carbon-coated cooper gridsand dried overnight under ambient conditions. The size distribution was determinedbymeasurementof50randomlyselectedparticlesin differentregionsoftheexpandingTEMimage.

Forthermogravimetricanalysis(TG),5mgofnanoparticleswere carriedoutinnitrogenatmospherebyemployinga Thermogravi-metricAnalyzerQ50V20.Thelossofmasswasmonitoredheating upsamplesfrom25to900◦Cinarateof10◦Cmin−1.Thezerotime for thethermaldegradation studywastakenaftertemperature stabilization.

MagneticpropertieswereinvestigatedbyaVibratingSample Magnetometer(VSM)Mini5TfromCryogenicLtd.Previously,the VSMwascalibratedusingaYIGsphere,andaftermeasuringthe massofeachsample,themagnetizationwasgiveninemug−1.The zero-field-cooled(ZFC)curvewasobtainedbycoolingthesamples (300–5K)intheabsenceofanexternalfield,uponreaching tem-peratureanexternalfieldisappliedandmeasuredasafunctionof theincreasingtemperature.Thefield-cooled(FC)curveisobtained followingthesameZFCprocedure;instead,thesamplesarecooled inthepresenceofexternalfield.

Cyclic voltammetry measurements were carried out with a potentiostatic(Autolab PGSTAT101Metrohn-EcoChemie) con-trolledbyapersonalcomputerwithNovaversion1.11.2software usingconventionalthree-electrodesystem.Thisiscomposedbya

(3)

modifiedglassycarbonelectrode(GCE)(3mmofdiameter,BASi) asthe workingelectrode, a Ptsheet asauxiliary electrode and anAg(s)/AgCl(s)/Cl−(aq)(saturatedKCl)asreferenceelectrode.All measurementswereperformedinasolutionof1.0×10−3molL−1 Fe(CN)63−/4−containing0.1molL−1KClindifferentscanrates.The GCEwas carefullypolished with3␮m diamondpasteand was ultrasonicatedinethanolandpurifiedwater.ThemodifiedGCEwas preparedbyaddinga5␮Lofsampledispersion1mgmL−1 inBr bufferpH6ontothetopoftheelectrode.Thesolventwasallowed toevaporateatroomtemperature(23±1◦C)for60min.Whennot inuse,themodifiedelectrodewasstoredinadesiccatoratroom temperature.

3. Resultsanddiscussion

3.1. Synthesisofchitosan/Fe3O4nanocomposites

Chitosan-Fe3O4nanocompositeshavebeenpreparedby chem-icalco-precipitationmethodunderUSirradiation.Theprocedure schemeandidealizedobtainedstructureareshowninFig.1(a)and (b),respectively.AspreviouslydescribedinSection1,thework pro-posaltouseultrasoundassistedinsituchemicalco-preciptation method has several advantages over conventional procedures. Since,thesynthesisiscarryingoutunderUSirradiation,the soni-cationwavesthemselvespromoteahomogenousdispersionwith anultrahighsurfaceareabetweenchitosanandironions.Inthe firststage,Fe2+andFe3+ionsarecapturedbytheaminogroups ofchitosantoformthechitosan-complexedFe.Asaresultofthis chelationeffect,thechelatedaminogroupscanhindertheironions diffusion,controllingthegrowthofmagnetitecrystals(Wang,Li, Zhou,&Jia,2009).Inthesecondstage,whilethebaseisadded,the cavitationprocessimprovesthesystemhomogeneity,avoidingthe formationofagglomeratesduringthecrystalgrowth.Theinsitu magnetitemineralizationunderUSirradiationcanbeobservedin Eq.(1).

Fe2++2Fe3++8OH− )))→Fe

3O4+4H2O (1)

Ultrasoundassistedmethodshavebeenanupsurgeinthestudy ofhybridnanocomposites,owingtointerestingproperties(Patil etal.,2014;Reddy&Lee,2013;Safari&Javadian,2015;Sheteetal., 2014).Generally,themagneticnanoparticle(Fe3O4)isfirstly syn-thesized,andchitosanmatrixisformedsubsequently.However, ourmethodologypresentsonequickstepinsitusynthesisto pro-ducethechitosan/Fe3O4nanocomposite,wherethesonicationtime hasanimportantroleinthesynthesis,aswellasinfinalproduct properties.SincetheprocedureleadswithchitosanduringUS irra-diation,somelimitationshavetobeconsidered,therebytoavoid somenegativeeffects.Forinstance,duringthepulseonthe col-lapseofthebubblesprovidesahighshearforce,occurringcleavage ofchitosanmolecules.Inthiswork,evenwithalow pulse-time-regimeof2min,thechitosanmolecularweight(Mw)waschecked aftersynthesisbyGPC.Asexpected,thedecreaseofchitosanMw wasslightlysignificant,consideringthattheobtainedMwvalues areinthesamerangeofchitosanbeforesonicationstep,30–10kDa foreachchitosansolution(Ch0.01,0.05and0.1)(Wu,Zivanovic, Hayes,&Weiss,2008).Anotherrelevantpointisthe inhomoge-neousoutputpower,causedbytheheatingupoftheprobe,ifthe ultrasoundisusedforalongtime.Besidestheheatingupofthe probemaydecreasetheamplitude%,hightemperaturesprovide oxidationofFe(II)toFe(III),decreasingsubstantiallythesaturation magnetizationoftheMNPs,mayinfluencenegativelyinthe super-paramagneticproperty,andalsotheefficiencyofthesynthesis.

Otherpointthatshouldbeconsideredisthereticulationstep after the synthesis of the nanocomposite. For example, adsor-bentandresin materialsrequirebiopolymersresistanttoacidic medium,andthathasadirectrelationwithcrosslinkingreactions. Considering achitosan-basedhybrid material,few studieshave reportedinstabilityofchitosaninstronglyacidicmedium(Sinha etal.,2004).Thereby,crosslinkeragentsasglutaraldehydehave beenusedtostabilizationpurposes,formingSchiffbaselinkages, inwhichmayacquiregoodstabilitytonanocomposites.Thus, pro-ducingaversatileandresistancechitosan-basedmagnetiteunder mildconditions,whereitcanbeappliedindifferentusages.

(4)

3.2. Characterizationofchitosan/Fe3O4nanocomposites 3.2.1. Morphologicalandstructuralcharacterization

XRPDtechniquewasusedtoidentifythecrystallinestructureof themagneticnanoparticlesdispersedinchitosanmatrix,asshown in Fig.2(a).All samplespresented main characteristic peaksat 30.2,35.6,43.2,53.6,57.2,62.8◦,whichcanbeindexedto(220), (311),(400),(422),(511)and(440)planes,respectively,by com-parison withinorganic crystal structure database(ICSD, file n◦ 01-086-1340).Thesepeaksareassociatedwithcubicspinelphase ofmagnetite(Fe3O4),andpatternspeaksobservedinallobtained nanocompositesshowed the crystallinestructure of magnetite. However,itwaspossibletoobservethatthesampleChM0.1 pre-sentedthebroadeningathalfthehighermaximumintensitywhen comparedtotheothersamples.Thisincreasingmaybeassociated withtheinfluenceofamorphousstructureofchitosan.This influ-encewasnotobservedintheChM0.05and ChM0.01 samples, suggestingthattheinterferenceofchitosanisonlyobservedwhen themolarratioofchitosanmonomerandironionsishigherthan 0.1902.

AlldiffractogramswererefinedbyusingRietveldmethod.The latticeparameters(a=b=c)forsamplesFe3O4,ChM0.01,ChM0.05 andChM0.10werefoundtobe8.3625,8.3534,8.3510and8.3517, respectively.Theseresultsindicateastronginteractionbetween chitosanandmagnetiteoccasionedbycontractionsoftheunitcell ofmagnetite.Thecrystallitesizewascalculatedaccordingto Scher-rer’sequation,whichisrepresentedas

Tc= K

ˇcos (2)

whereTcistheaveragediameterofcrystallite;Kisthedimensional factor;istheX-raywavelength;␤isthebroadeningathalfofthe maximumintensityandistheBragg’sangle.Diametervaluesof thesamplesFe3O4,ChM0.01,ChM0.05andChM0.1werefound tobe11.65±0.11, 12.67±0.10,11.79±0.16 and8.37±0.18nm,

respectively.Gregorio-Jaureguiandcoworkersobtained chitosan-basedmagnetitenanoparticlesbyco-precipitationmethod,which weremixed FeCl3.6H2O andFeCl2.4H2Owithdifferentchitosan mass in a reactor (Gregorio-Jauregui et al., 2012), and it was observed a crystallite sizesimilar tofound in this work. How-ever, theyusedlarger amountof chitosan and thesynthesis is time-consuming,more than30min.Clearly,associatedwiththe USirradiation,itisobservedchitosanactingasacontrollerofthe crystallitesize,and thatcanbeassociatedwiththeFe-chitosan complexformedprior tothenucleationoftheparticles.Indeed, theformationofFe-chitosancomplexpositivelyinterferesinthe crystalgrowthprocessbycontrollingtheironionsdiffusion, lead-ingtotheformationofcrystalswithanarrowsizedistributionand smalldiameter(Wangetal.,2009).

TEManalysisofChM0.05sample (referencesample,onceit hasshownbetterresults)atdifferentamplificationsisshownin

Fig.2(b) and(c).Despite nanoparticleswereagglomerated dur-ingthebrieflydryingprocess,areasonablehomogenizationwith anarrowsizedistributionwasnoticed,alsoshowingaspheroidal morphology.Instead,chitosanlayerwasnotvisibleintheseimages, owingtolowcontrastofchitosanonthegrid.Fig.2(b)showsthe correspondinghistogram (inset).The size distributionwas also determinedusinganimageanalysisprogramfromdifferent micro-graphs.Asitcanbeseen,thediameterofthenanoparticlesranges from10to25nm,smallerthanmagneticnanocompositesprepared byconventionalco-precipitationdescribedintheliterature(Li,Jia, Zhou,Hu,&Cai,2006; Yallapuetal.,2011).Sheteand cowork-ersalsoobtainedchitosan-basedmaterialswithparticlesizeabout 15nm(Sheteetal.,2014).Otherauthors,usinginsitusynthesis, reporteddiametervaluesevensmallerthanthoseobtainedinthis method(Gregorio-Jaureguietal.,2012;Wangetal.,2009),butit cannotbeexcludedthatin thisultrasound assistedmethodthe oxidationofmagnetitemaydecrease,oncetheprocedureis carry-ingoutin∼2min.Forcomparison,valuescalculatedbyTEMwere similartoparticlessizeestimatedbyScherrer’sequation(2).

Fig.2.(a)XRPDpatternsofthe(I)standardFe3O4(ICSD,filen◦01-086-1340),(II)Fe3O4,(III)ChM0.01,(IV)ChM0.05and(V)ChM0.1;(b)and(c)TEMimagesofthesample

(5)

Fig. 3(a) shows FTIR spectra to Fe3O4, chitosan, and ChM-NPssynthesizedwithdifferentchitosanamounts.ForFe3O4 and nanocomposites,bandsaround580cm−1 wereassignedtoFe–O deformationin octahedraland tetrahedral sites,confirmingthe presenceofFe3O4intonanocompositesstructure(Donadeletal., 2008). Absorption related to stretching vibration C O of ether and primaryalcohol in thechitosan spectrum wasobserved in 1027and1085cm−1,respectively.Interestingly,thesebandswere shiftedto1031and1068cm−1innanocompositesspectra,where wasalsoobservedbandsat1629,1631and1635cm−1,whichcan beassociatedtothestretchingof thelinkingC N oftheimine (Schiffbase)fromthecrosslinkedreaction(Kim,Shin,Spinks,Kim, & Kim, 2005). Additionally, the absorption band at 1151cm−1 is characteristic ofthe asymmetricstretching of C O C bridge (Kyzas&Lazaridis,2009).Inchitosanspectrum,anabsorptionat

1658cm−1wasalsoobserved,correspondingtostretchingC Oof amidegroup(Donadeletal.,2008).Thesamebandin nanocompos-itesspectracannotbeobserved,owingtooverlapontheabsorption of the C N imine. In ChMNPs spectra, theabsorption around 3452cm−1,referringtothestretchingofchelatedOHgroups,was overlappedonthestretchingoftheN Haminegroup.However, ChM0.1sampleshowedabandat1563cm−1 correspondingto theangulardeformationofthelinkingN Hfromamine.In chi-tosanspectrum,thesamebandwasalsoobserved,butshiftedtoa regionoflowerwavenumber.AccordingtoGregorio-Jaureguiand coworkers,couldbeconcludedthatallchitosanin nanocompos-itesstructuresarechemicallyboundedtothemagnetite,sincethe ChMNPswerewashedseveraltimesandseparatedbymagnetic decantation(Gregorio-Jaureguietal.,2012).

Fig.3.(a)FTIRspectraofthesamples(I)Fe3O4,(II)chitosan,(III)ChM0.1,(IV)ChM0.05and(V)ChM0.01;(b)and(c)TGandDTGcurvesofthesamplesCh(chitosan),ChM

(6)

TGanalysiswasusedtoconfirmtheformationofthe nanocom-posite and to quantify the relative magnetite amount in the nanocomposites.TGandDTGcurvesofchitosanand nanocompos-itesareshownin Fig.3(b) and(c),respectively.Thermalevents aswellasquantitiesofmagnetiteinthenanocomposites(mgof chitosan per g of nanocomposite)are given in Table 1. In chi-tosancurveisshowingfourthermalevents,thefirstoneoccursat thetemperaturerangefrom25to110◦C,whereitwasassigned tothedehydration ofthe material.Thesecond eventoccurs in the temperature range around 200–400◦C, related to polymer degradationsuchasdehydrationreactions,deamination, deacety-latedandbreakingofglycoside(Ziegler-Borowska,Chełminiak,& Kaczmarek, 2015). Thermalevents continueseven after 400◦C, occurringaround410–750◦Cand760–856◦Cwithaweightloss of 29.88and 10.29%, mayrelated toopeningof thepyran ring inthepresenceoforganicacids(Marroquin,Rhee,&Park,2013). Fornanocompositescurves,thefirstthermaleventoccursaround 25–120◦C,italsoattributedtodehydration.Interestingly,wecould observethatthenanocompositewiththebiggestamountof chi-tosanshowedthehighestweightlossinthistemperaturerange. Inthissense,theweightlosscorrespondingtotheevaporationof waterseemstodependontheamountofwatermoleculesadsorbed inthechitosanpolymer(deBritto&Campana-Filho,2004).The sec-ondeventoccursaround170–440◦C,wheretemperatureonthe maximumrateoftheweightlosswasfoundtobe253,244and 264◦CforsamplesChM0.01,ChM0.05andChM0.10(Fig.3(c)).In otherwords,thenanocompositespresentedtheseeventsatlower temperaturesthanpurechitosan.Thismayberelatedtothe cooper-ativelossofthehydrogenbondalongthechitosanskeleton,dueto changesinthedonorandreceptorssitesofhydrogenoccasionedby crosslinkingreactionwithglutaraldehyde,asareshowninFig.3(d) (Poon,Wilson, &Headley,2014).The thermaldegradation con-tinueseveninsmallerproportionuntil800◦C,correspondingto thebreakdownofthemainchitosanchainscoveringtheformed magnetite (Table1).As canbeobservedin TGand DTGcurves (Fig.3(b) and(c),respectively),theweightlossformagnetiteis showedaround6%inthedecompositionstagecorrespondingto thetemperaturerange25–800◦C.AsreportedbyGregorio-Jauregui andcoworkers,thisweightlosscanbeattributedtotheremoval of freeand physically adsorbedwater (Gregorio-Jaureguiet al., 2012).Therefore,thetotalweightlossobservedintheChMNP sam-plescorrespondstotherelativeamountofchitosanimmobilized onthenanocomposite,andtheresidualmasscorrespondstothe percentageofFe3O4.

Fromtheseresults, therelativequantityofmagnetiteonthe nanocompositecanbeestimatedusingPeniche’smethodbyEq.

(3)(Peniche,Osorio,Acosta,delaCampa,&Peniche,2005). R= Rq

Wq∗WC+M

(3) whereRqistheresidualpercentageat856◦Cofpurechitosan,Wq andWCarethetotalweightlossinpercentagebetween200and 400◦C,Misthewt.%ofthemagnetiteinnanocomposites,andRis theresidualmassat856◦C.AsshowninTable1,theamountof magnetitefoundintonanocompositestructureincreasedwiththe

decreasingofchitosanmassusedinthesynthesis.Thus,asinitially proposed,assumingthatthenanocompositewaswashedseveral timesaftersynthesisprocedure,thefoundmagnetiteandchitosan intonanocompositearechemicallybounded.

3.2.2. Magneticmeasurements

Themagneticpropertiesofthenanocompositessynthetizedin thisworkweremeasuredasafunctionoftheexternalmagnetic fieldandtemperature.Theresultsofmagnetizationcurves mea-suredat300KareshowninFig.4(a).Absenceofhysteresisloops werefoundforallsamples,sincecoercivityandremanencevalues werezero,whichcanbeattributedtosuperparamagneticbehavior (Freireetal.,2013).Thesaturationmagnetization(Ms)forsamples Fe3O4,ChM0.01,ChM0.05andChM0.1arefoundasbeing56.78, 54.35,49.48e36.0emug−1,respectively.ThedecreaseintheMs valuesofchitosan/Fe3O4 nanocompositecanbeexplainedbythe decreaseintheamountofmagneticmomentsperunitweightdue tothediamagneticcontributionofchitosancoating(Kalkan,Aksoy, Aksoy,&Hasirci,2012).Sheteandcoworkersprepared chitosan-basedmagnetitenanocompositebyimmobilizationofmagnetite inchitosanmatrix,whichobtainedsimilarMsvaluescomparedto ours(Nicolásetal.,2013).Themagnetizationcurveatroom tem-peratureofthesesamplescanbedescribedbyLangevinfunction

M M0 = coth



KH BT



−KBT H (4)

whereisthemagneticmoment,Htheexternalmagneticfield, TthetemperatureandKB theBoltzmannconstant.The parame-tera=/KB,whichisassociatedwiththediameteroftheparticle asa=4(d/2)3M

0/3KBwithdbeingthediameterofparticle.Thus, adjustingthefitting,itwasfoundforparametersamong1and1.6, theaveragediameter:11.6,12.4,13.2and13.5nmforFe3O4,ChM 0.01,ChM0.05andChM0.1,respectively.Theseresultsare con-sistentwiththeresultsobtainedbyXRPD,exceptforthesample ChM0.1,whichbyXRPDhadasmallerparticlesize.InTEMimages, a largerparticlesizewasobserved.However,this canbeeasily explainedsincebothXRPDandVSMestimateparticlesize consid-eringonlythecrystallineandmagneticpartofthenanoparticle.

Cordenteandcoworkersnormalizedmagnetizationcurvesper gramofNitodeterminetherealMsonNinanoparticles(Cordente et al.,2001).Similarly, we normalized thecurve of magnetiza-tion of nanocompositesper gramof magnetite (takenfrom TG curves).Thecurves,showedinFig.4(b),werealsodescribedby Langevinfunction,wheredeterminedaveragesizediameterwere 11.3,11.6e11.9nmforChM0.01,ChM0.05, ChM0.10, respec-tively.Theseresultssuggestthattheadditionofthechitosanacts asaparticlesizecontroller.TheMsforsamplesChM0.01,ChM 0.05,ChM0.10wasfoundtobe61.12,72.96and60.84emuper gram ofFe3O4, respectively. It is important tonotethat Ms of chitosan/Fe3O4sampleswerehigherthaninpuremagnetite. How-ever,itisstillremainedbelowthebulk(92emug−1)(Guardiaetal., 2007).Despitesomeauthorssuggestthatcoordinationofamino ligands onthesurfaceof nanoparticlesshouldnotreduce their magneticproperties(Pick&Dreyssé,2000).Theliteraturereports amagneticallydeadlayer(MDL)forvariousmagnetic nanoparti-Table1

ThermaleventsobtainedfromTGandDTGcurves,andmagnetiteamountintoMNPs.

Weightloss(%) Fe3O4inthenanocomposites(mgg−1)

1ststage 2ndstage 3rdstage 4thstage

Chitosan 11.56 47.86 29.88 10.29 –

ChM0.01 2.44 8.30 – – 893.05

ChM0.05 4.78 17.15 10.15 – 676.90

ChM0.1 8.04 19.21 13.82 – 588.30

(7)

Fig.4. (a)Magnetizationcurvesnormalizedpergramofthesamples;(b)MagnetizationcurvesnormalizedpergramofFe3O4.Asdiscussedinthetext,thedatahasbeen

fitted(solidlines)throughaLangevinfunction;(c)CurvesofMsagainstMDLthickness;(d)IllustrationoftheMDLofthenanocomposites.

clesthatisresponsebydecreaseoftheMs(Ikedaetal.,2010).This

MDLisresultantofthesurfaceeffect,duetoadisorderofthe mag-neticmoments.Thus,thedifferenceinMsbetweensamplesand thediscrepancyofbulkindicatesthatchitosaninterferinginthe thicknessoftheMDLformedinthemagnetite.TheMDLcanbe estimatedusingEq.(5).(He,Zhong,Au,&Du,2013)

Ms(P)=Ms(B)



1−6t d



(5) WhereMs(p)andMs(B)aretheMsforthesampleandbulk, respec-tively,dis theaverageparticlediameter andt is thethickness ofMDL(Fig.4(d)). For samplesChM0.01, ChM0.05,ChM0.10 andFe3O4werefoundthatthethicknessoftheMDLis0.66,0.39, 0.63and0.74nm,respectively.Fig.4(c)showsthedecreaseofthe magnetizationsaturationin functionof MDLthickness. Despite observedthatthechitosandecreasesthethicknessoftheMDLof allnanocompositescomparingtopureFe3O4.Thisdecreasedoes notconstantwiththeincreaseofchitosanamountinthereaction medium.TheseresultsareconsistentwiththosefoundbyXRPD, sinceitwasobservedthatthemagnetiteintonanocompositeshad acontractionofitscrystallattice.

Fig.5showsthezerofield-cooled(ZFC)/field-cooled(FC)curves measuredat a field of 50Oe for samples Fe3O4,ChM0.01 and ChM0.1.ThesuperpositionoftheZFCandFCcurvesat300Kwas observed,featuringasuperparamagneticsystem.Itwaspossible toverify that theFe3O4 shows a blockingtemperature around 179K.ComparingtoChM0.01andChM0.1curves,itcanbeseen

thatthesamplewithhighestamountofchitosanshowedsmallest blocking temperature,169 and 155K, respectively. This behav-iorisassociatedwithadecreasein dipolarinteractionbetween nearbynanoparticlesduetothecontributionofchitosancoating (Meiorin,Muraca,Pirota,Aranguren,&Mosiewicki,2014).Indeed, theultrasoundmethodproposedinthisworkasingleandfaststep, consideringtimeandpulseregimeconditions,hasbeenshowinga goodalternativeofsynthesis,oncethehybridmaterialpresents superparamagnetic behavior, even coated with chitosan, small crystallitesandhighcrystallinity.

3.3. Electrochemicalmeasurements(modifiedelectrodes)

Inthedevelopmentofmodifiedelectrodesisessentialto evalu-atethestabilityofmodificationwithelectrochemicalactivityofthe analyteofinterest(Hasanzadeh,Shadjou,&delaGuardia,2015). Therefore,thestudyoftheelectrochemicalbehaviorofcommon electroactivespeciesasaredoxcouple[Fe(CN)6]3−/4−areappliedto monitorthesurfacestatusandthebarrierofthemodifiedelectrode (Wangetal.,2015).

The electrochemical behavior of [Fe(CN)6]3−/4− was investi-gatedbycyclicvoltammetry,asshown inFig.6.ChM0.01/GCE exhibitsapairofredoxpeakswiththeanodicpeakpotential(Epa) at303mVandthecathodicpeakpotential(Epc)at74mV,giving apeak-to-peakseparation(Ep)of229mV.Remarkably,forChM 0.05/GCEtheEpa andEpcare251and117mV,respectively,then theirpeak-to-peakseparationiscalculatedtobe134mV.ForGCE

(8)

Fig.5.Zerofield-cooled/field-cooledcurvesofsamplesFe3O4,ChM0.01andChM

0.10.

modifiedwithChM0.1,Epa andEpcare244and122mV, respec-tively,andtheEpiscalculatedtobe122mV.Thereductionof Epdemonstratesafastelectrontransfer(Dengetal.,2014),in whichwaspromotedbytheincorporationofchitosaninthe func-tionalization(Yang,Ren,Tang,&Zhang,2009;Yu,Gou,Zhou,Bao, &Gu,2011).

Furthermore, cyclic voltammograms of ChM 0.01/GCE, ChM 0.05/GCE, ChM 0.1/GCE reveal well-defined symmetric peaks at different scan rates (



); meanwhile, both Ipa and Ipc increase as the square root of the scan rate grows from 10 up to 150mVs−1 (data not shown). The peak currents vary linearly with

v

1/2, whose linear regression equations are Ipa (A)=−1.40×10−6+1.87×10−6

v

1/2 (R=0.98064, n=6), Ipc (A)=4.75×10−7−1.50×10−6

v

1/2 (R=0.97268, n=6) for ChM 0.01/GCE. For ChM 0.05/GCE, ChM 0.1/GCE the equa-tions are Ipa (A)=−1.52×10−6+2.99×10−6

v

1/2 (R=0.97284, n=6), Ipc (A)=2.09×10−6−2.63×10−6

v

1/2 (R=0.97496, n=6), and Ipa (A)=−4.95×10−6+3.43×10−6

v

1/2 (R=0.97763, n=6), Ipc(A)=3.89×10−6−2.89×10−6

v

1/2(R=0.97778,n=6), respec-tively.

ThemagnitudeofcurrentresponseforChM0.1/GCEincreases incomparisontoChM0.01/GCE,andissimilarforChM0.05/GCE. ThismaybeduetotheinducedmagnetizationofFe3O4magnetic domainsunderanelectricfield.Itseemsthattheelectricfieldgiven directioninducesalignmentofmagneticnanoparticlesand facili-tatestheflowofelectrons,resultinginanincreaseofthecurrent value(Kaushiketal.,2009).

In order to elucidate the good conductivity, improving the electronictransportefficiencyandlargesurfacearea,we quanti-tativelydetectedtheelectro-activesurfaceareaforallmodified electrodesbyrecordingcyclicvoltammetryatdifferentpotential scanrates[Fe(CN)6]3−/4−servingasredoxprobes.Theelectroactive surfaceareawascalculatedaccordingtoRandles–Sevcikequation

Fig.6.Cyclicvoltammetryof( )GCE,( )ChM0.01/GCE,( )ChM0.05/GCEand ( )ChM0.1/GCEsamples,inasolutionof1.0×10−3Fe(CN)63−/4−and0.1molL−1

ofKClatascanrateof50mVs−1.InsertFiveCyclicvoltammetryofChM0.05/GCE, inasolutionof1.0×10−3Fe(CN)63−/4−and0.1molL−1KClatascanrateof50mVs −1.

(Bard&Faulkner,2000)Ip=2.69×105AD1/2 n3/2

v

1/2C,inwhich A is the electrode area, Dis the diffusion coefficient (at25◦C, D=7.60×10−6cm2s−1),nisthenumberofelectronstransferred intheredoxreaction(n=1),Cistheconcentrationofthereactant (1mMFe(CN)63−/4−),Ipreferstotheredoxcurrentpeakand

v

isthe scanrateofthecyclicvoltammetrymeasurement.UsingIpav−1/2 indicatedthatChM0.1/GCE(3.42×10−3±5.36×10−4cm2)owns alargerelectro-activesurfaceareacomparedwiththesurfacearea (1.37×10−3±1.57×10−4cm2)ofbareglassycarbonelectrode.

The increase of electroactive area is not significant when compared to theChM 0.05/GCE (3.31×10−3±5.16×10−4cm2). However,itispossibletoobservethatbyincreasingthe electroac-tiveareaoflowerconcentration(1.88×10−3±1.05×10−4cm2)is 1.82timessmallerthanthemodificationChM0.1/GCE,duetothe smallincreaseincurrentandelectroactivearea.Thereby,ChM0.05 nanocompositeisrecommendedforfutureelectrochemical appli-cations.Inaddition,theincreasingintheelectroactiveareaand theimprovementofelectron transfer,anotheradvantageof the ChMNPsistogenerateanelectrochemicalsignalexceptionally sta-ble,whereboththepeakcurrentandthepotentialremainalmost unchangedevenafter5cycles(Fig.6).

4. Conclusion

The US assisted in situ synthesis proposed in this work introduces a new fast wayto obtain chitosan-basedmagnetite nanocomposite.TEMimagesconfirmthatChMNPs hadan aver-agediameterintherangeof10–25nm,whencomparedtothose obtained from XRPD (crystallite size, 8–13nm) and magnetic measurements(11.3–11.9nm).FTIRandTGanalysisprovedthat chitosanwaschemicallyboundedintonanocompositestructure, furthermoreTGresultsshowedthatthequantityofchitosaninto ChMNPincreases accordingtotheincrease of chitosan amount usedinthesynthesis. Allsamplespresentedsuperparamagnetic behavior,andaccordingtotheseresultsthesynthesized nanopar-ticleshadsimilarcharacteristicscomparingtothoseproducedby othermethodsrelatedintheliterature.Additionally,besidesthe fastpreparationofthesamples(around2min)mayminimizethe oxidation ofmagnetite, drasticallydecreasesthesynthesis time whencomparedtotraditionalmethods.Nevertheless,the synthe-sizednanocompositesshowedagreatpotentialaselectrochemical sensor,hencedemonstratedelectrochemicalsignalexceptionally stable,and theinsertion ofchitosan increasedtheelectroactive area.

(9)

Acknowledgements

ThisworkwaspartlysponsoredbyCAPESandCNPq(Brazilian agencies).ThesupportfromFondecyt1140195andCONICYTBASAL CEDENNAFB0807aregratefullyacknowledged(Chileanagencies).

References

Bard,A.J.,&Faulkner,L.R.(2000).Electrochemicalmethods:fundamentalsand applications.Wiley.

Barkade,S.S.,Pinjari,D.V.,Nakate,U.T.,Singh,A.K.,Gogate,P.R.,Naik,J.B.,etal. (2013).Ultrasoundassistedsynthesisofpolythiophene/SnO2hybridnanolatex

particlesforLPGsensing.ChemicalEngineeringandProcessing:Process Intensification,74(0),115–123.

Barkade,S.S.,Pinjari,D.V.,Singh,A.K.,Gogate,P.R.,Naik,J.B.,Sonawane,S.H., etal.(2013).Ultrasoundassistedminiemulsionpolymerizationforpreparation ofpolypyrrole–zincoxide(PPy/ZnO)functionallatexforliquefiedpetroleum gassensing.Industrial&EngineeringChemistryResearch,52(23),7704–7712.

Bayrakci,M.,Gezici,O.,Bas,S.Z.,Ozmen,M.,&Maltas,E.(2014).Novelhumic acid-bondedmagnetitenanoparticlesforproteinimmobilization.Materials ScienceandEngineering:C,42,546–552.

Carroll,K.,Ulises-Reveles,J.,Shultz,M.,Khanna,S.,&Carpenter,E.(2011).

PreparationofelementalCuandNinanoparticlesbythepolyolmethod:an experimentalandtheoreticalapproach.TheJournalofPhysicalChemistryC,115, 2656–2664.

Chen,D.,Li,D.-y.,zhang,Y.-z.,&Kang,Z.-t.(2013).Preparationofmagnesium ferritenanoparticlesbyultrasonicwave-assistedaqueoussolutionballmilling. UltrasonicsSonochemistry,20(6),1337–1340.

Cordente,N.,Respaud,M.,Senocq,F.,Casanove,M.-J.,Amiens,C.,&Chaudret,B. (2001).Synthesisandmagneticpropertiesofnickelnanorods.NanoLetters, 1(10),565–568.

deBritto,D.,&Campana-Filho,S.P.(2004).Akineticstudyonthethermal degradationofN,N,N-trimethylchitosan.PolymerDegradationandStability, 84(2),353–361.

Deng,S.-Y.,Zhang,T.,Shan,D.,Wu,X.-Y.,Dou,Y.-Z.,Cosnier,S.,etal.(2014).

UnusualFe(CN)63−/4−captureinducedbysynergiceffectofelectropolymeric

cationicsurfactantandgraphene:characterizationandbiosensingapplication. ACSAppliedMaterials&Interfaces,6(23),21161–21166.

Dolores,R.,Raquel,S.,&Adianez,G.-L.(2015).Sonochemicalsynthesisofiron oxidenanoparticlesloadedwithfolateandcisplatin:effectofultrasonic frequency.UltrasonicsSonochemistry,23,391–398.

Donadel,K.,Felisberto,M.D.V.,Fávere,V.T.,Rigoni,M.,Batistela,N.J.,&Laranjeira, M.C.M.(2008).Synthesisandcharacterizationoftheironoxidemagnetic particlescoatedwithchitosanbiopolymer.MaterialsScienceandEngineering:C, 28(4),509–514.

Freire,R.M.,Ribeiro,T.S.,Vasconcelos,I.F.,Denardin,J.C.,Barros,E.B.,Mele,G., etal.(2013).MZnFe2O4(M=Ni,Mn)cubicsuperparamagneticnanoparticles

obtainedbyhydrothermalsynthesis.JournalofNanoparticleResearch,15(5), 1–12.

Gregorio-Jauregui,K.M.,Pineda,M.G.,Rivera-Salinas,J.E.,Hurtado,G.,Saade,H., Martinez,J.L.,etal.(2012).One-stepmethodforpreparationofmagnetic nanoparticlescoatedwithchitosan.JournalofNanomaterials,2012,8.

Guardia,P.,Batlle-Brugal,B.,Roca,A.G.,Iglesias,O.,Morales,M.P.,Serna,C.J.,etal. (2007).Surfactanteffectsinmagnetitenanoparticlesofcontrolledsize.Journal ofMagnetismandMagneticMaterials,316(2),e756–e759.

Gyergyek,S.,Drofenik,M.,&Makovec,D.(2012).Oleic-acid-coatedCoFe2O4

nanoparticlessynthesizedbyco-precipitationandhydrothermalsynthesis. MaterialsChemistryandPhysics,133(1),515–522.

Hasanzadeh,M.,Shadjou,N.,&delaGuardia,M.(2015).Ironandiron-oxide magneticnanoparticlesassignal-amplificationelementsinelectrochemical biosensing.TrACTrendsinAnalyticalChemistry,72,1–9.

He,X.,Zhong,W.,Au,C.-T.,&Du,Y.(2013).Sizedependenceofthemagnetic propertiesofNinanoparticlespreparedbythermaldecompositionmethod. NanoscaleResearchLetters,8(1),446.

He,C.,Liu,L.,Fang,Z.,Li,J.,Guo,J.,&Wei,J.(2014).Formationandcharacterization ofsilvernanoparticlesinaqueoussolutionviaultrasonicirradiation. UltrasonicsSonochemistry,21(2),542–548.

Ikeda,S.,Miura,K.,Yamamoto,H.,Mizunuma,K.,Gan,H.D.,Endo,M.,etal.(2010).

Aperpendicular-anisotropyCoFeB–MgOmagnetictunneljunction.Nature Materials,9(9),721–724.

Kalkan,N.A.,Aksoy,S.,Aksoy,E.A.,&Hasirci,N.(2012).Preparationof

chitosan-coatedmagnetitenanoparticlesandapplicationforimmobilizationof laccase.JournalofAppliedPolymerScience,123(2),707–716.

Kaushik,A.,Khan,R.,Solanki,P.R.,Pandey,P.,Alam,J.,Ahmad,S.,etal.(2008).Iron oxidenanoparticles–chitosancompositebasedglucosebiosensor.Biosensors andBioelectronics,24(4),676–683.

Kaushik,A.,Solanki,P.R.,Ansari,A.A.,Sumana,G.,Ahmad,S.,&Malhotra,B.D. (2009).Ironoxide-chitosannanobiocompositeforureasensor.Sensorsand ActuatorsB:Chemical,138(2),572–580.

Kim,S.J.,Shin,S.R.,Spinks,G.M.,Kim,I.Y.,&Kim,S.I.(2005).Synthesisand characteristicsofasemi-interpenetratingpolymernetworkbasedon chitosan/polyanilineunderdifferentpHconditions.JournalofAppliedPolymer Science,96(3),867–873.

Kyzas,G.Z.,&Lazaridis,N.K.(2009).Reactiveandbasicdyesremovalbysorption ontochitosanderivatives.JournalofColloidandInterfaceScience,331(1),32–39.

Li,B.,Jia,D.,Zhou,Y.,Hu,Q.,&Cai,W.(2006).Insituhybridizationto

chitosan/magnetitenanocompositeinducedbythemagneticfield.Journalof MagnetismandMagneticMaterials,306(2),223–227.

Lim,M.-C.,Lee,G.-H.,NgocHuynh,D.T.,MoralesLetona,C.A.,Seo,D.-H.,Park, C.-S.,etal.(2015).Amylosucrase-mediatedsynthesisandself-assemblyof amylosemagneticmicroparticles.RSCAdvances,5(45),36088–36091.

Mahmoudi,M.,Simchi,A.,&Imani,M.(2009).Cytotoxicityofuncoatedand polyvinylalcoholcoatedsuperparamagneticironoxidenanoparticles.The JournalofPhysicalChemistryC,113(22),9573–9580.

Marroquin,J.B.,Rhee,K.Y.,&Park,S.J.(2013).Chitosannanocompositefilms: enhancedelectricalconductivity,thermalstability,andmechanicalproperties. CarbohydratePolymers,92(2),1783–1791.

Meiorin,C.,Muraca,D.,Pirota,K.R.,Aranguren,M.I.,&Mosiewicki,M.A.(2014).

Nanocompositeswithsuperparamagneticbehaviorbasedonavegetableoil andmagnetitenanoparticles.EuropeanPolymerJournal,53(0),90–99.

Navarathne,D.,Ner,Y.,Jain,M.,Grote,J.G.,&Sotzing,G.A.(2011).Fabricationof DNA–magnetitehybridnanofibersforwaterdetoxification.MaterialsLetters, 65(2),219–221.

Nicolás,P.,Saleta,M.,Troiani,H.,Zysler,R.,Lassalle,V.,&Ferreira,M.L.(2013).

Preparationofironoxidenanoparticlesstabilizedwithbiomolecules: experimentalandmechanisticissues.ActaBiomaterialia,9(1),4754–4762.

Patil,R.M.,Shete,P.B.,Thorat,N.D.,Otari,S.V.,Barick,K.C.,Prasad,A.,etal. (2014).Superparamagneticironoxide/chitosancore/shellsforhyperthermia application:improvedcolloidalstabilityandbiocompatibility.Journalof MagnetismandMagneticMaterials,355(0),22–30.

Peniche,H.,Osorio,A.,Acosta,N.,delaCampa,A.,&Peniche,C.(2005).Preparation andcharacterizationofsuperparamagneticchitosanmicrospheres:application asasupportfortheimmobilizationoftyrosinase.JournalofAppliedPolymer Science,98(2),651–657.

Pick, ˇS.,&Dreyssé,H.(2000).Tight-bindingstudyofammoniaandhydrogen adsorptiononmagneticcobaltsystems.SurfaceScience,460(1–3),153–161.

Poon,L.,Wilson,L.D.,&Headley,J.V.(2014).Chitosan-glutaraldehydecopolymers andtheirsorptionproperties.CarbohydratePolymers,109,92–101.

Reddy,D.H.K.,&Lee,S.-M.(2013).Applicationofmagneticchitosancomposites fortheremovaloftoxicmetalanddyesfromaqueoussolutions.Advancesin ColloidandInterfaceScience,201–202(0),68–93.

Safari,J.,&Javadian,L.(2015).Ultrasoundassistedthegreensynthesisof 2-amino-4H-chromenederivativescatalyzedbyFe3O4-functionalized

nanoparticleswithchitosanasanovelandreusablemagneticcatalyst. UltrasonicsSonochemistry,22(0),341–348.

Shen,C.,Shen,Y.,Wen,Y.,Wang,H.,&Liu,W.(2011).Fastandhighlyefficient removalofdyesunderalkalineconditionsusingmagneticchitosan-Fe(III) hydrogel.WaterResearch,45(16),5200–5210.

Shete,P.B.,Patil,R.M.,Thorat,N.D.,Prasad,A.,Ningthoujam,R.S.,Ghosh,S.J., etal.(2014).Magneticchitosannanocompositeforhyperthermiatherapy application:preparation,characterizationandinvitroexperiments.Applied SurfaceScience,288(0),149–157.

Silva,V.A.J.,Andrade,P.L.,Silva,M.P.C.,BustamanteD,A.,DeLosSantos Valladares,L.,&AlbinoAguiar,J.(2013).Synthesisandcharacterizationof Fe3O4nanoparticlescoatedwithfucanpolysaccharides.JournalofMagnetism

andMagneticMaterials,343,138–143.

Sinha,V.R.,Singla,A.K.,Wadhawan,S.,Kaushik,R.,Kumria,R.,Bansal,K.,etal. (2004).Chitosanmicrospheresasapotentialcarrierfordrugs.International JournalofPharmaceutics,274(1–2),1–33.

Theerdhala,S.,Bahadur,D.,Vitta,S.,Perkas,N.,Zhong,Z.,&Gedanken,A.(2010).

Sonochemicalstabilizationofultrafinecolloidalbiocompatiblemagnetite nanoparticlesusingaminoacid,l-arginine,forpossiblebioapplications. UltrasonicsSonochemistry,17(4),730–737.

Tran,L.D.,Nguyen,B.H.,VanHieu,N.,Tran,H.V.,Nguyen,H.L.,&Nguyen,P.X. (2011).ElectrochemicaldetectionofshortHIVsequencesonchitosan/Fe3O4

nanoparticlebasedscreenprintedelectrodes.MaterialsScienceand Engineering:C,31(2),477–485.

Wang,Y.,Li,B.,Zhou,Y.,&Jia,D.(2009).Insitumineralizationofmagnetite nanoparticlesinchitosanhydrogel.NanoscaleResearchLetters,4(9), 1041–1046.

Wang,L.,Zhang,Y.,Cheng,C.,Liu,X.,Jiang,H.,&Wang,X.(2015).Highlysensitive electrochemicalbiosensorforevaluationofoxidativestressbasedonthe nanointerfaceofgraphenenanocompositesblendedwithgold,Fe3O4,and

platinumnanoparticles.ACSAppliedMaterials&Interfaces,7(33),18441–18449.

Wang,Y.,Li,L.,Luo,C.,Wang,X.,&Duan,H.(2016).RemovalofPb2+fromwater environmentusinganovelmagneticchitosan/grapheneoxideimprintedPb2+. InternationalJournalofBiologicalMacromolecules,86,505–511.

Wu,T.,Zivanovic,S.,Hayes,D.G.,&Weiss,J.(2008).Efficientreductionofchitosan molecularweightbyhigh-Intensityultrasound:underlyingmechanismand effectofprocessparameters.JournalofAgriculturalandFoodChemistry,56(13), 5112–5119.

Xu,Y.,Zhuang,L.,Lin,H.,Shen,H.,&Li,J.W.(2013).Preparationand characterizationofpolyacrylicacidcoatedmagnetitenanoparticles functionalizedwithaminoacids.ThinSolidFilms,544(0),368–373.

Yallapu,M.M.,Othman,S.F.,Curtis,E.T.,Gupta,B.K.,Jaggi,M.,&Chauhan,S.C. (2011).Multi-functionalmagneticnanoparticlesformagneticresonance imagingandcancertherapy.Biomaterials,32(7),1890–1905.

(10)

Yang,L.,Ren,X.,Tang,F.,&Zhang,L.(2009).Apracticalglucosebiosensorbasedon Fe3O4nanoparticlesandchitosan/nafioncompositefilm.Biosensorsand Bioelectronics,25(4),889–895.

Yu,C.,Gou,L.,Zhou,X.,Bao,N.,&Gu,H.(2011).Chitosan–Fe3O4nanocomposite basedelectrochemicalsensorsforthedeterminationofbisphenolA. ElectrochimicaActa,56(25),9056–9063.

Zhang,L.-y.,Zhu,X.-j.,Sun,H.-w.,Chi,G.-r.,Xu,J.-x.,&Sun,Y.-l.(2010).Control synthesisofmagneticFe3O4–chitosannanoparticlesunderUVirradiationin

aqueoussystem.CurrentAppliedPhysics,10(3),828–833.

Zhang,W.,Jia,S.,Wu,Q.,Wu,S.,Ran,J.,Liu,Y.,etal.(2012).Studiesofthemagnetic fieldintensityonthesynthesisofchitosan-coatedmagnetitenanocomposites byco-precipitationmethod.MaterialsScienceandEngineering:C,32(2), 381–384.

Ziegler-Borowska,M.,Chełminiak,D.,&Kaczmarek,H.(2015).Thermalstabilityof magneticnanoparticlescoatedbyblendsofmodifiedchitosanand

poly(quaternaryammonium)salt.JournalofThermalAnalysisandCalorimetry, 119(1),499–506.

Referenties

GERELATEERDE DOCUMENTEN

We indeed found evidence for a bump just below .05 in the distribution of exactly reported p-values in the journals Developmental Psychology, Journal of Applied Psychology, and

The n = 2 (AABB and ABAB) probes in the starling study contained several bigrams used in the preceding training phases (2).. *Probes with “ABAB” and

According to SWay's statutes, its task is to improve road safety by using the re~ ' ults of research. This task will be unimpain:d in the future. Knowledge distribution and

Conclusie voor 2008 is dat het voor weidevogels een beter (maar geen goed) jaar is geweest dan 2007, vanwege de kou in april en het wat wisse- lende weer in mei, waardoor het

Expressions are derived to write the basis vectors for an irreducible representation J.l of the symmetric group in terms of basis vectors for irreducible representations whose

The proposed scheme utilizes both the short training symbols (STS) as well as the long training symbols (LTS) in the system to estimate and compensate RF impairments along with

Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary