• No results found

Compressive properties of bitumen based composite materials

N/A
N/A
Protected

Academic year: 2021

Share "Compressive properties of bitumen based composite materials"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Compressive properties of bitumen based composite materials

Citation for published version (APA):

Puig, C. C., Segeren, L. H. G. J., Vancso, G. J., Michels, M. A. J., & Meijer, H. E. H. (2001). Compressive properties of bitumen based composite materials. Poster session presented at Mate Poster Award 2001 : 6th Annual Poster Contest.

Document status and date: Published: 01/01/2001 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl

providing details and we will investigate your claim.

(2)

1

2

/

department of mechanical engineering

PO Box 513, 5600 MB Eindhoven, the Netherlands

Compressive Properties of Bitumen Based

Composite Materials

C.C. Puig

†, L.H.G.J. Segeren‡, G.J. Vancso‡, M.A.J. Michels∗ and H.E.H. Meijer†

† Materials Technology, Faculty of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands. ∗ Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.

‡ Dutch Polymer Institute and Faculty of Chemical Technology, University of Twente, P.O. BOX 217, 7500 AE Enschede, the Netherlands.

Introduction

Recently, intermediate material properties (compressive strength) between those shown by traditional asphalts (9-11MPa) and those by cement concrete (30-60MPa or higher) were found by using some bitumens in the preparation of composites with a high content of minerals.

Experimental and discussion

Fig.1 shows the compressive mechanical behavior of two

composites made up of a mineral filler (particle size∼ 8 µm)

and two bitumens (A and B) of different origin. Fig.1 also shows the compressive curves for the pure bitumens. The compressive stress at yield for the bitumen A based compos-ite is about 50% higher than that shown by the traditional

as-phalt (bitumen B). If a mineral filler of larger particle size (

50µm) is used then a lower compressive stress is obtained.

0 1 2 3 4 5 6 7 0 2 4 6 8 10 Bitumen B, 60% Filler A Bitumen A strain rate: -10-2 s-1 Bitumen B Bitumen A, 60% Filler A

true compressive stress (MPa)

true compressive strain [-]

Figure 1 Uniaxial compression curves for the composites and pure bitumens.

We also investigated the nature of the surface energy proper-ties of the bitumens by carrying out inverse gas

chromatogra-phy at−30oC, i.e. below their glass transition temperature.

By plotting RTLn(VN) versus a(γDL)1/2, whereVN is the

re-tention volume given by the interaction of the probe (alkane

molecules) with the bitumen, a andγDL are the surface area

and the dispersive surface energy of the probe molecules,

re-spectively, the dispersive surface energy of the sample (γsD)

can be deduced from the slope. The corresponding values for

bitumen A and bitumen B are 59.3 and 50.6 mJ/m2,

respec-tively, it is almost a 20% difference.

In order to gain some knowledge on the differences in compo-sition between the two bitumens, thermal gravimetric analy-sis was carried out under an inert nitrogen atmosphere

be-tween room temperature and700oC. The amount of residue

in bitumen A is 31% whereas in bitumen B is about 23%. The

difference is attributed to the asphaltene content.

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2 4 6 8 10 12 Bitumen A T = -30˚C Bitumen B C7 C6 C 5 C4 RTLn(V N ) (kJ/mol) a(gLD)1/2 (nm2mJ1/2m-1)

Figure 2 Plot of RTLn(VN) versus a(γDL)1/2.

Anisotropic properties are expected from aggregates of as-phaltene, which are highly planar polyaromatic molecules. The scattering of X-rays on the small angle region by doing in situ heating and cooling experiments using the synchrotron

radiation shows the collapse of structures (∼ 20 nm in size)

in bitumen A (Fig. 3). We must bear in mind that in the pres-ence of a constrained environment imposed by the prespres-ence of rigid mineral particles, the collapse of these anisotropic structures and their arrangement can be somehow modified.

20 40 60 80 100 120 140 160 180 50 100 150 200 250 300 350 q = 0.03Å-1 10˚C/min 5 min Intensity (a.u.) Temperature (ºC)

Figure 3 X-ray intensity profile for a heating and cooling cycle at a given q value for bitumen A.

Conclusions

The enhanced mechanical properties observed in some bitu-men based composites may be explained by the higher as-phaltene content and by the higher dispersive surface energy of the bitumen. The constrained imposed upon the aggre-gates of asphaltene molecules by the presence of filler par-ticles may also be a contributing factor to the enhanced me-chanical behavior.

Referenties

GERELATEERDE DOCUMENTEN

In de aardappelteelt komt een nieuwe Dickeya-soort voor (D. solani) die sterk virulent is. Stammen van verschillende Dickeya-soorten zijn gemerkt met een groen fluorescent

Er is hier ook veel water, waar de ganzen zich veilig terug kunnen trekken?. In maart en april trekken ze weer terug naar hun broedgebieden rond

Uit de resultaten van de incubatie bleek dat zowel bij Meloidogyne als Pratylenchus in respectie- velijk 5,2% en 1,8% van de besmette monsters de aaltjes wel in de

Block copolymers, containing blocks with different physical properties have found high value applications like nano-patterning and drug delivery. By gaining control over the

Voor de belangrijkste bladluissoorten die PVY kunnen overbrengen is in het verleden bepaald hoe efficiënt deze bladluizen PVY kunnen overbrengen.. De mate van efficiëntie wordt

Dus door het TAN om te zetten tot nitraat kan men uit met minder water- verversing, echter er wordt nog steeds een vergelijkbare hoeveelheid stikstof geloosd als

Voor het monitoren van zuurgraad in habitatgebieden zou de volgende procedure gebruikt kunnen worden: - vaststellen welke habitattypen in principe gevoelig zijn voor bodemverzuring

Die veranderingen van normen en waarden begrijpen we niet of nauwelijks, maar die bepalen straks het succes van de heront - worpen veehouderij.. In dat onbegrip schuilt wel