• No results found

Formation of lead dioxide and the development of a dark red 'patina' on outdoor lead sculpture

N/A
N/A
Protected

Academic year: 2021

Share "Formation of lead dioxide and the development of a dark red 'patina' on outdoor lead sculpture"

Copied!
65
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

Formation  of  lead  dioxide  and  the  development  of  a  dark  red  ‘patina’  

on  outdoor  lead  sculpture  

 

Master  thesis,  metals  specialization  

 MA  Conservation  and  Restoration  of  Cultural  Heritage    

   

 

 

Author:  Manuela  Toro  (UvA)   Supervisor:  Tonny  Beentjes  (UvA)   Second  Reader:  Bas  van  Velzen  (UvA)  

Advisors:  Susanne  Kensche  (KMM),  Luc  Megens  (RCE),  Ineke  Joosten  (RCE),     Arie  Pappot  (RMA),  Maarten  van  Bommel  (UvA),  Ella  Hendriks  (UvA)  

Date:  19/06/2018    

   

(2)

Toro,  UvA  2018      2  

 

Table  of  contents    

Abstract   4  

English   4  

Nederlands   5  

1.   Object  metadata   7  

2.   Introduction   8  

2.1.   Relevance  to  the  field  of  conservation   8  

3.   The  problem   9  

3.1.   Treatment  history   10  

3.2.   Current  scientific  knowledge   13  

3.3.   Hypotheses   15   3.3.1.   Research  questions   16   4.   Historical  context   16   4.1.   The  object   16   4.2.   The  artist   19   4.3.   The  foundry   20   5.   Literature  review   20  

5.1.   The  Queluz  case   20  

5.2.   Formation  of  lead  dioxide   24  

5.3.   Is  it  a  patina?   25  

6.   Methodology   28  

6.1.   Optical  analysis   28  

6.1.1.   Visual  analysis   28  

6.1.2.   Dino-­‐Lite  optical  microscopy   29  

6.2.   Sampling  and  embedding   29  

6.3.   Microscopic  analysis  of  cross-­‐sections   31  

6.4.   SEM-­‐EDX   31  

6.5.   pH  measurements   32  

7.   Results   33  

7.1.   Optical  analysis   33  

7.1.1.   Visual  analysis   33  

7.1.2.   Dino-­‐Lite  optical  microscopy   33  

7.2.   Sampling  and  embedding   35  

7.3.   Microscopic  analysis  of  cross-­‐sections   36  

7.4.   SEM-­‐EDX   38  

7.5.   pH  measurements   46  

7.6.   Discussion   47  

7.7.   Health  and  safety  considerations   51  

7.8.   Answers  to  hypotheses  and  research  questions   52  

7.8.1.   Stratigraphy   54  

7.8.2.   Further  research   54  

(3)

Toro,  UvA  2018      3  

9.   Acknowledgements   56  

10.   Bibliography   57  

11.   Appendix  I:  SEM-­‐EDX  results  of  antimony-­‐rich  areas   61  

12.   Appendix  II:  additional  SEM-­‐EDX  results   63  

   

All  figures  and  photos  were  created  by  Manuela  Toro  unless  stated  otherwise.                                    

(4)

Toro,  UvA  2018      4   Abstract  

  English  

 

Formation  of  lead  dioxide  and  the  development  of  a  dark  red  ‘patina’  on  outdoor  lead  sculpture.    

Keywords:  Aristide  Maillol,  lead,  outdoor  sculpture,  water,  patina,  lead  dioxide,  lead  carbonate,   lead  whiskers.  

 

This  thesis  for  the  Master  of  Arts  in  Conservation  and  Restoration  of  Cultural  Heritage  at   the  University  of  Amsterdam  for  the  spring  of  2018  researches  the  formation  of  a  dark  red  layer   at  the  surface  of  Aristide  Maillol’s  lead  sculpture  L’Air,  exhibited  outdoors  at  the  Kröller  Müller   Museum  in  Otterlo  (The  Netherlands).    

Dark  red  stains  started  to  appear  at  the  surface  of  L’Air  in  the  mid-­‐1990’s,  indicating  that   a  chemical  change  is  occurring  on  the  surface  of  the  object  apart  from  the  expected  behavior  of   lead   oxidation   in   an   outdoor   environment.   X-­‐Ray   diffraction   (XRD)   and   scanning   electron   microscopy   with   energy   dispersive   X-­‐Ray   spectroscopy   (SEM-­‐EDX)   analyses   of   the   dark   red   corrosion  layer  were  carried  out  in  2016   by  the  Cultural  Heritage  Agency  of  The  Netherlands   (RCE).   Lead   dioxides   plattnerite   (β-­‐PbO2)   and   scrutinyite   (α-­‐PbO2)   were   identified   as   the   red   compounds.  However,  further  research  was  needed  in  order  to  better  understand  the  corrosion   mechanism  taking  place.  The  process  by  which  lead  dioxide  forms  at  the  surface  of  the  sculpture   is  still  under  discussion.  This  is  the  main  focus  of  the  thesis.    

Three   hypotheses   were   created   pondering   possible   ways   in   which   plattnerite   and   scrutinyite  form  at  the  surface  of  the  object.  Visual  analysis  and  microscopy  were  used  to  better   understand  the  patterns  in  which  the  stains  formed  and  also  to  observe  the  morphology  of  the   corrosion  layer.  Samples  were  taken  and  analyzed  under  SEM-­‐EDX  in  order  to  carry  out  elemental   analysis   and   to   be   able   to   investigate   the   stratigraphy   of   the   cross   sections.   Last,   pH   measurements  were  also  carried  out  in  order  to  evaluate  possible  pH  differences  between  the   dark  red  and  gray  areas  of  the  sculpture,  and  also  to  compare  with  available  literature.    

Visual   analysis   helped   to   confirm   how   the   dark   red   stains   follow   the   rain   patterns.   Microscopic   analysis   with   a   handheld   Dino-­‐Lite   helped   to   observe   the   uneven,   scale-­‐like   development  of  the  corrosion  layer.  It  also  allowed  to  better  distinguish  how  white  spots  of  lead   carbonate  are  mixed  within  the  dioxide  layer.  Microscopic  analysis  of  the  cross  sections  with  an   optical  microscope  helped  to  see  how  the  compounds  are  mixed  at  the  surface.  SEM-­‐EDX  analysis   confirmed  previous  elemental  composition  results,  and  provided  images  of  lead  whiskers  forming   at  the  interface  between  the  bare  metal  and  the  corrosion  layer.  The  pH  measurements  indicated   a  slightly  acidic  environment  at  the  surface  of  L’Air.    

(5)

Toro,  UvA  2018      5  

The  results  showed  that  the  surface  of  the  sculpture  is  reacting  in  various  ways  to  oxygen   and   water   in   its   environment.   The   corrosion   layer   forms   by   at   least   two   possible   chemical   mechanisms,  which  may  in  turn  be  continuously  reversed  by  further  reactions  with  water  and   fluctuations  in  pH.  Also,  changes  in  morphology  such  as  surface  cracking  and  whisker  growth   allow  for  these  mechanisms  to  continue  in  a  cyclic  manner.  Additional  pH  measurements,  coupon   tests,   metallographic   analysis,   and   electrode   potential   measurements   are   recommended   for   further  research.    

  Nederlands  

 

Vorming  van  looddioxide  en  de  ontwikkeling  van  een  donkerrode  'patina'  op  een  sculptuur  in  de   buitenlucht.    

 

Sleutelwoorden:  Aristide  Maillol,  lood,  beeldhouwwerk  buitenshuis,  water,  patina,  looddioxide,  

loodcarbonaat,   loodhaartjes.  

 

Deze  scriptie  voor  de  Master  of  Arts  in  Conservation  and  Restoration  of  Cultural  Heritage   aan  de  Universiteit  van  Amsterdam  voor  het  voorjaar  van  2018  onderzoekt  de  vorming  van  een   donkerrode  laag  aan  het  oppervlak  van  Aristide  Maillols  sculptuur  L'Air  dat  buiten  tentoongesteld   is  in  het  Kröller  Müller  Museum  in  Otterlo  (Nederland).  

Aan   het   oppervlak   van   L'Air   verschenen   halverwege   de   jaren   negentig   donkerrode   vlekken,   wat   aangeeft   dat   er   een   chemische   verandering   optreedt   op   het   oppervlak   van   het   object  naast  het  verwachte  gedrag  van  lood  oxidatie  in  een  buitenomgeving.  X-­‐Ray  Diffraction   (XRD)  en  scanning  elektronenmicroscopie  met  energie-­‐dispersieve  röntgenspectroscopie  (SEM-­‐ EDX)  analyse  van  de  donkerrode  corrosielaag  werd  in  2016  uitgevoerd  door  de  Rijksdienst  voor   het  Cultureel  Erfgoed  (RCE).  Lead  dioxides  platnerite  (β-­‐PbO2)  en  scrutinyite  (α-­‐PbO2)  werden   geïdentificeerd  als  de  rode  verbindingen.  Er  was  echter  verder  onderzoek  nodig  om  het  corrosie   mechanisme   dat   plaatsvindt   beter   te   begrijpen.   Het   proces   waarbij   looddioxide   aan   het   oppervlak  van  het  beeldhouwwerk  wordt  gevormd,  is  nog  steeds  onderwerp  van  discussie.  Dit  is   de  belangrijkste  focus  van  deze  scriptie.    

Er   werden   drie   hypotheses   opgesteld   over   mogelijke   manieren   waarop   plattnerite   en   scrutinyite  zich  aan  het  oppervlak  van  het  object  vormen.  Visuele  analyse  en  microscopie  werden   gebruikt  om  de  patronen  waarin  de  vlekken  vormen  en  de  morfologie  van  de  corrosielaag  beter   te   begrijpen.   Monsters   werden   genomen   en   geanalyseerd   onder   SEM-­‐EDX   om   elementen     analyse  uit  te  voeren  en  om  de  stratigrafie  van  de  dwarsdoorsneden  te  kunnen  onderzoeken.  Als   laatste  werden  ook  pH-­‐metingen  uitgevoerd  om  mogelijke  pH-­‐verschillen  tussen  de  donkerrode   en  grijze  gebieden  van  het  beeldhouwwerk  te  evalueren,  en  ook  om  deze  te  vergelijken  met   beschikbare  literatuur.  

(6)

Toro,  UvA  2018      6  

Visuele  analyse  bevestigde  dat  de  donkerrode  vlekken  de  regenstroom  patronen  volgen.   Microscopische   analyse   met   een   handheld   Dino-­‐Lite   hielp   bij   het   waarnemen   van   de   oneffenheden,  schubachtige  ontwikkeling  van  de  corrosielaag.  Het  liet  ook  toe  om  beter  waar  te   nemen  hoe  witte  vlekken  van  loodcarbonaat  zich  mengen  in  de  kooldioxidelaag.  Microscopische   analyse   van   de   dwarsdoorsneden   met   een   optische   microscoop   hielp   om   te   zien   hoe   de   verbindingen  aan  de  oppervlakte  gemengd  zijn.  SEM-­‐EDX-­‐analyse  bevestigde  eerdere  resultaten   van  de  elementaire  samenstelling  en  verschafte  beelden  van  loodhaartjes  die  zich  vormen  op  het   grensvlak  tussen  het  kale  metaal  en  de  corrosielaag.  De  pH-­‐metingen  duiden  op  een  enigszins   zure  omgeving  aan  de  oppervlakte  van  L'Air.  

De  resultaten  toonden  aan  dat  het  oppervlak  van  het  beeldhouwwerk  op  verschillende   manieren  reageert  op  zuurstof  en  water  in  zijn  omgeving.  De  corrosielaag  vormt  zich  door  ten   minste   twee   mogelijke   chemische   mechanismen,   die   op   hun   beurt   continu   kunnen   worden   omgekeerd  door  verdere  reacties  met  water  en  fluctuaties  in  de  pH.  Ook  zorgen  veranderingen   in  de  morfologie,  zoals  oppervlakte-­‐scheuren  en  de  groei  van  de  loodhaartjes  ervoor  dat  deze   mechanismen   op   een   cyclische   manier   kunnen   doorgaan.   Aanvullende   aanvullende   pH-­‐ metingen,   coupontests,   metallografische   analyse   en   elektrodepotentiaalmetingen   worden   aanbevolen  voor  verder  onderzoek.  

                                     

(7)

Toro,  UvA  2018      7   1.   Object  metadata             Title:  L’Air    

Author:  Aristide  Maillol  

Date:  Conceived  1939,  this  cast  1962   Material(s):  Lead,  iron  armature   Technique:  Casting  

Foundry:  Georges  Rudier  Foundry  (Paris)  

Signature:  A.  Maillol  (lower  left),  3/6  (lower  left),  Georges  Rudier  Fondeur  Paris  (side  left)   Dimensions:  177  x  239  x  99,5  cm    

Owner/collection:  Kröller  Müller  Museum  (Otterlo)   Inventory  number:  KM  127.576  

Acquisition  date:  1962  

Date  of  examination:  November  2017  through  May  2018    

(8)

Toro,  UvA  2018      8  

2.   Introduction  

 

Lead  has  been  used  in  outdoor  sculptures  in  the  past  because  of  its  economical  and  material   qualities,   including   resistance   to   corrosion   in   different   environments.   However,   the   dark   red   stains  that  have  appeared  on  Maillol’s  L’Air  at  the  Kröller  Müller  Museum  (Otterlo)  indicate  that   there  has  been  a  change  of  chemical  nature  at  the  surface  of  the  sculpture  (Fig.  1.1).  The  topic   was  put  forward  by  thesis  supervisor  Tonny  Beentjes  after  previous  attempts  by  the  museum  to   undertake  research  about  this  object.    

The  goal  of  this  research  is  to  increase  our  understanding  about  how  the  already  identified   corrosion  products  (lead  dioxides  plattnerite  and  scrutinyite)  form  at  the  surface  of  the  sculpture.   This  was  done  by  taking  samples  of  the  object  and  analyzing  them  via  SEM-­‐EDX  and  microscopy.   An  experiment  to  measure  the  pH  of  the  surface  of  the  sculpture   has  also  been  carried  out.   Principally,   the   aim   is   to   provide   a   stratigraphy   of   the   corrosion   layer   once   the   research   is   concluded.  By  further  understanding  the  degradation  mechanisms  of  lead  ‘patinas’,  this  research   could   help   to   better   diagnose   the   condition   of   the   artwork   and   serve   as   a   basis   for   future   observations,  treatments,  and  scientific  research.    

The  thesis  will  be  divided  in  five  main  sections.  First,  a  description  of  the  problem,  where   current   scientific   knowledge   is   discussed   and   hypotheses   are   brought   forward.   Second,   a   description   of   the   historical   context   around   the   object,   the   artist   and   the   foundry.   Third,   a   literature  review  about  the  formation  of  lead  oxides,  past  conservation  literature  and  whether   the  dark  corrosion  present  in  L’Air  can  be  classified  as  a  patina  or  not.  Fourth,  methodology,   describing  the  process  by  which  samples  of  the  object  were  taken  and  analyzed  via  SEM-­‐EDX,   microscopy,  and  also  the  pH  measurement  experiment.  And  fifth  and  last,  results,  discussing  the   outcome  of  the  research  and  leading  towards  a  conclusion.  

2.1.   Relevance  to  the  field  of  conservation  

While  a  lot  has  been  researched  about  the  formation  of  lead  carbonates,  the  formation   of  lead  corrosion  layers  of  a  dark  red  color  involving  plattnerite  and  scrutinyite  have  been  widely   understudied  in  relation  to  cultural  heritage  objects.  In  that  sense,  this  research  will  help  improve   the  state  of  the  art  of  said  condition  and  also  raise  more  questions  for  further  research.  This  is   especially  relevant  today  given  the  recent  interest  in  the  degradation  processes  of  lead  brought   up  by  similar  observations  in  objects  from  various  parts  of  the  world.    

  On  the  other  hand,  to  understand  the  corrosion  mechanism  by  which  the  dark  red  layer   is  produced  would  signify  locating  the  source  of  the  problem,  and  in  turn  help  to  make  more   informed  decisions  if  the  object  undergoes  a  conservation  treatment  in  the  future.    

(9)

Toro,  UvA  2018      9  

3.   The  problem  

 

A  dark  red  color  can  be  seen  on  most  of  the  surface    of  L’Air  in  the  form  of  stains  and  drips   (Fig.  3.1).  Its  thin  composition  has  a  patina-­‐like  effect  on  several  areas  of  the  sculpture.  Upon   close  examination,  white  powdery  spots  can  be  seen  in  the  darkened  areas.  

The  corrosion  products  in  Maillol’s  L’Air  are  not  only  distracting  to  the  eye,  but  also  pose   risks   to   the   sculpture’s   structure   and   integrity   if   the   corrosion   is   active1.   Additionally,   they   become  a  risk  for  visitors  since  lead  and  its  products  are  known  to  be  toxic  to  humans.  For  these   reasons,  there  is  an  impending  interest  in  learning  more  about  the  formation  of  the  dark  red   corrosion  layer  and  its  cause,  thus  helping  conservators  to  potentially  propose  an  appropriate   treatment  for  the  artwork  in  the  near  future.  

 

Even  though  the  dark  red  layer  is  not  the  most  commonly  known,  the  corrosion  products   that  form  it  were  identified  in  2016  as  plattnerite  (β-­‐PbO2)  and  scrutinyite  (α-­‐PbO2)  by  SEM-­‐EDX   and  XRD  analysis  performed   by  the   Rijksdienst  voor  het  Cultureel  Erfgoed2  (Cultural  Heritage   Agency  of  the  Netherlands).  These  are  polymorphs  of  lead  (IV)  oxide,  (also  known  as  lead  dioxide,   PbO2),  which  have  also  been  found  on  lead  water-­‐supply  pipes.  The  corrosion  mechanisms  by   which  plattnerite  and  scrutinyite  form  at  the  surface  of  the  sculpture  are  yet  to  be  explained.  This   is  the  main  focus  of  the  research.    

Other  cases  of  outdoor  lead  sculptures  showing  dark  red  stains  have  appeared  in  recent   years  in  other  parts  of  the  world.   The  most   relevant  example  for  this  research  is  that  of  the     sculptures  at  the  Palace  of  Queluz  in  Portugal,  where  plattnerite  was  also  found3.  The  sculptures  

      1  Ongoing,  new  corrosion.  

2  Joosten,  I.;  van  Hoesel,  A.  L’Air,  Aristide  Maillol,  1930,  Kröller  Müller  Museum,  Onderzoek  naar  corrosieproducten.   Rijksdienst  voor  het  Cultureel  Erfgoed,  2016.  pg.  6.  

3  Bernard,  M.-­‐C.  ;  Costa,  V.  ;  Joiret,  S.  On  unexpected  colour  of  lead  sculptures  in  Queluz:  degradation  of  lead  white.   Corrosion  Engineering,  Science  and  Technology,  01  October  2010,  Vol.45(5),  pg.  341-­‐344.    

(10)

Toro,  UvA  2018      10  

at  Queluz  were  treated  in  2012,  and  have  since  developed  the  dark  red  corrosion  layer  again4,   indicating  that  the  process  is  still  active  and  possibly  as  a  cyclic  mechanism.  

3.1.   Treatment  history  

 

The  treatment  history  of  the  object  has  also  yielded  some  clues.  The  sculpture  was  cared   for  in  the  same  way  as  outdoor  bronzes  until  the  early-­‐1990’s  by  undergoing  light  cleaning  with   soapy   water   and   receiving   applications   of   a   beeswax   coating   once   a   year.   It   has   not   been   described  what  kind  of  soap,  beeswax,  or  tools  were  exactly  used.  

 The  period  in  which  the  treatment  stopped  seems  to  correspond  with  the  approximate   date  in  which  the  dark  red  stains  were  first  spotted.  This  could  partially  confirm  that  the  process   involves  water,  since  the  wax  coating  would  have  isolated  the  sculpture  from  water  during  most   of  its  life.  The  drip-­‐like  shape  of  the  stains  also  strongly  suggests  that  water  is  a  key  factor  in  the   formation  of  the  corrosion  products.  At  this  point,  there  seem  to  be  no  traces  of  beeswax  left  on   the  sculpture.    

Condition  reports  begin  to  mention  the  dark  corrosion  stains  around  19935,  but  no  further   descriptions   are   provided   until   2001.   From   that   year   on,   the   sculpture   was   surveyed   almost   yearly.  Photographic  documentation   has  provided  some  indication  of  how  and  when  the   red   stains  started  to  appear  and  how  quickly  they  developed  (Table  3.1).  A  major  increase  in  the   amount  of  red  corrosion  can  be  observed  between  the  years  2001  and  2005.    

 

Date   Image   Description  

1988   Only   gray   oxidation   layer  

present.  

     

4  The  author  visited  the  Palace  of  Queluz  in  December  2017  and  observed  red  stains  with  white  spots  on  several  of   the  sculptures.  

(11)

Toro,  UvA  2018      11   Unknown  

 

Apparent  dark  red  drip  lines,   perhaps   from   1993   condition  report(?).  

1995  

 

Difficult   to   tell   because   of   poor  image  quality.  

2001  

 

Very   thin   layer   of   red   corrosion   on   the   head   and   chest,  other  areas  not  visible   or  referenced.    

2003  

 

Visible  red  corrosion  on  the   top  arm  and  leg,  also  on  the   right   side   of   the   base.   Possiby  increase  of  dark  red   stain  on  the  chest.  

(12)

Toro,  UvA  2018      12  

2005   Significant   increase   in   the  

amount   of   dark   red   corrosion.    

2006   Clear  presence  of  large,  dark  

red  stains.    

2012   Dark   red   stains   continue   to  

develop  in  more  areas  of  the   sculpture.  

2014   Apparent   darkening   of     red  

(13)

Toro,  UvA  2018      13  

2018   Dark   red   stains   continue   to  

develop.    

   

3.2.   Current  scientific  knowledge  

 

While   lead  is   often   thought   to   be   resistant   to   corrosion,   it  is   also   known   that  it   does   corrode  under  particular  environments  and  circumstances.  In  her  book  Metals  and  Corrosion:  a  

handbook   for   the   conservation   professional   (2004),   Lyndsie   Selwyn   describes   outdoor   lead  

corrosion  in  the  following  way:    

When  exposed  outdoors,  lead  usually  corrodes  until  it  develops  an  adherent  film  of  insoluble   lead  compounds  that  protect  the  surface  from  further  attack.    

“When  lead  is  first  placed  outdoors,  it  forms  a  thin  layer  of  lead  oxides  (predominantly  the  yellow   massicot  but  also  some  litharge).  Over  time,  carbon  dioxide  that  dissolves  in  any  surface  water   on  the  lead  reacts  with  the  lead  oxides  to  form  cabinet  compounds  (mainly  hydrocerussite  but   sometimes  also  cerussite).  (…)  If  sulphur  dioxide  dissolves  in  the  surface  water,  it  reacts  with   hydrocerussite  to  form  lead  sulphite  and  lead  sulphate.  (…)  If  outdoor  lead  undergoes  creep,  its   corrosion  rate  will  increase  because  of  the  continued  exposure  of  a  fresh  lead  surface.  (Selwyn,   pg.  121-­‐22).”    

This  behavior  is  not  at  all  similar  to  what  has  been  observed  on  L’Air  since  the  mid-­‐1990’s,  when   the  sculpture  started  to  show  brown/red  stains  on  the  surface  that  developed  and  darkened  in   the  relatively  short  time  span  of  approximately  20  years.      

  The   alloy   composition   doesn’t   seem   to   be   the   cause   of   the   problem.   XRF   analysis   performed  in  2016  by  Arie  Pappot  (Rijksmuseum  Amsterdam)  showed  that  the  alloy  consists  of   lead  with  4-­‐6%  of  antimony.  This  type  of  alloy  shows  the  same  corrosion  rates  as  pure  lead,  with   the  only  benefit  being  the  increase  in  hardness  and  resistance  to  creep.6  In  Pappot’s  analysis   phosphorus  and  chlorine  showed  as  trace  elements  in  the  dark  gray  areas  (Fig.  3.2).  He  suggests  

     

6  Corrosion  of  lead  and  lead  alloys.    ASM  Handbook,  Volume  13B:  Corrosion:  Materials.  S.D.  Cramer,  B.S.  Covino,   Jr.,  editors,  pg.  197.      

(14)

Toro,  UvA  2018      14  

to   study   their   presence   more   closely   in   order   to   determine   whether   they   take   part   in   the   formation  of  the  red  corrosion  products  or  not.7    

 

   

   

Pappot  also  affirms  that  the  dark  spots  do  not  correspond  to  the  listed  lighter  elements  but  rather   show  a  higher  intensity  of  lead  (Table  3.2).8  

           

  SEM-­‐EDX  and  XRD  analysis  (Fig.  3.3)  also  performed  in  2016  by  the  Rijksdienst  voor  het   Cultureel  Erfgoed  (RCE)  determined  that  the  powdery  white  spots  of  corrosion  were  composed   of  lead  carbonates  cerussite  (PbCO3)  (predominant),  and  hydrocerussite  (Pb3(CO3)2(OH)2)  and  

that  the  dark  red  products  were  lead  dioxides  plattnerite  (β-­‐PbO2)  (predominant)  and  scrutinyite   (α-­‐PbO2).9  .This  is  the  most  important  piece  of  information  so  far,  since  it  will  allow  for  a  more   detailed  investigation  of  the  compounds  involved  and  also  enable  to  compare  with  other  case   studies.  It  also  confirms  Pappot’s  analysis  that  the  dark  corrosion  products  are  not  as  closely   linked   to   trace   elements,   but   rather   to   polymorphs   of   lead   (IV)   oxide   (PbO2).   Given   this   identification,  the  red  and  white  corrosion  products  will  be  referred  to  in  this  thesis  according  to   these  results.    

     

7  Pappot,  A.  Corrosion  phenomenon  on  L’Air  by  Aristide  Maillol  (KM  127.576).  Rijksmuseum  report,  2016.  pg.  2.   8  Ibid,  pg.  1.  

9  Joosten,  I.  et  al,  2016.  pg.  6.  

Fig.   3.2:   “Graph     SEQ   Graph   \*   ARABIC   1:   Deconvoluted   spectra   of   test   #31   showing   reliable   attribution  of  P  and  Cl  peaks.  S  remains  problematic.”  (Pappot,  2016).  

   

Table   3.2:   “Table     SEQ   Table   \*   ARABIC   1:   semi   quantitative   results   of   10kV   XRF   spectra   of   eight   different  spots  of  corrosion  according  to  their  visual  appearance:  green  is  a  relatively  high  value,  red  is   low.  Colors  are  comparable  within  one  element  only.”  (Pappot,  2016).  

(15)

Toro,  UvA  2018      15             3.3.   Hypotheses    

Since  it  has  been  observed  that  the  the  dark  red  stains  formed  in  the  shape  of  drips  after  the   waxing  treatment  was  stopped,  the  first  hypothesis  would  be  that:  

a)  Lead  dioxides  plattnerite  and  scrutinyite  are  formed  in  a  corrosion  mechanism  involving   water  at  the  surface  of  the  sculpture.    

Based  on  the  literature  and  observations  made  by  the  author  in  December  2017  at  the  Palace  of   Queluz,  where  the  problem  recurred  after  treatment,  a  second  hypothesis  would  be  that:  

b)  Lead  dioxides  plattnerite  and  scrutinyite  form  via  a  cyclic  corrosion  mechanism  at  the   surface  of  the  sculpture.    

The  presence  of  white,  powdery  spots  only  in  the  areas  where  dark  red  staining  is  observed  yields   a  third  hypothesis:  

Fig.  3.3:  XRD  results  (Joosten  et  al,  2016,  revised  2018).      

(16)

Toro,  UvA  2018      16   c)   Lead   dioxides   plattnerite   and   scrutinyite’s   formation   processes   are   related   to   the   presence  of  the  lead  carbonates  cerussite  and  hydrocerussite.    

3.3.1.   Research  questions  

 

●   How  are  lead  dioxides  plattnerite  and  scrutinyite  formed  at  L’Air’s  surface?     ○   What  is  the  role  of  water  in  the  process?  

○   What  is  the  role  of  pH  in  the  process?     ○   What  is  the  role  of  trace  elements?    

○   Is  there  a  relationship  with  lead  carbonates?  if  so,  how?    

○   Does  creep  play  a  role  by  continuously  exposing  a  fresh  lead  surface?   ○   Is  the  dark  red  layer  a  patina?  

○   Is  it  a  protective  layer  or  does  it  harm  the  metal  underneath?   ○   Can  the  process  be  stopped?    

○   Can  the  process  be  reversed?    

4.   Historical  context  

4.1.   The  object  

 

Aristide  Maillol’s  L’Air  is  a  larger-­‐than-­‐life  size  sculpture  of  a  woman  in  the  nude,  the  figure   is  leaning  back  and  resting  on  her  right  hip  on  top  of  a  rectangular  base.  The  sculpture  is  located   outdoors  in  the  Museum’s  gardens,  and  it  is  often  touched  by  visitors.  Both  the  figure  and  the   base  are  made  of  lead.  The  design  for  this  sculpture  dates  from  1939,  but  the  sculpture  was  cast   in  1962  after  the  death  of  the  artist.  It  exists  in  an  edition  of  six  copies,  the  sculpture  at  the  Kröller   Müller  Museum  is  numbered  at  the  lower  left  of  the  base:  3/6.    The  artwork  is  signed  “A.  Maillol”,   also  at  the  base  in  the  lower  left.  On  the  side,  there  is  an  inscription  from  the  foundry  were  it  was   cast:  “Georges  Rudier  Fondeur  Paris”.    

Today,  the  sculpture  is  of  a  dull  gray-­‐blue  color  overall,  which  is  the  expected  appearance   of  a  natural  oxidation  layer  in  lead,  but  it  exhibits  other  less  expected  corrosion  products  as  well   that  will  be  discussed  in  extensive  detail  throughout  this  thesis.  

The  first  version  of  L’Air  was  realized  in  stone  in  1938  as  a  commission  by  the  city  of   Toulouse  to  make  a  memorial  for  French  pilots  (Fig.  4.1).  Marlborough  Gallery’s  catalogue  for  an   extensive   Maillol   exhibition   in   2003   describes   the   project   as   “…   a   memorial   to   pilots   in   the   Aéropostale   killed   in   the   line   of   duty.”10,   however,   in   John   Rewald’s   account   ‘Maillol  

Remembered’  for  the  1975  retrospective  at  the  Guggenheim  Museum  (New  York),  he  mentions        

(17)

Toro,  UvA  2018      17  

that  the  commission  honored  French  aviation  pioneers,  particularly  Jean  Mermoz.11  Rewald  also   writes  that  L’Air  was  previously  conceived  as  a  study  dating  around  1900,  sketched  and  executed   as  a  small  terracotta  figure.12  These  first  two  versions  include  drapery  unfolding  around  the  figure   as  if  being  left  behind,  and  carried  away  by  the  wind.    

                                 

Maillol’s  designs  stand  on  the  verge  between  abstraction  and  realism.  Drawing  both  from   nature  and  classical  archetypes,  his  sculptures  seem  at  once  animated,  tactile,  modeled  after   reality,  yet  the  softness  of  the  lines,  the  gestures  and  inert  facial  expressions  make  them  appear   more  classical,  ageless  and  withdrawn.  According  to  Rewald  (1975),  Maillol  explained:    

“What   I   am   after   […]   is   architecture   and   volume.   Sculpture   is   architecture,   is   equilibrium   of   masses.  This  architectural  aspect  is  hard  to  achieve.  I  endeavor  to  obtain  it  as  did  Polycletus.  My   point  of  departure  always  is  a  geometric  figure  –  square,  lozenge,  triangle—because  those  the   shapes  which  stand  up  best  in  space  (pg.16).”  

While  drawing  his  contours  almost  exclusively  from  models,  he  combined  those  studies   from  nature  with  preconceived  ideas.  Also  in  Maillol’s  words  according  to  Rewald:    “What  I  want   […]  is  that  the  young  girl  depicted  in  a  statue  should  represent  all  young  girls,  that  the  woman   and  her  promise  of  maternity  should  represent  all  mothers.”13  

     

11 Rewald,  J.  Maillol  Remembered,  in  Artistide  Maillol:  1861-­‐1944.  The  Solomon  R.  Guggenheim  Foundation,  New   York,  1975.  pg.11.

12  Ibid.   13  Ibid.  pg.  22.  

Fig  4.1:    L’Air,  1938.  Stone.  Ville  de  Toulouse.  Source:  retrieved  from     Wikimedia  commons  (2015).  

(18)

Toro,  UvA  2018      18  

How  exactly  L’Air  was  transformed  from  the  stone  version  into  the  equally  well  known   bronze  and  lead  counterparts  is  unknown  (Fig.4.2).  It  is  likely  that  Maillol’s  patrons  requested   casts.  Rewald  (1975)  writes:    

“He  told  me  that  Vollard,  in  the  early  days,  would  buy  his  small  terra  cottas  to  have  them  cast  in   bronze.  The  artist  would  specify  that  the  editions  should  be  limited  to  ten  casts;  he  added  with   resignation:  ‘Well,  he  made  ten  casts,  all  right,  except  they  turned  to  be  ten  thousand!’  (pg.11).”      

     

It  is  also  likely  that  material  properties  played  a  role  in  the  design.  The  brittleness  of  stone   may  have  required  to  include  the  drapery  in  order  to  help  distribute  the  weight  of  sculpture  at   various  points,  while  the  hardness  and  malleability  of  metal  allows  the  figure  to  balance  on  only   one  point.  However,  there  is  no  literary  evidence  that  supports  this  claim.  Another  outstanding   remark  is  that  the  lead  cast  at  the  Jardin  des  Tuileries  in  Paris  dates  to  1932  (Fig.  4.3).  A  date  six   years  earlier  than  the  monument  in  Toulouse  indicates  that  the  drape-­‐less  version  existed  first,   and   was   probably   already   being   cast  in   lead   -­‐-­‐perhaps   even   as   a   preliminary   example-­‐-­‐     and   bronze.    

 

On  the  other  hand,  this  date  does  not  correspond  with  most  written  sources.  Rewald’s   comment  about  L’Air  during  his  1938  visit  to  the  artist  suggests  that  a  large  version  was  not  even   finished,  pointing  out  to  a  possible  discrepancy  in  the  dating  of  L’Air:  “His  project  having  been   approved,  he  was  now  faced  with  the  problem  of  deriving  from  this  piece  of  only  a  few  inches  an   over  life-­‐size  sculpture.”14  

 

      14  Ibid,  pg.  11.  

Fig  4.2:  L’Air,  design  1938,  cast  1962.  Lead.  The  J.  Paul  Getty  Museum.  Source:   retrieved  from    The  J.  Paul  Getty  Museum.  

(19)

Toro,  UvA  2018      19                                  

With  all  this  shortage  of  information,  it  is  also  challenging  to  determine  what  the  original  surface   of  the  lead  casts  must  have  been  like.  However,  given  photographic  documentation  of  L’Air  and   other  examples  of  lead  sculptures,  it  is  most  likely  that  the  dark  gray  surface  was  chafed  and   polished  to  an  even  sheen.    

4.2.   The  artist  

 

Aristide  Maillol  was  born  in  France  in  1861.  His  hometown,  Banyuls-­‐sur-­‐Mer  is  part  of  the   coast,  but  it  is  also  close  to  the    Albères  Mountains  and  to  the  Spanish  border.  Its  Mediterranean   environment,  port  and  vineyards  were  a  source  of  inspiration  for  the  artist  throughout  his  entire   life.  He  spent  his  early  years  between  Perpignan,  where  he  attended  school  and  took  drawing   lessons  and  Banyuls,  until  he  moved  to  Paris  at  age  20  in  order  to  continue  his  studies  as  an  artist.    

In  Paris,  he  studied  both  in  the  École  des  Arts  Decoratifs  and  the  École  des  Beaux-­‐Arts.  His   circle   of   friends   included   Auguste   Rodin,   Édouard   Vuillard,   Maurice   Denis   and   Paul   Gauguin.   During  this  time  he  worked  with  a  variety  of  media,  including  drawing,  painting,  tapestry  making,   woodcarving,  and  sculpture.  Even  after  moving  to  the  outskirts  to  Paris  with  his  wife  Clotilde,  he   maintained  a  house  and  tapestry  workshop  in  Banyuls  where  the  family  spent  long  seasons.    

Ambroise  Vollard,  a  Paris  gallerist,  gave  Maillol  his  first  solo  show  in  1902.  They  worked   together  until  Vollard’s  death  in  1939.  By  the  1930’s,  Maillol  was  well  known  and  had  exhibited   his  work  in  Germany,  France,  the  Netherlands  and  the  United  States.  In  1943,  Maillol  was  injured   in   a   car   accident,   and   died   in   his   house   in   Banyuls   a   few   days   later.   Since   then,   major   retrospectives  have  taken  place  in  museums  around  the  world,  including  the  Basle  Kunsthalle,  

Fig  4.3:  L’Air,  1932,  Jardin  des  Tuileries.  Source:  retrieved  from    Wikimedia  commons   (2010).  

(20)

Toro,  UvA  2018      20  

the  Musée  National  d’Art  Moderne  (Paris),  and  the  Guggenheim  Museum  (New  York).  In  1983   the  Foundation  Dina  Vierny  –  Musée  Maillol  was  created  in  Paris,  and  in  1994  a  Maillol  Museum   opened  in  Banyuls.    

4.3.   The  foundry  

 

The  history  of  the  Rudier  Foundries  is  notoriously  complex  and  full  of  uncertainty.  Alexis   Rudier  ran  a  well-­‐known  foundry  in  Paris  during  the  late  1800’s.  He  worked  very  closely  with   artist  Auguste  Rodin,  many  of  his  casts  are  signed  ‘Alexis  Rudier  Fondeur  Paris’.  Alexis  had  two   brothers,  François  and  Victor  Rudier.  Upon  his  death  in  1897,  François  is  left  in  charge  of  the   foundry.  In  1902,  Alexis’  son,  Eugène  Rudier  takes  over  from  his  uncle  and  the  Rodin  production.   Eugène  also  casts  many  of  Maillol’s  sculptures.    

When  Eugène  died  in  1952,  Georges  Rudier  (son  of  Victor  Rudier)  was  encouraged  to  open   a  foundry,  using  equipment  from  his  cousin’s  business  and  thus  preserving  the  family’s  tradition   and  knowledge,  and  so  he  did.  Around  1976  the  Maillol  Museum  stopped  working  with  George   Rudier  because  of  rumors  about  suspicious  activities  in  the  Foundry,  the  Rodin  Museum  soon   followed  suit.  The  Georges  Rudier  Foundry  was  connected  to  the  the  Hain  scandal  during  the  late   1980’s-­‐early  1990’s,  when  it  was  discovered  that  collector  Guy  Hain,  one  of  the  foundry’s  clients,   had  sold  many  unauthorized  Rodin  casts  signed  Alexis  Rudier.    The  rest  is  still  unknown.    

 

5.   Literature  review  

5.1.   The  Queluz  case  

 

  As  previously  mentioned,  the  most  similar  (and  therefore  comparable)  example  of  the  

formation  of  a  dark  red  layer  on  outdoor  lead  sculpture  is  that  of  the  Palace  of  Queluz  in  Portugal.   There,  a  group  of  mid-­‐eighteenth  century  sculptures  made  by  John  Cheere  developed  a  dark  red   layer   mixed   with   a   white   ‘patina’   made   of   lead   oxide   and   lead   hydroxycarbonate,   probably   shannonite  (PbCO3.PbO)15.    

In  Bernard  et  al’s  article  On  unexpected  colour  of  lead  sculptures  in  Queluz:  degradation  

of   lead   white   (2010),   lead   IV   oxides   were   identified   but   no   specific   crystalline   forms   (i.e.  

plattnerite  or  scrutinyite)  due  to  the  poor  resolution  of  the  Raman  spectrum16.  They  were  able   to  identify  plattnerite  in  the  dark  red  layer  of  the  sculptures  in  Queluz  for  the  final  report  of  an  

      15  Bernard,  M.-­‐C.  et  al  ,  2010,  pg.  341.   16  Ibid,    pg.  343.  

(21)

Toro,  UvA  2018      21  

extensive  conservation  project  of  the  Palace’s  gardens  by  the  World  Monuments  Fund  in  2012.17   They  also  tested  the  formation  of  the  lead  dioxide  layer  on  coupons  pretreated  with  acetic  and   sulphuric   acid,   and   concluded   that   lead   carbonates   were   necessary   for   the   process   to   occur.   According  to  their  observations  “It  can  then  be  proposed  that  the  red  colour  of  the  white  patina   is  due  to  oxidation  of  hydrocerussite  by  a  strong  oxidant  [...].”18    

While  visually  the  dark  red  layers  in  both  L’Air  and  the  Cheere  sculptures  are  strikingly   similar,  the  analyses  also  show  several  differences  between  the  two  cases.  First,  there  was  no   shannonite   detected   in   the   XRD   results   from   L’Air   acquired   by   the   RCE   in   201619.   Second,   according  to  the  same  results,  the  lead  carbonate  cerussite  was  more  predominant  in  L’Air  than   hydrocerussite.  Even  though  this  does  not  rule  out  Bernard  et  al’s  theory  about  the  oxidation  of   hydrocerussite  to  form  lead  dioxide,  the  relationship  between  both  lead  carbonates  and  lead   dioxide   should   be   further   investigated.   For   example,   this   difference   could   be   related   to   the   pretreatment  of  coupons  in  Bernard  et  al’s  experiment,  which  based  on  current  knowledge  do   not  correspond  with  the  treatment  history  or  environmental  conditions  of  L’Air.    

Also,   Bernard   et   al’s   description   of   a   ‘white   patina’   does   not   correspond   with   past   descriptions  or  the  photographic  history  of  L’Air  (Table  3.1).  Instead  of  a  ‘white  patina’,  the  red   stains  seem  to  have  appeared  amongst  a  dark  gray  oxide  layer  in  the  case  of  Maillol’s  sculpture,   questioning  the  carbonate  oxidation  theory.    

Last  but  not  least,  although  an  oxidative  environment  must  be  present  in  both  cases,  the   Palace  of  Queluz  and  the  Kröller  Müller  Museum  have  very  different  environmental  conditions.   The  Palace,  once  a  summer  retreat,  is  now  within  the  metropolitan  area  of  Lisbon  and  its  gardens   are  surrounded  by  a  major  highway20.  The  Kröller  Müller  Museum  is  located  within  the  Hoge   Veluwe  National  Park,  its  closest  town  being  Otterlo,  a  small  village21.  Only  by  these  observations   it  can  be  assumed  that  the  atmospheric  conditions  vary  between  both  places.  Therefore,  it  can   also   be   said   that   while   environmental   conditions   are   an   important   factor   in   lead   dioxide   formation,  the  dark  red  stains  are  not  directly  related  to  a  single  environmental  scenario.  In  the   end,  the  presence  of  plattnerite  in  Cheere’s  sculpture  group  and  Maillol’s  L’Air  continues  to  draw   a  strong  link  between  the  two  cases.    

     

17  Os  Jardins  do  Palácio  Nacional  de  Queluz:  intervenção  de  conservação,  ed.  A.  Elena  Charola  and  José  Delgado   Rodrigues.  Associação  World  Monuments  Fund  Portugal  e  World  Monuments  Fund,  2012.  pg.  97.  

18  Bernard,  M.-­‐C.  et  al,  2010,  pg.  344.   19  Joosten,  I.  et  al,  2016.  

20  Google  Maps:  https://www.google.nl/maps/place/Queluz+National+Palace/@38.7531326,-­‐

9.2669359,15z/data=!4m5!3m4!1s0x0:0x38b1d71128e15bb!8m2!3d38.7507229!4d-­‐9.2590824  visited  10-­‐06-­‐

2018.  

21  Google  Maps:  

https://www.google.nl/maps/place/Otterlo/@52.0736776,5.7148315,12z/data=!3m1!4b1!4m5!3m4!1s0x47c7b18

(22)

Toro,  UvA  2018      22  

Conservator   Rupert   Harris,   who   was   also   involved   in   the   Queluz   project   in   2012,   has   written  about  his  observations  in  Portugal  and  regarding  other  sculptures  and  historic  buildings   in  the  United  Kingdom.  He  is  of  the  opinion  that  the  phenomenon  of  the  red  staining  comes  from   the   disruption   of   the   natural   chemical   process   of   lead   patina   formation   by   “...some   form   of   abnormal  chemical  reaction”.  22  Harris  points  out  that:  

As  the  areas  of  staining  do  not  exhibit  any  of  the  characteristics  of  active  corrosion  such  as  pitting,   powdering  of  the  surface  or  loss  of  metal,  it  is  assumed  that  the  chemical  process  being  witnessed   is  one  of  the  conversion  of  existing  white  to  grey  coloured  lead  patina  compounds  to  red-­‐brown   lead  dioxide.23  

This  partially  agrees  with  Bernard  et  al’s  theory  that  the  red  staining  develops  from  the  oxidation   of  hydrocerussite.  However,  the  presence  of  white  spots  within  the  red  stains  both  in  the  Queluz   case  and  L’Air  (Figs.  5.1  &  5.2),  contrasts  with  Harris’s  observations  since  they  are  powdery  and   may  possibly  be  signs  of  active  corrosion24.  

 

         

   

  He  also  mentions  that:  

“Cleaning  tests  using  both  dilute  acetic  acid  and  hydrochloric  acid  have  been  shown  to  remove   the  staining  and  reveal  that  no  discernable  damage  to  the  underlying  metal  surface  has  occurred,  

     

22  Harris,  R.  Summary  Report  on  the  Incidence  and  Possible  Causes  of  the  Occurrence  of  Red-­‐Brown  Staining  on  

Outdoor  Lead  Sculpture  and  Historic  Buildings,  2017.  pg.  1-­‐9.  Unpublished  manuscript.    

23  Rupert  Harris:  https://rupertharris.com/pages/additional-­‐information-­‐lead-­‐dioxide-­‐formation-­‐on-­‐lead  visited   10-­‐06-­‐2018.  

24  Active  corrosion:  fresh  or  new  corrosion;  often  seen  as  spalling,  cracking  or  flaking.  (Selwyn,  L.,  2004,  pg.195).   White  spots   White  spots  

Fig  5.1:  Detail  of  The  Spring,  Palace  of  

(23)

Toro,  UvA  2018      23  

further  supporting  the  theory  that  it  is  a  conversion  process  that  is  producing  the  surface  colour   change  and  not  corrosion  in  the  true  sense25.  “26      

However,  the  sculptures  at  Queluz  received  a  passivation  treatment  with  oxalic  acid  (C2H2O4)  in  

201227,  and  the  red  stains  fully  reappeared  by  2017  (Fig.  5.3).  This  not  only  highlights  a  downside   of  the  treatment,  but  also  the  possibility  that  the  formation  of  the  dark  red  stains  is  the  product   of  a  cyclic  corrosion  process  instead.    

 

   

 

Finally,  another  point  in  common  between  the  sculptures  at  Queluz  and  the  Maillol  at  the   Kröller   Müller   Museum   is   the   role   of   light.   Conservation   scientist   Virginia   Costa   relates   the   formation   of   the   dark   red   layer   not   only   to   humidity   levels,   rain   or   air   pollution,   but   also   to   sunlight  exposure.28  While  the  role  of  light  as  a  possible  catalyzer  of  the  reactions  will  not  be   investigated  in  this  research,  it  deserves  further  attention  in  the  future.29    

   

     

25  It  can  be  inferred  from  this  comment  that  Harris  alludes  to  corrosion  ‘in  the  true  sense’  as  a  mechanism  by  which   metal  is  degraded  into  a  different  chemical  form  (in  itself  a  conversion).  In  this  case,  he  refers  to  the  color  change   being  the  product  of  the  conversion  of  an  already  existing  compound/corrosion  product  into  lead  dioxide,  instead   of  from  metal  into  lead  dioxide.    

26  Rupert  Harris:  https://rupertharris.com/pages/additional-­‐information-­‐lead-­‐dioxide-­‐formation-­‐on-­‐lead  visited   10-­‐06-­‐2018.  

27  Charola,  E.;  Delgado,  J-­‐D.  (Eds)    2012.  pg.  107-­‐8.   28  Ibid,  pg.  97.  

29  According  to  the  electrochemical  series  in  the  CRC  Handbook  of  Chemistry  and  Physics  (2000),  the  reaction  from   cerussite  to  lead  dioxide  is  non-­‐spontaneous.  

(24)

Toro,  UvA  2018      24  

5.2.   Formation  of  lead  dioxide    

 

Extensive   research   has   been   done   regarding   the   behaviour   of   lead   in   water   supply   systems.  Some  of  this  research  includes  the  formation  of  lead  dioxides.  Even  though  in  most   experiments  a  strong  oxidant  was  introduced  in  order  to  produce  lead  dioxide  (usually  chlorine,   to  this  date  not  significantly  present  in  L’Air’s  environment),  the  results  provide  good  insights   into  the  possible  corrosion  processes.    

In  the  article  Formation  of  Lead(IV)  Oxides  from  Lead(II)  Compounds,  (2010)  Wang  et  al   consider  how  the  formation  of  PbO2  is  affected  by  water  chemistry.  Starting  from  the  notion  that   “Previous  research  showed  that  lead(II)  carbonates  formed  as  intermediates  in  the  formation  of   PbO2.  However,  it  is  not  known  whether  carbonates  are  required  for  PbO2  formation”30,  they   investigated  possible  corrosion  mechanisms.  In  order  to  do  so,  they  evaluated  different  pathways   by  looking  at  four  different  factors:  the  effect  of  dissolved  inorganic  carbon  (DIC)31,  the  effect  of   pH   on   PbO2  formation,  the   effect   of   free   chlorine   concentration   and,  the   effect   of   precursor   identity  on  PbO2  formation  (referring  to  whether  lead  carbonates  are  intermediate  solids  in  the   process  or  not)32.    

They  concluded  that  lead  dioxides  plattnerite  and  scrutinyite  form  from  massicot  (β-­‐PbO)   and  dissolved  lead(II)  chloride  (PbCl2)  in  the  presence  of  free  chlorine,  but  no  DIC,  at  pH  =  7.5  and   pH  =  10.  “These  results  demonstrate  that  PbO2  formation  does  not  require  lead(II)  carbonates  as   precursors  or  intermediate  phases”.33  According  to  this,  Bernard  et  al’s  theory  that  lead  dioxide   comes  from  the  oxidation  of  hydrocerussite  is  challenged,  and  it  becomes  important  to  consider   whether  lead  dioxide  could  also  form  at  the  surface  of  lead  sculptures  directly  from  lead  oxide.    

If  the  presence  of  carbonates  is  not  necessarily  the  main  precursor  of  the  reaction,  then,   what  could  be  causing  the  right  conditions  for  lead  dioxide  to  form?  Going  back  to  Wang  et  al’s   influential   factors,   both   the   concentration   of   dissolved   inorganic   carbon   (DIC)   and   the   concentration  of  free  chlorine  are  related  to  the  pH  of  a  solution  (to  be  recreated  around  L’Air  as   environment  +  water),  thus  altering  the  effect  of  pH  on  PbO2  formation.  In  Formation  of  Pb(IV)  

oxides  in  chlorinated  water  (2005),  Lytle  and  Schock  observed  that  “The  aging  of  lead  to  PbO2   was  indicated  by  a  change  in  solid  color  (white  to  dark  red  or  brownish  red,  depending  on  pH)   and  lead  solubility[...]”.34  

     

30  Wang,  Y.;  Xie,  Y.  et  al.  Formation  of  Lead(IV)  Oxides  from  Lead(II)  Compounds.  Environmental  Science  &   Technology  2010  44  (23),  pg.  8950.    

31  Dissolved  Inorganic  Carbon  (DIC):  sum  of  inorganic  carbon  species  in  a  solution,  these  include  carbon  dioxide,   carbonic  acid,  and  carbonates.  (https://en.wikipedia.org/wiki/Total_inorganic_carbon  visited  10-­‐06-­‐2018).   32  Wang,  Y.  et  al,  2010.      

33  Ibid,  pg.  8951.  

34  Lytle,  D.;  Schock,  M.  Formation  of  Pb(IV)  oxides  in  chlorinated  water.  Journal  American  Water  Works   Association,  Vol.  97,  No.  11,  2005.  pg.  112.  

(25)

Toro,  UvA  2018      25  

In  their  experiments,  they  tested  for  the  formation  of  lead  dioxide  as  a   precipitate  in   chlorinated  solutions,  including  DIC.  They  found  that  at  pH  =  6.5-­‐8  the  sequence  of  the  corrosion   products  that  formed  was:  from  hydrocerussite  to  cerussite,  from  cerussite  to  plattnerite,  and   from   plattnerite   to   scrutinyite.35   They   also   noted   that   “Water   pH   dictated   mineralogical   presence.   High   pH   favored   hydrocerussite   and   scrutinyite;   low   pH   favored   cerussite   and   plattnerite   ”.36   This   suggests   that   even   the   type   of   lead   dioxide   polymorph   being   formed   is   influenced  by  changes  in  pH.      

  According  to  previous  XRD  results,  the  corrosion  layer  of  L’Air  has  a  higher  concentration   of   plattnerite   and   cerussite,   pointing   to   a   lower   pH   when   compared   with   Lytle   and   Schock’s   conclusions.   However,   scrutinyite   and   hydrocerrusite   are   still   present.37   It   is   possible   that   changes  in  the  environment,  such  as  the  varying  composition  of  the  rainwater  or  the  varying   concentrations  of  pollutants  in  the  air,  are  responsible  for  changes  in  pH  and  therefore  for  the   formation  of  all  four  corrosion  products.  It  is  also  possible  that  changes  in  the  water  chemistry  of   the  rainwater  from  being  in  contact  with  an  already  corroded  surface  is  creating  the  fluctuations   in  pH,  further  supporting  the  theory  that  a  cyclic  corrosion  mechanism  is  present.  

While  the  concentration  of  dissolved  inorganic  carbon  (DIC)  will  not  be  measured  at  the   surface  of  the  sculpture,  its  presence  can  be  accounted  for  in  the  lead  carbonates  present  and   the  simple  and  ongoing  reaction  of  carbon  dioxide  and  water  resulting  in  carbonic  acid  (likely  to   be  involved  in  the  oxidation  process).  And,  while  the  nature  of  the  corrosive  environment  is  still   under  discussion  since  chloride  was  not  significantly  present  in  previous  analyses,  it  brings  up  the   question  of  whether  oxygen,  sunlight  and  water  are  oxidative  enough  for  lead  dioxide  to  form.     Furthermore,  optical  analysis,  pH  measurements,  and  SEM-­‐EDX  analysis  of  the  surface  of  L’Air   will  provide  more  information  about  the  relationship  between  the  lead  dioxides  and  the  lead   carbonates,  as  well  as  the  material’s  relationship  to  its  surroundings,  in  a  way  that  is  comparable   to  previous  results.    

5.3.   Is  it  a  patina?  

 

The  debate   regarding  the  definition  of  a  patina   versus  a  corrosion  layer  has   occupied   conservators  for  several  decades.  In  the  case  of  the  dark  red  stains  appearing  on  lead  sculpture,   they  have  often  been  described  as  a  patina.  However,  the  use  of  the  word  ‘patina’    will  be  revised   in  this  thesis  because  of  its  potentially  controversial  meaning.    

The  Merriam-­‐Webster  dictionary  defines  the  word  patina  as:  

      35  Ibid.    

36  Ibid,  pg.  102.  

(26)

Toro,  UvA  2018      26  

a.   A  usually  green  film  formed  naturally  on  copper  and  bronze  by  long  exposure  or  artificially   (as  by  acids)  and  often  valued  aesthetically  for  its  color.  

b.   A  surface  appearance  of  something  grown  beautiful  especially  with  age  or  use.  

c.   An  appearance  or  aura  that  is  derived  from  association,  habit,  or  established  character.   d.   A  superficial  covering  or  exterior.38  

This  extensive  interpretation  includes  all  the  aspects  that  make  the  notion  of  patina  confusing  to   begin  with.  First,  it  mentions  that  it  can  be  developed  naturally  or  artificially.  Second,  it  attributes   an  aesthetic  value  to  an  object  grown  old  or  used  by  employing  the  word  ‘beautiful’.  Third,  it   introduces  the  notions  of  time  and  perception  in  a  kind  of  ‘aura’.  And  at  last,  it  simplifies  the   previous  meanings  into  a  ‘covering  or  exterior’.    

  On  the  other  hand,  the  Merriam-­‐Webster  dictionary  defines  the  word  corrosion  as  ‘the   action  of  corroding’39,  which  in  turn  is:  

a.   to  eat  away  by  degrees  as  if  by  gnawing;  especially  :  to  wear  away  gradually  usually  by   chemical  action.    

b.   to  weaken  or  destroy  gradually.40  

The   relationship   of   corrosion   with   deterioration   has   often   been   mixed   up   with   the   electrochemical  notions  of  active41  and  passive42  state  of  a  metal.  Further  adding  to  the  confusion   by  implying  that  a  patina  provides  a  protective  layer  to  a  metal  surface  while  a  corrosion  layer   does  not,  which  is  not  necessarily  true.    

In   A   Review   of   the   History   and   Practice   of   Patination,   Phoebe   Dent   Weil   explains   the   historical  evolution  of  the  concept  of  patina.  She  observes  that  the  first  printed  use  of  the  word   was  in  1681  in  relation  to  paintings,  as  a  dark  ‘tone’  developed  by  the  passing  of  time  which  could   often   be   flattering   to   the   objects.43   This   first   mention   already   combines   a   physical   change   (oxidation,  interaction  with  the  environment),  with  an  additional  aesthetic  value.    

  The  word  patina  in  order  to  describe  green  corrosion  products  in  bronze  objects  seems   to  develop  from  an  increasing  interest  in  archaeology  during  the  eighteenth  century44,  and  it  is   linked  to  the  question  of  discovering  what  the  original  finish  of  an  object  was.  Later  on,  references   to  the  word  patina  and  the  finishing  of  bronzes  appear  during  the  nineteenth  century,  when   “...artificial  patination  of  bronzes  by  chemical  means,  with  or  without  heat,  was  generally  and  

     

38  Merriam-­‐Webster:  https://www.merriam-­‐webster.com/dictionary/patina  visied  15-­‐06-­‐2018.   39  Merriam-­‐Webster:  https://www.merriam-­‐webster.com/dictionary/corrosion  visited  15-­‐06-­‐2018.     40  Merriam-­‐Webster:  https://www.merriam-­‐webster.com/dictionary/corroding  visited  15-­‐06-­‐2018.    

41  “Condition  in  which  a  metal  reacts  with  its  environment  (i.e.  freely  corrodes)  because  it  is  thermodynamically   unstable  and  the  corrosion  products  are  soluble.”  (Selwyn,  2004,  pg.195).  

42  “Condition  in  which  a  thermodynamically  unstable  metal  has  a  low  corrosion  rate  because  the  metal  surface  has   reacted  with  the  environment  to  form  a  protective  film  of  corrosion  products.”  (Selwyn,  2004,  pg.  202).  

43  Weil  Dent,  P.  “A  Review  of  the  History  and  Practice  of  Patination.”  In  Historical  and  Philosophical  Issues  in  the  

Conservation  of  Cultural  Heritage,  edited  by  Stanley  Price,  N.  et  al.  The  J.  Paul  Getty  Trust,  1996.  pg.398-­‐99.  

(27)

Toro,  UvA  2018      27  

widely  practiced.”45  On  the  other  hand,  the  additional  value  of  ‘antiqueness’  a  bronze  object  can   acquire  due  to  its  color  as  a  testament  of  age,  is  a  concept  that  evolved  during  the  Renaissance   period.  46  

  Weil  summarizes  the  topic  by  explaining  that:  

The  problem  of  treating  metallic  objects  is  complicated  by  the  fact  that  patina,  i.e.,  corrosion  is   formed  at  the  expense  of  the  substance  of  the  object  itself,  even  occasionally  to  the  point  of   complete  mineralization,  and  once  severe  alteration  or  corrosion  has  occurred  it  is  impossible  to   determine  original  coloration  of  finish  from  physical  evidence.  (Weil,  1996,  pg.395).    

“Once  again,  several  conflicting  and  confusing  aspects  are  implied  in  the  definitions.  First,  Weil   pairs  together  the  words  ‘patina’  and  ‘corrosion’  almost  as  synonyms.  Second,  she  brings  forth   the  idea  that  the  patina  (or  corrosion)  may  completely  penetrate/alter  the  object.  And  third,  Weil   relates  the  concept  back  to  the  historical  concern  over  what  the  original  surface  characteristics   of  an  object  were.”    

Today,   thanks   in   part   to   developments   in   conservation   science   and   the   conservation   profession  as  a  whole,  there  is  a  better  understanding  of  the  complexity  of  visual,  chemical  and   morphological  changes  that  can  happen  at  the  surface  of  a  metal  object.  In  Metals  and  corrosion  

[...]  (2004),  Lyndsie  Selwyn  defines  corrosion  as  “Electrochemical  reaction  between  a  metal  and  

its  environment  that  causes  the  metal  to  deteriorate;  the  electrochemical  process  involves  the   transfer   of   electrons   from   the   metal   to   another   species   during   simultaneous   oxidation   and   reduction   reactions.47  Selwyn  then  defines  patina  as  “Corrosion  products  on  the  surface  of  a   metal;  patina  may  occur  naturally  as  a  result  of  long-­‐term  exposure  to  weather,  pollution,  etc.,   or  may  be  artificially  induced  through  the  application  of  various  chemicals.”48  According  to  this,   it   seems   that   the   words   ‘corrosion   layer’   and   ‘patina’   can   be   used   almost   interchangeably.   Nevertheless,  it  is  important  to  note  that  even  though  Selwyn  defines  corrosion  as  a  deterioration   process,  she  does  not  specify  whether  the  corrosion  products  that  form  a  patina  can  be  damaging   to  the  rest  of  the  material  or  not.  This  possibly  separates  the  idea  of  patina  from  the  discussion   about  the  ‘stability’  of  the  corrosion  layer  (whether  it  is  active  or  passive).    

However,   the   concept   of   patina   still   carries   with   it   historical   ideas   about   physical   properties  and  aesthetic  value,  and  even  experts  in  the  field  struggle  with  the  use  of  the  word.     As  written  by  David  A.  Scott:    

“Strictly  speaking,  ‘patina’  and  ‘corrosion’  are  different  words  for  the  same  surface  alteration.   [...]  Corrosion  may  be  termed  the  process  of  a  chemical  attack  of  an  environment  on  a  material,   while  patina  could  be  defined  as  the  accumulation  of  corrosion  products  and  other  materials  

      45  Ibid.  

46  Ibid,  pg.  403.  

47  Selwyn,  L.  Metals  and  corrosion:  a  handbook  for  the  conservation  professional.  Canadian  Conservation  Institute,   2004.  pg.  197.  

(28)

Toro,  UvA  2018      28  

from  the  environment.  One  person’s  patina,  however,  may  be  another  person’s  corrosion,  so  a   certain  ambiguity  is  inherent  in  both  words.  (Scott,  2002,  pg.10).”    

Given  this  overview,  it  can  be  said  that  the  dark  red  stains  in  L’Air  are  technically  a  part  of   its   patina.   However,   in   order   to   avoid   attaching   additional   aesthetic   value/character   or   assumptions  of  chemical  ‘stability’  to  the  formation  of  lead  dioxide  on  L’Air,  the  dark  red  stains   will  not  be  referred  to  in  this  thesis  as  a  patina,  but  as  a  corrosion  layer  instead.  

 

6.   Methodology  

6.1.   Optical  analysis  

6.1.1.   Visual  analysis  

 

Visual  analysis  was  conducted  first  by  the  naked  eye.  It  served  to  understand  the  patterns   in  which  the  stains  are  present,  the  occurrence  of  red  areas  (lead  dioxides)  with  white  spots  (lead   carbonates)  and  red  areas  without,  the  areas  where  rainwater  runs  and  the  areas  in  which  it  sits,   and  the  places  that  receive  the  most  sunlight.    

 In  order  to  observe  and  confirm  the  water  dripping  patterns  throughout  the  sculpture,   drops  of  water  were  released  and  recorded  as  they  oozed,  dripped,  and  evaporated  from  the   object  (Fig.  6.1).  This  was  done  by  using  a  plastic  pipette,  deionized  water,  and  a  camera.    

 

   

 

  With  the  aim  of  obtaining  a  more  detailed,  magnified  image  of  the  corrosion  products,  a   Dino-­‐Lite  digital  microscope  was  used  on  site.      

 

 

Water  drop  and   matching  stain  pattern  

Referenties

GERELATEERDE DOCUMENTEN

proefvlakken 14 en 15 in stand houden. Een alternatief is om de proefvlakken zelf te verplaatsen naar terreindelen met eenzelfde grazige vegetatie, maar voor de

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

An LD2 construction like (64), in which the initial item is resumed by an independent subject pronoun, can be regarded as a recursion of the strategy of placing a topical

To test this assumption the mean time needed for the secretary and receptionist per patient on day 1 to 10 in the PPF scenario is tested against the mean time per patient on day 1

This research proposed that lead userness has a positive influence on the perceived expertise of a child.. The results illustrated in table 4 show that this

Planning and control influence flexibility performance by being flexible till the last moment (two days before planning is executed) in changing orders. It also influences

The general aim of the study is to design and develop a group work programme empowering adolescents from households infected with or affected by HIV and AIDS by teaching them

farmaciebudget, die ontstaan als de nadere bijlage 2 voorwaarden van ivacaftor (Kalydeco®) worden uitgebreid waardoor de behandeling van CF bij patiënten met een R117H mutatie vanaf