• No results found

Current Trends in Ceramifiable Polymer Composites Development

N/A
N/A
Protected

Academic year: 2021

Share "Current Trends in Ceramifiable Polymer Composites Development"

Copied!
20
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

CURRENT TRENDS IN CERAMIFIABLE

POLYMER COMPOSITES DEVELOPMENT

Rafal ANYSZKA

1,2

, Dariusz M. BIELINSKI

1

, Mateusz IMIELA

1

,

Zbigniew PEDZICH

3

1

Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye

Technology, Lodz, Poland

2

University of Twente, Faculty of Engineering Technology, Department of Mechanics of Solids,

Surfaces & Systems (MS3), Chair of Elastomer Technology & Engineering, Enschede, The

Netherlands

3

Department of Ceramics and Refractory Materials, Faculty of Material Science and

(2)

POLYMER COMPOSIES PROPERTIES

PROS & CONS

 Exceptional elastic, dynamic and dumping properties

 Relatively easy processing and forming even into

complex shape

 Good mechanical properties/mass ratio

 Easy coloring

 Good chemical resistance

 Very good electrical resistance

 Limited UV and aging resistance

 Limited recyclability

(3)

24/8/18

3

CERAMIFICATION (CERAMIZATION)

CHARACTERISTICS OF CERAMIFIABLE COMPOSITES

A process leading to irreversible transformation from viscoelastic

polymer composite to continuous, rigid ceramic structure, during

exposition of the composite on fire and/or elevated temperature.

Before ceramification:

Good processability

Elasticity

Facile colouring

Combustibility

Low thermal stability

After ceramification:

Incombustibility

Stiffness

High porosity (thermal insulation)

(4)

FLAME RETARDANCY OF POLYMER COMPOSIES

TYPES OF FLAME RETARDANT ADDITIVES

Main mechanisms of polymer flame retardancy

Deactivation of radicals

Barrier-char formation

Quenching and cooling

of burning zone

(5)

24/8/18

5

24/8/18

7

POLYMER COMBUSTION PHENOMENA

REQUIREMENTS FOR COMBUSTION MAINTAINING

(6)

APPLICATION OF CERAMIFIABLE COMPOSITES

 Cables assuring integrity of electrical instalation during

a fire accident:

New standard for skyscrapers and specialist

fireproof building applications

 Fireproof glazing seal systems:

Cutting off oxygen supply

into the fire zone

 Protective coatings for steel structures:

Steel lose

approx. 50% of its load bearing capability at around 500 °C

 Anti-ablative composites for spacecraft and rocket

structures:

Providing shielding effect in

high-speed/high-temperature conditions

(7)

24/8/18

7

MECHANISMS OF CERAMIFICATION

LOW SOFTENING POINT TEMPERATURE GLASS-FRITS INITIATING CERAMIFICATION

R. Anyszka, et al. Polymer Bulletin (2017) DOI 10.1007/s00289-017-2113-0

(8)

THERMAL DECOMPOSITION OF SILICONE RUBBER

THE BENEFITS OF USING POLYSILOXANES

Thermal degradation mechanisms of PDMS in presence of oxygen results in

formation of amorphous silica

(9)

24/8/18

9

MECHANISMS OF CERAMIFICATION

SINTERING OF MINERAL FILLERS PARTICLES

(10)

MECHANISMS OF CERAMIFICATION

(11)

24/8/18

11

MECHANISMS OF CERAMIFICATION

LOW SOFTENING POINT TEMPERATURE GLASS-FRITS INITIATING CERAMIFICATION

J. Wang, et al. Polym. Degrad. Stabil (2015) 121: 149-156 H-W. Di, et al. RSC Advances (2015) 5: 51248-51257 F. Lou, et al. RSC Advances (2017) 7: 38805-38811

R. Anyszka, et al. Journal of Thermal Analysis and Calorimatry (2015) 119: 111-121. R. Anyszka, et al. Polymer Bulletin (2017) DOI 10.1007/s00289-017-2113-0 M. Imiela, et al. Journal of Thermal Analysis and Calorimetry (2016) 124: 197-203. R.Anyszka, et al. Przemysl Chemiczny (2014) 93: 1291-1295.

R.Anyszka, et al. Przemysl Chemiczny (2014) 93: 1684-1689. R. Anyszka, et al. Materials (2016) 9: 604.

Softening

point

temperature

Chemical composition [wt. %] (major components >0.1 wt.%)

P

2

O

5

Al

2

O

3

K

2

O

Na

2

O

SiO

2

CaO

TiO

2

B

2

O

3

ZnO

BaO

Li

2

O

MgO

F

373.9 °C

45.13

23.82

14.05

10.03

5.47

0.91

0.41

-

-

-

-

-

-400 °C

43.4

23.9

18.0

11.6

0.4

-

-

-

-

-

-

-

-430 °C

28.99

9.47

22.65

-

1.42

0.37

-

-

-

-

-

26.02

9.71

450 °C

(melting)

-

-

-

-

-

-

-

100

-

-

-

-

-480 °C

-

4.2

2.1

25.0

61.4

7.3

-

-

-

-

-

-

-515 °C

-

1.7

-

27.1

64.4

6.8

-

-

-

-

-

-

-520 °C

-

15.4

-

-

69.2

6.2

-

-

3.1

1.5

4.6

-

-560 °C

-

2.0

-

13.7

43.1

-

-

15.7

23.5

2.0

-

-

-- Acidic character

- Alkaline character

(12)

MECHANISMS OF CERAMIFICATION

(13)

24/8/18

13

MECHANISMS OF CERAMIFICATION

IN-SITU FORMATION OF CONTINUOUS CERAMIC STRUCTURE

(14)

MECHANISMS OF CERAMIFICATION

(15)

24/8/18

15

MECHANISMS OF CERAMIFICATION

CROSS-LINKING OF SILICONE LEADING TO SiOC CERAMIC FORMATION

SiOC – silicon-oxycarbide

ceramic formation via silicone

rubber cross-linking in high

temperature

S. Hamdani, et al. Polymer Degradation and Stability (2009) 94: 465-495. G. Camino, et al. Polymer (2002) 43: 2011-2015.

(16)

MECHANISMS OF CERAMIFICATION

(17)

24/8/18

17

MECHANISMS OF CERAMIFICATION

SPECIFIC FILLER ARRANGEMENT AS CERAMIC STRUCTURE PRECURSOR

(18)

MECHANISMS OF CERAMIFICATION

SUMMARY

Ceramization mechanism/parameter

Silicone

rubber

Organic

rubbers

Sintering of mineral filler particles

Yes

Yes

Fluxing agent application

Yes

Yes

Mineral fillers reaction with silica

Yes

?

Deposition of silica on mineral filler surface

Yes

?

Sintering of mineral fillers accompanied with bonded silicone rubber

Yes

No

Creation of SiOC ceramic via cross-lining of silicone rubber

Yes

No

Creation of SiOC ceramic on surface of silica particles

Yes

No

In-situ formation of continuous ceramic structure

Yes

?

Specific filler arrangement as ceramic structure precursor

Yes

?

(19)

24/8/18

19

POLYMER MATRICES APPLIED FOR CERAMIFIABLE

COMPOSITES

References

Polymer matrix

♠ Hamdani S, et al. (2010) Polym Degrad Stabil 95:1911–1919; ♠ Hamdani-Devarennes S, et al.. (2011) Polym Degrad Stabil 96:1562–1572; ♠ Hamdani-Devarennes S, et al. (2013) Polym Degrad

Stabil 98:2021–2032; ♠ Hamdani S, et al. (2009) Polym Degrad Stabil 94:465–495; ♠ Mansouri J, et al.

(2007) J Mater Sci 42:6046–6055; ♠ Mansouri J, et al. (2005) J Mater Sci 40:5741–5749; ♠ Mansouri J, et al. (2006) Mat Sci Eng A 425:7–14; ♠ Hanu LG, et al. (2004) J Mater Process Tech 153–154:401– 407; ♠ Hanu LG, et al. (2006) Polym Degrad Stabil 91:1373–1379; ♠ Hanu LG, et al. (2005) Mat Sci

Eng A 398:180–187; ♠ Wang J, et al.. (2015) Polym Degrad Stabil 121:149–156; ♠ Xiong Y, et al.

(2012) Fire Mater 36:254–263; ♠ Pedzich Z, et al. (2013) J Mat Sci Chem Eng 1:43–48; ♠Pędzich Z, et al. (2014) Key Eng Mat 602-603: 290-295; ♠ Imiela M, et al. (2016) J Therm Anal Calorim 124:197– 203; ♠ Anyszka R, et al. (2015) J Therm Anal Calorim 119:111–121; ♠ Anyszka R, et al. (2014) Przem

Chem 93:1291–1295; ♠ Anyszka R, et al. (2014) Przem Chem 93:1684–1689; ♠ Anyszka R, et al.

(2017) Polym Bull 75: 1731-1751; ♠ Delebecq E, et al.(2011) ACS Appl Mater Interfaces 3:869–880; ♠ Gardelle B, et al.(2014) J Fire Sci 32:374–387; ♠Lou F, et al. (2017) J Therm Anal Calorim 130:813– 821; ♠ Guo J, et al. (2018) Polymers 10:388

Silicone rubber (PDMS)

♠ Di H-W, et al. (2015) RSC Adv 5:51248–51257; ♠ Gong X, et al. (2017) Sci Eng Compos mater

24:599-608; ♠ Li Y-M, et al. (2018) Polym Degrad Stabil 153:325-332; ♠Zhao D, et al. (2018) Polym Degrad Stabil 150:140-147

Poly(ethylene-co-vinyl acetate) (EVA)

♠ Ferg EE, et al. (2017) Polym Composite 38:371–380

EVA/PDMS blend

♠ Shanks RA, et al. (2010) Express Polym Lett 4:79–93

Poly(vinyl acetate)

♠ Pei Y, et al. (2016) Materials Science and Environmental Engineering, Taylor & Francis 197-200; ♠

Anyszka R, et al. (2017) High Temp Mater Proc 36:963-970

Ethylene-propylene-diene rubber (EPDM)

♠ Wang T, et al. (2010) Adv Compos Lett 19:175–179

Polyethylene (PE)

♠ Anyszka R, et al. (2016) Materials 9:604

Styrene-butadiene rubber (SBR)

♠ Shanks RA, et al. (2010) Adv Mat Res 123–125:23–26

Polyester

♠ Fan S, et al. (2017) Acta Mater Compos Sinica 34:60-66; ♠ Shi M, et al. (2018) J Wuhan Univ

Technol, Mater Sci Edition 33:381-388; ♠ Wang F, et al. (2017) High Perform Polym 29:279-288

Boron phenolic resin

(20)

Thank you for your

kind attention!

Referenties

GERELATEERDE DOCUMENTEN

Galmuggen hebben (evenals zweefvliegen) de voor biologische bestrijding gewenste mate van specialisatie: Zij doden allerlei soorten bladluizen, maar nooit iets anders dan

• Sommige locaties zijn specifiek voor mensen die uit het ziekenhuis zijn ontslagen na opname voor corona, maar die nog niet voldoende hersteld zijn om naar huis te kunnen, of die

block Macaulay matrix increases beyond d ∗ , some linearly independent rows (corresponding to the finite solutions) stabilize at a certain position in the null space, while the

In this paper, we propose training based efficient compensation schemes for MIMO OFDM systems impaired with transmitter and receiver frequency selective IQ imbalance.. The

Om te bepalen of door het spelen van relatief moeilijke online breinspellen er minder sociale participatie plaats vindt bij ouderen na een beroerte dan door het spelen van

Thermal degradation mechanisms of PDMS in presence of oxygen results in formation of amorphous silica.. 22/8/18 12 MECHANISMS

We study the conditions in which secondary fl ow and bed slope effects yield a well-posed model by means of a perturbation analysis of the model equations.. The fl ow is modelled by

Comparing this finding to the prior results obtained under the continuous approach where the differential effect for a R&D-intensive product category and a R&D non-