• No results found

Matrix gauge fields and Noether's theorem

N/A
N/A
Protected

Academic year: 2021

Share "Matrix gauge fields and Noether's theorem"

Copied!
40
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Matrix gauge fields and Noether's theorem

Citation for published version (APA):

Graaf, de, J. (2014). Matrix gauge fields and Noether's theorem. (CASA-report; Vol. 1414). Technische Universiteit Eindhoven.

Document status and date: Published: 01/01/2014

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

β€’ A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

β€’ The final author version and the galley proof are versions of the publication after peer review.

β€’ The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. β€’ Users may download and print one copy of any publication from the public portal for the purpose of private study or research. β€’ You may not further distribute the material or use it for any profit-making activity or commercial gain

β€’ You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the β€œTaverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

(2)

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

CASA-Report 14-14 May 2014

Matrix Gauge fields and Noether’s theorem by

J. de Graaf

Centre for Analysis, Scientific computing and Applications Department of Mathematics and Computer Science

Eindhoven University of Technology P.O. Box 513

5600 MB Eindhoven, The Netherlands ISSN: 0926-4507

(3)
(4)

Matrix Gauge Fields

and

Noether’s Theorem

J. de GRAAF

Eindhoven University of Technology, Mathematics, Casa Reports 14-14, May 2014

Preface and Summary

These notes are about systems of 1st and 2nd order (non-)linear partial differential equa-tions which are formed from a Lagrangian density Lψ : RN β†’ C ,

Symbolically : x7β†’ Lψ(x) = L(ψ(x) ; βˆ‡Οˆ(x) ; x) ,

by means of the usual Euler-Lagrange variational rituals. The non subscripted L will denote the ’proto-Lagrangian’, which is a function of a finite number of variables:

L : CrΓ—cΓ— CN rΓ—c

Γ— RN

β†’ C .

In this L one has to substitute matrix-valued functions ψ : RN β†’ CrΓ—c

and βˆ‡Οˆ : RN β†’ CN rΓ—c for obtaining the Lagrangian density Lψ. In our considerations the role and the

special properties of the proto-Lagrangian L are crucial.

These notes have been triggered by physicist’s considerations: (1) on obtaining the ’classi-cal’, that is the ’pre-quantized’, wave equations for matter fields from variational principles, (2) on conservation laws and (3) on ’gauge field extensions’. For the humble mathematical anthropologist the rituals in physics textbooks have not much changed during the last four decades. Neither have they become much clearer. Compare e.g. [DM] and [W].

The underlying notes give special attention to the following

β€’ In expressions (=’equations’) for Lagrange densities often both ψ and its hermitean transposed Οˆβ€  appear. Are they meant as independent variables or not? Mostly, from the context the suggestion arises that ’variation’ of ψ and ’variation’ of Οˆβ€  lead

(5)

to the same Euler-Lagrange equations. Why? Our remedy is doubling the matrix entries in the proto-Lagrangian and thereby making the Lagrangian density explicitly dependent on both ψ , Οˆβ€  and their derivatives: So for Lψ(x) we take expressions like

Lψ(x) = L (ψ(x) ; ψ(x)†; βˆ‡Οˆ(x) ; βˆ‡Οˆ(x)†; x). A suitable condition is then that the

Lagrangian functional

L[ψ] = Z

RN

Lψ(x) dx

only takes real values (Thm 2.4).

β€’ For ’free gauge fields’ the situation is somewhat different. Now the dependent varia-bles, named AΒ΅, 1 ≀ Β΅ ≀ N , take their values in some fixed Lie-algebra g βŠ‚ CcΓ—c.

Although g mostly contains complex matrices it is a real vector space in interesting cases. (Note that u(1) = iR is a real vector space!). Therefore it needs a separate treatment.

β€’ The traditional conservation laws for quantities like energy, momentum, moment of momentum, . . . , turn out to be based on External Infinitesimal Symmetries of the proto-Lagrangian. This means the existence of a couple of linear mappings

K : CrΓ—c β†’ CrΓ—c, L : CN rΓ—c β†’ CN rΓ—c, together with an affine mapping

x 7β†’ βˆ’sa + esAx , such that for all matrices P ∈ CrΓ—c, Q ∈ CN rΓ—c and x ∈ RN ,

L(esKP ; esLQ ; βˆ’sa + esAx) = L(P , Q ; x) + O(s2) .

Of course the presented conservation laws are just special cases of Noether’s Theorem. β€’ For the construction of gauge theories one needs, in physicist’s terminology, a ’glo-bal symmetry of the Lagrangian’. To achieve this, an Internal Symmetry of the proto-Lagrangian L is required here: For some fixed Lie-group G βŠ‚ CcΓ—c, the

proto-Lagrangian satisfies

L(PU ; QU ; x) = L(P ; Q ; x) , for all P ∈ CrΓ—c, Q ∈ CN rΓ—c , U ∈ G , x ∈ RN. Roughly speaking, a gauge theory for a Lagrangian based system of PDE’s is some kind of symmetry preserving extension of the original Lagrangian density with new (dependent) ’field’-variables x 7β†’ A(x) = [A1(x), . . . , AN(x)] on RN added, such that

the original ’quantities’ ψ become subjected to the ’gauge fields’ A and viceversa. Since about a century, Weyl 1918, it is well known that, given the existence of some ’global symmetry group’ G of L, an extension of type

Lψ,A(x) = L(ψ ; βˆ‡Οˆ + ψ Β·A ; x) + G(A ; βˆ‡A ; x) ,

is often possible. This extension has to exhibit what physicists call, a ’Local Symme-try’ : The Lagrangian density remains unaltered if in Lψ,Athe quantities ψ and A are,

(6)

which is the group of smooth maps RN β†’ G. The added ’gauge fields’ A have to take their values in the Lie Algebra g of the symmetry group G.

Summarizing, ’locally symmetric’ means, symbolically,

L ψU ; βˆ‡(ψU )+(ψU )Β·(A C U ) ; x)+G(A C U ; βˆ‡(A C U ) ; x =

= L ψ ; βˆ‡Οˆ + ψ Β·A ; x + G A ; βˆ‡A ; x  , for all U ∈ Gloc.

β€’ The considerations in the underlying notes not only include the standard hyperbolic evolution equations of pre-quantized fields. Wide classes of parabolic/elliptic systems turn out to have gauge extensions as well. Note the subtle extra condition (5.14) in Thm 5.5 which is, besides internal symmetry of the proto-Lagrangian, necessary for gauge extensions. Its necessity lies in the fact that one has to reconcile the complex vector space, in which the ψ take their values, with the real vector space g, the Lie-Algebra. In the standard preludes to quantum field the requirement (5.14) is never discussed, but manifestly met with.

β€’ These notes do not contain functional analysis or differential geometry. The reader will find only bare elementary considerations on matrix-valued functions: The co-lumns of the x 7β†’ ψ(x) ∈ CrΓ—c might describe the ’pre-quantized wave functions’ of

individual elementary particles, whereas the ’components’ of x 7β†’ A(x) ∈ gN, with

g βŠ‚ CcΓ—c, might represent the pre-quantized gauge fields. For an elementary and

very readable account on the differential geometrical aspects, see the contributions 3-4 in [JP].

CONTENTS

1. Foretaste: Some gauge-type calculations p.3 2. Stationary points of complex-valued functionals p.6 3. Free Gauge Fields p.13

4. Noether Fluxes p.19

5. Static/Dynamic Gauge Extensions of Lagrangians p.26 A. Addendum on Free Gauge Fields p.34 B. Electromagnetism p.35

(7)

1

Foretaste: Some gauge-type calculations

For functions Ξ¨ : RN β†’ CrΓ—c we consider, by way of example, the PDE

Γ¡ βˆ‚Β΅Ξ¨ + Ξ¨AΒ΅ + MΞ¨ = f, (1.1)

with prescribed matrix valued coefficients

Γ¡: RN β†’ CrΓ—r, AΒ΅: RN β†’ CcΓ—c, 1 ≀ Β΅ ≀ N, M : RN β†’ CrΓ—r,

and prescribed right hand side f : RN β†’ CrΓ—c. All considered functions are supposed to

be sufficiently smooth. The summation convention for upper and lower indices applies. In physics each column of Ξ¨ may represent a ’classical-particle wave’. The AΒ΅ may then

represent ’gauge fields’. Theorem 1.1

Let U , V : RN β†’ CcΓ—c and suppose them invertible with Uβˆ’1, Vβˆ’1

: RN β†’ CcΓ—c.

The function Λ†Ξ¨ = Ξ¨U : RN β†’ CrΓ—k, with Ξ¨ any solution of (1.1) is a solution of

Γ¡ βˆ‚Β΅Ξ¨ + Λ†Λ† Ξ¨ Λ†AΒ΅ + M Λ†Ξ¨ = Λ†f , (1.2)

if and only if we take the new coefficients Λ†AΒ΅ = Uβˆ’1AΒ΅U βˆ’ Uβˆ’1(βˆ‚Β΅U ) and Λ†f = f U .

In addition we have AΛ†Λ†Β΅= (U V)βˆ’1AΒ΅(U V) βˆ’ (U V)βˆ’1(βˆ‚Β΅(U V)) = Vβˆ’1AΛ†Β΅V βˆ’ Vβˆ’1(βˆ‚Β΅V).

Proof: Multiply (1.1) from the right by U and rearrange.  In the next Theorem a ’transformation property’ for matrix valued functions is derived. Theorem 1.2

Let AΒ΅: RN β†’ CcΓ—c and Λ†AΒ΅ = Uβˆ’1AΒ΅U βˆ’ Uβˆ’1(βˆ‚Β΅U ). Define

F¡ν = βˆ‚Β΅AΞ½ βˆ’ βˆ‚Ξ½AΒ΅βˆ’ AΒ΅AΞ½βˆ’ AΞ½AΒ΅. (1.3)

Then

Λ†

F¡ν = βˆ‚Β΅AΛ†Ξ½βˆ’ βˆ‚Ξ½AΛ†Β΅βˆ’ AΛ†Β΅AΛ†Ξ½ βˆ’ Λ†AΞ½AΛ†Β΅ = Uβˆ’1F¡νU . (1.4)

Proof: First note that from βˆ‚Β΅(Uβˆ’1U ) = βˆ‚Β΅I = 0 it follows that βˆ‚Β΅(Uβˆ’1) = βˆ’Uβˆ’1(βˆ‚Β΅U )Uβˆ’1.

Calculate βˆ‚Β΅AΛ†Ξ½ = βˆ‚Β΅ Uβˆ’1AΞ½U βˆ’ Uβˆ’1(βˆ‚Ξ½U ) = = Uβˆ’1(βˆ‚Β΅AΞ½)U βˆ’ Uβˆ’1(βˆ‚Β΅U )Uβˆ’1AΞ½U + Uβˆ’1AΞ½(βˆ‚Β΅U ) + Uβˆ’1(βˆ‚Β΅U )Uβˆ’1(βˆ‚Ξ½U ) βˆ’ Uβˆ’1(βˆ‚Β΅βˆ‚Ξ½U ). and Λ† AΒ΅AΛ†Ξ½ =Uβˆ’1AΒ΅U βˆ’ Uβˆ’1(βˆ‚Β΅U ) Uβˆ’1AΞ½U βˆ’ Uβˆ’1(βˆ‚Ξ½U ) = = Uβˆ’1 AΒ΅AΞ½Uβˆ’ Uβˆ’1AΒ΅U  Uβˆ’1(βˆ‚Ξ½U )βˆ’ Uβˆ’1(βˆ‚Β΅U )  Uβˆ’1AΞ½U+ Uβˆ’1(βˆ‚Β΅U )  Uβˆ’1(βˆ‚Ξ½U ).

Interchange the indices for two more terms and add according to (1.4). All rubbish terms

cancel out. 

(8)

Condition 1.3

K : RN β†’ CrΓ—r, is such that

i: KΓ¡ = (KΓ¡)†, ii: βˆ‚

Β΅(KΓ¡) = 0, iii: KM + M†K†= 0.

Here, the dagger † denotes ’Hermitean transposition’.

Note that in the important special case that Γ¡ = (Γ¡)†, Γ¡ is constant and M = βˆ’M†,

the condition is satisfied by K = I, the identity matrix. In the case of the Dirac equation one could take K = Ξ“0. Cf. [M], Messiah II pp. 890-899. 1

Theorem 1.4

Let K : RN β†’ CrΓ—r satisfy Condition 1.3.

Fix some J ∈ CcΓ—c.

Let AΒ΅: RN β†’ CcΓ—c satisfy A†¡J + J AΒ΅= 0, 1 ≀ Β΅ ≀ N .

Let U : RN β†’ CcΓ—c satisfy U†

(x)J U (x) = J , x ∈ RN.

a. For any solution Ξ¨ of (1.1) with f = 0, there is the conservation law

N

X

Β΅=1

βˆ‚Β΅Tr Jβˆ’1[Ψ†KΓ¡Ψ] = 0 . (1.5)

b. This conservation law is a gauge invariant local conservation law. That means Tr Jβˆ’1[ ˆΨ†KΓ¡Ψ] = Tr JΛ† βˆ’1[Ψ†KΓ¡Ψ] , 1 ≀ Β΅ ≀ N . Proof

a. Take f = 0 in (1.1)and multiply from the left with Ψ†K:

Ψ†KΓ¡ βˆ‚Β΅Ξ¨ + Ψ†KΓ¡ΨAΒ΅+ Ψ†KM Ξ¨ = 0. (1.6)

The Hermitean transpose reads βˆ‚Β΅Ξ¨

†

(KΓ¡)†Ψ + A†¡Ψ†(KΓ¡)†Ψ + Ψ†M†K†Ψ = 0. (1.7) Multiply (1.6) from the right with Jβˆ’1 and (1.7) from the left with Jβˆ’1. Add those two identities and take the trace. Use Condition 1.3 and the properties Tr(AB) = Tr(BA), Tr(A + B) = Tr(A) + Tr(B) and βˆ‚Β΅Tr(A) = Tr(βˆ‚Β΅A). The sum of the 1st terms of (1.6),

(1.7) result in TrJβˆ’1Ψ†

(KΓ¡)βˆ‚Β΅Ξ¨ + (βˆ‚Β΅Ξ¨)†(KΓ¡)†Ψ =

= βˆ‚Β΅TrJβˆ’1Ψ†(KΓ¡)Ξ¨ βˆ’ TrJβˆ’1Ξ¨β€ βˆ‚Β΅(KΓ¡)Ξ¨ = βˆ‚Β΅TrJβˆ’1Ψ†(KΓ¡)Ξ¨ .

The sum of the 2nd terms of (1.6), (1.7) is Tr؆

KΓ¡Ψ AΒ΅Jβˆ’1+ Jβˆ’1A†¡ = 0.

1In the non-covariant form, i.e. the original form, of Dirac’s equation one has Ξ“0= I, Γκ= Ξ³0Ξ³ΞΊ, 1 ≀

ΞΊ ≀ 3 , where the Ξ³Β΅, 0 ≀ Β΅ ≀ 3 are Dirac-Clifford matrices, which make the Dirac equation covariant

(9)

The sum of the 3rd terms of (1.6), (1.7) TrJβˆ’1

Ψ†(KM + M†K†)Ξ¨ = 0. Thus, we find (1.5)

b. By putting hats on Ξ¨ and AΒ΅ our considerations can be rephrased for PDE (1.2).

Remind that from U†J U = J it follows that Jβˆ’1U†= Uβˆ’1Jβˆ’1. Finally

Tr Jβˆ’1U†[Ψ†KΓ¡Ψ]U = Tr Uβˆ’1Jβˆ’1[Ψ†KΓ¡Ψ]U = Tr Jβˆ’1[Ψ†KΓ¡Ψ].



2

Stationary points of complex-valued functionals

In this section we pay some attention to the Euler Lagrange field equations in the com-plex field case. Most physics textbooks start, in a rather verbose way, with 18th century variational rituals. However most of them become suddenly very vague, or fall completely silent, when state functions involving complex variables come into play! In order to get some feeling for such Lagrangians, we first mention a finite dimensional toy result.

Theorem 2.1 Let

f : CnΓ— Cn

3 (z; w) 7β†’ f (z, w) ∈ C

be an analytic function of 2n complex variables with the special property f (z, z?) ∈ R , for all z ∈ Cn. Here z = x + iy, z? = xβˆ’ iy.

a. Consider the function

RnΓ— Rn 3 (x; y) 7β†’ g(x, y) = f (z, z?) = f (x + iy, x βˆ’ iy) ∈ R .

The relations between the (real) partial derivatives of g at (x, y) and the (complex) partial derivatives of f at (z, z?) are βˆ‚g βˆ‚x(x, y) = βˆ‚f βˆ‚z(z, z ? ) + βˆ‚f βˆ‚w(z, z ? ) βˆ‚f βˆ‚z(z, z ? ) = 1 2 βˆ‚g βˆ‚x(x, y) βˆ’ i βˆ‚g βˆ‚y(x, y)  βˆ‚g βˆ‚y(x, y) = i βˆ‚f βˆ‚z(z, z ?) βˆ’ iβˆ‚f βˆ‚w(z, z ?) βˆ‚f βˆ‚w(z, z ?) = 1 2 βˆ‚g βˆ‚x(x, y) + i βˆ‚g βˆ‚y(x, y)  (2.1) βˆ‚f βˆ‚w(z, z ?) = βˆ‚f βˆ‚z(z, z ?)

(10)

b. For g to have a stationary point at (a ; b) ∈ RnΓ— Rn each one of the following three

conditions is necessary and sufficient β€’ βˆ‚g βˆ‚x(a, b) = βˆ‚g βˆ‚y(a, b) = 0 , β€’ βˆ‚f βˆ‚z(a + ib, a βˆ’ ib) = 0 , β€’ βˆ‚f βˆ‚w(a + ib, a βˆ’ ib) = ” βˆ‚f βˆ‚z?(a + ib, a βˆ’ ib) ” = 0 . (2.2)

c. If the special property f (x + iy, x βˆ’ iy) ∈ R is relaxed to Ο†(f (x + iy, x βˆ’ iy)) ∈ R for some non-constant analytic Ο† : C β†’ C, then the ’stationary point result’ b. still holds. Proof: Straightforward calculation  In Theorem 2.4 an ∞-dimensional generalisation of this result is presented.

A special bookkeeping

In the sequel, for the above variable z, usually a matrix Z ∈ CrΓ—c will be taken. In order to

explain our bookkeeping and also for some special properties, we now consider an analytic function of 2 matrix variables

F : CrΓ—c

Γ— CcΓ—r

β†’ C : (Z ; W) 7β†’ F (Z , W) . (2.3) Because of Hartog’s Theorem, see [H] Thm 2.2.8, it is enough to assume analyticity with respect to each entry of each matrix separately.

The (complex!) partial derivatives of F are gathered in matrices,

(Z; W) 7β†’ F(1)(Z, W) ∈ CcΓ—r, (Z; W) 7β†’ F(2)(Z, W) ∈ CrΓ—c, with  F(1) ij =  βˆ‚F βˆ‚Z  ij = βˆ‚F βˆ‚Zji ,  F(2) k` =  βˆ‚F βˆ‚W  k` = βˆ‚F βˆ‚W`k . (2.4) In our notation the C-linearization of F at (Z, W), for Ξ΅ ∈ C , |Ξ΅| small, reads

F (Z + Ξ΅H, W + Ξ΅K) = F (Z, W) + Ξ΅Tr[F(1)]H} + Ξ΅Tr[F(2)]K +O(|Ξ΅|2

). (2.5) Notation: Sometimes, in order to avoid excessive use of brackets, it is convenient to write TrF(1) : H} instead of Tr[F(1)]H}.

Also, without warning, in proofs sometimes Einstein’s summation convention for repeated upper and lower indices will be used.

(11)

Next split Z in real and imaginary parts Z = X + iY and introduce the function f

F : RrΓ—c

Γ— RrΓ—c β†’ C : (X; Y) 7β†’ fF (X , Y) = F (Z, Z†) =F (X + iY , X>βˆ’ iY>). (2.6) The R -linearization of fF at (X , Y) for Ξ΅ ∈ R , |Ξ΅| small, can now be written

f F (X + Ξ΅A , Y + Ξ΅B) = fF (X , Y) + Ξ΅Trβˆ‚ fF βˆ‚XA + Ξ΅Tr  βˆ‚ fF βˆ‚Y B +O(Ξ΅ 2 ), (2.7) with Tr βˆ‚ fF βˆ‚XA = Tr[F (1)]A + Tr[F(2)]A> = Tr [F(1)] + [F(2)]>A , Tr βˆ‚ fF βˆ‚YB = Tr i[F (1)]B + Tr βˆ’ i[F(2)]B> = Tr i [F(1)] βˆ’ [F(2)]>B , (2.8) where the matrices X, Y, A, B are all real. The (complex) derivatives F(1),F(2) are taken at (Z, Z†). In the usual (somewhat confusing) notation, this corresponds to

βˆ‚ fF βˆ‚X = βˆ‚F βˆ‚X = βˆ‚F βˆ‚Z +  βˆ‚F βˆ‚Z† > , βˆ‚ fF βˆ‚Y = βˆ‚F βˆ‚Y = i βˆ‚F βˆ‚Z βˆ’ i  βˆ‚F βˆ‚Z† > , (2.9) and, similarly sloppy,

βˆ‚F βˆ‚Z = 1 2 βˆ‚F βˆ‚X βˆ’ i βˆ‚F βˆ‚Y ,  βˆ‚F βˆ‚Z† > = 1 2 βˆ‚F βˆ‚X + i βˆ‚F βˆ‚Y. (2.10) If it happens that Z 7β†’F (Z, Z†) is R -valued, the results of Theorem (2.1) can be rephrased. Theorem 2.2

Let, as in (2.3),

F : CrΓ—c

Γ— CcΓ—r 3 (Z; W) 7β†’ F (Z, W) ∈ C .

be analytic. Suppose F (Z, Z†) ∈ R , for all Z ∈ CrΓ—c. Write Z = X + iY. Denote

f F : RrΓ—c Γ— RrΓ—c β†’ R : (X; Y) 7β†’ fF (X , Y) = F (Z, Z†) =F (X + iY , X>βˆ’ iY>) , β€’ We have F(1)(Z, Z† ) = [F(2)(Z, Z†)]†. (2.11) Further, for the function fF to have a stationary point at (A ; B) ∈ RrΓ—cΓ— RrΓ—c each one

of the following three conditions is necessary and sufficient β€’ βˆ‚ fF βˆ‚X(A, B) = βˆ‚ fF βˆ‚Y(A, B) = 0 β€’ F(1)(A + iB, A>βˆ’ iB> ) = β€βˆ‚F βˆ‚Z(A + iB, A >βˆ’ iB> ) ” = 0 β€’ F(2)(A + iB, A>βˆ’ iB>) = β€βˆ‚F βˆ‚Z†(A + iB, A >βˆ’ iB> ) ” = 0. (2.12)

(12)

Proof: Is mostly a reformulation of the preceding theorem. It follows directly from

(2.9)-(2.10). 

In order to build the concept of Lagrangian density we need an analytic function, named proto-Lagrangian, L : CrΓ—c Γ— CcΓ—r Γ— CN rΓ—c Γ— CcΓ—N r Γ— RN β†’ C, (P; Q>; R ; S>; x) 7β†’ L (P; Q>; R ; S> ; x) , (2.13) where P ∈ CrΓ—c , R = col R 1, . . . , RN , R¡∈ CrΓ—c , 1 ≀ Β΅ ≀ N , Q>∈ CcΓ—r , S>= row S>1 , . . . , S>N , S>Β΅ ∈ CcΓ—r , 1 ≀ Β΅ ≀ N . Instead of (2.13) it will be convenient sometimes to denote the proto Lagrangian by

L (P; Q>

; . . . , RΒ΅, . . . ; . . . , S>Β΅, . . . ; x). It will be required that L (O; O>; O ; O>; x) = 0.

The (complex) partial derivatives of L , cf. (2.4)-(2.5), with respect to its 2N + 2 matrix arguments are denoted, respectively,

L(o), L(o?), L(1), . . . ,L(N ), L(1?), . . . ,L(N ?).

The (real) partial derivatives ofL , with respect to the vector variable x is denoted L(βˆ‡). For any given matrix-valued function Ξ¨ : RN β†’ CrΓ—c, we define a Lagrangian density

Lψ : RN β†’ C, by substitution of Ξ¨, its 1st derivatives βˆ‚Β΅Ξ¨ = Ξ¨, Β΅, 1 ≀ Β΅ ≀ N , and the

hermitean transposed of all those, in L :

x 7β†’ Lψ(x) =L (Ξ¨(x); Ψ†(x); βˆ‡Ξ¨(x) ; βˆ‡Ξ¨β€ (x) ; x ), (2.14) where βˆ‡Ξ¨(x) = colβˆ‚1Ξ¨(x) , . . . , βˆ‚NΞ¨(x)  ∈ CN rΓ—c, βˆ‡Ξ¨β€ (x) = rowβˆ‚1Ψ†(x) , . . . , βˆ‚NΨ†(x)  ∈ CcΓ—N r. Also the matrix-valued functions

x 7β†’ [Lψ(Β΅)](x) = [L(Β΅)](Ξ¨(x); Ψ†(x); βˆ‡Ξ¨(x) ; βˆ‡Ξ¨β€ (x) ; x ) ∈ CcΓ—r, similarly x 7β†’ [Lψ(Β΅?)] ∈ CrΓ—c, and x 7β†’Lψ(βˆ‡) ∈ RN, will be used.

On a suitable space of functions Ξ¨ : RN β†’ CrΓ—c, it often makes sense to define the

Lagrangian functional Ξ¨ 7β†’ L(Ξ¨ , Ψ†) = Z RN L (Ξ¨(x); Ψ† (x); βˆ‡Ξ¨(x) ; βˆ‡Ξ¨β€ (x) ; x ) dx ∈ C. (2.15)

(13)

Remark 2.3 The Lagrangian functional L remains the same if we replace L by L (Ξ¨; Ψ†

; βˆ‡Ξ¨ ; βˆ‡Ξ¨β€ ; x) + βˆ‚Β΅wΒ΅(Ξ¨, Ψ†, x),

with wΒ΅ a vectorfield which vanishes sufficiently rapidly at infinity. Therefore the functional Ξ¨ 7β†’ L(Ξ¨ , Ψ†) is R -valued if

L (Ξ¨; Ψ†

; βˆ‡Ξ¨ ; βˆ‡Ξ¨β€ ; x) βˆ’ L (Ξ¨; Ψ†; βˆ‡Ξ¨ ; βˆ‡Ξ¨β€ ; x) = βˆ‚Β΅WΒ΅(Ξ¨, Ψ†, x) ,

i.e. the divergence of a vector field.

Note that L may be R -valued while Lψ is not !!

If we split Ψ into real and imaginary parts: Ψ = ΨRe + iΨIm and Ψ,¡ = ΨRe ,¡+ iΨIm ,¡ ,

the R -directional derivatives with respect to Ξ¨Re and Ξ¨Im of the Lagrangian functional

L are explained by DΞ¨ReL , A = d dΞ΅L(Ξ¨ + Ξ΅A , Ξ¨ † + Ξ΅A>) Ξ΅=0 = = d dΞ΅ Z RN L (Ξ¨(x) + Ξ΅A(x); Ψ†

(x) + Ξ΅A>(x); βˆ‡ Ξ¨(x) + Ξ΅A(x) ; βˆ‡ Ψ†(x) + Ξ΅A>(x) ; x) dx

Ξ΅=0

, with A : RN β†’ RrΓ—c, and Ξ΅ ∈ R , |Ξ΅| small.

DΞ¨ImL , B = d dΞ΅L(Ξ¨ + Ξ΅ iB , Ξ¨ β€ βˆ’ Ξ΅ iB>) Ξ΅=0 = = d dΞ΅ Z RN L (Ξ¨(x) + Ξ΅ iB(x); Ψ† (x) βˆ’ Ξ΅ iB>(x); βˆ‡ Ξ¨(x) + Ξ΅ iB(x) ; βˆ‡ Ψ†(x) βˆ’ Ξ΅ iB>(x) ; x) dx Ξ΅=0 , with B : RN β†’ RrΓ—c , and Ξ΅ ∈ R , |Ξ΅| small.

When calculating the C-directional derivatives DΞ¨L , DΨ†L , the variables Ξ¨ , Ξ¨ †

are con-sidered to be independent. These derivatives are supposed to be elements in the (complex) linear dual of L2(RN; CrΓ—c). They are explained by

DΞ¨L , H = d dΞ΅L(Ξ¨ + Ξ΅H , Ξ¨ † ) Ξ΅=0 = = d dΞ΅ Z RN L (Ξ¨(x) + Ξ΅H(x); Ψ†(x); βˆ‡ Ξ¨(x) + Ξ΅H(x) ; βˆ‡Ξ¨β€  ; x ) dx Ξ΅=0, with H : RN β†’ CrΓ—c, and Ξ΅ ∈ C , |Ξ΅| small.

DΨ†L , K = d dΞ΅L(Ξ¨ , Ξ¨ † + Ξ΅K) Ξ΅=0 = = d dΞ΅ Z RN L (Ξ¨(x); Ψ† (x) + Ξ΅K(x); βˆ‡Ξ¨(x) ; βˆ‡(Ψ†(x) + Ξ΅K(x)) ; x ) dx Ξ΅=0 , with K : RN β†’ CcΓ—r, and Ξ΅ ∈ C , |Ξ΅| small.

For H , K , A , B vanishing sufficiently rapidly at ∞ a partial integration leads to the standard Euler-Lagrange expressions for the functional derivatives of L.

(14)

Theorem 2.4

Assume that L is R -valued. (Cf. Remark 2.3). If Ξ¨ satisfies any one of the following three Lagrangian systems

DΞ¨L = [L (o) ψ ] βˆ’ N X Β΅=1 βˆ‚ βˆ‚xΒ΅[L (Β΅) ψ ] = 0 , DΨ†L = [Lψ(o?)] βˆ’ N X Β΅=1 βˆ‚ βˆ‚xΒ΅[L (Β΅?) ψ ] = 0 , ο£±     ο£²     ο£³ DΞ¨ReL = βˆ‚L βˆ‚Ξ¨Re βˆ’ N X Β΅=1 βˆ‚ βˆ‚xΒ΅ βˆ‚L βˆ‚Ξ¨Re ,Β΅ = 0 , DΞ¨ImL = βˆ‚L βˆ‚Ξ¨Im βˆ’ N X Β΅=1 βˆ‚ βˆ‚xΒ΅ βˆ‚L βˆ‚Ξ¨Im ,Β΅ = 0 . , (2.16) with L = L (Ξ¨(x); Ψ†(x); βˆ‡Ξ¨(x) ; βˆ‡Ξ¨β€ (x) ; x ) , then it also satisfies the other two. Proof: With the notation (2.8)-(2.10) we obtain

βˆ‚L βˆ‚Ξ¨Re =L(o)+ [L(o?)]> , βˆ‚L βˆ‚Ξ¨Im = iL(o)βˆ’ i[L(o?)]> , (2.17) and, the other way round,

 L(o?)> = 1 2 βˆ‚L βˆ‚Ξ¨Re + i βˆ‚L βˆ‚Ξ¨Im  , L(o) = 1 2 βˆ‚L βˆ‚Ξ¨Re βˆ’ i βˆ‚L βˆ‚Ξ¨Im , (2.18) and similar expressions with (o) , (o?) replaced by (Β΅) , (Β΅?) and Ξ¨ , Ξ¨Re , Ξ¨Im replaced

by Ξ¨,Β΅, Ξ¨Re ,Β΅, Ξ¨Im ,Β΅. Then DΞ¨L = 12 DΞ¨ReL βˆ’ iDΞ¨ImL  DΨ†L > = 12 DΞ¨ReL + iDΞ¨ImL  DΞ¨ReL = DΞ¨L +DΨ†L > DΞ¨ImL > = iDΞ¨L βˆ’ iDΨ†L > . If we take into account that the entries of the matrix valued functions DΞ¨ReL and DΞ¨ImL

are R -valued, we find

D؆L

†

= DΨL , (2.19)

from which the theorem easily follows.  Examples 2.5 (Matter Fields)

a) Let Γ¡ and M be constant complex matrices with Γ¡† = Γ¡ and M = βˆ’M†. Then the

Lagrangian density

Lψ = i TrΞ¨β€ Ξ“Β΅βˆ‚Β΅Ξ¨ + Ψ†M Ξ¨ , (2.20)

for Ξ¨ : RN β†’ CrΓ—c, satisfies the condition of Theorem (2.4) and leads to (1.1) with A = 0.

b) Let Γ¡, 1 ≀ Β΅ ≀ N : RN β†’ CrΓ—r. Let AΒ΅, 1 ≀ Β΅ ≀ N : RN β†’ CcΓ—c.

Let M : RN β†’ CrΓ—r.

Suppose both the existence of K : RN β†’ CrΓ—r, having inverse Kβˆ’1

(x), for all x ∈ RN,

(15)

(KΓ¡)† = KΓ¡, , 1 ≀ Β΅ ≀ N, A†

Β΅(x)J + J AΒ΅(x) = 0, 1 ≀ Β΅ ≀ N, x ∈ RN,

and KM + M†Kβ€ βˆ’ βˆ‚Β΅ KΓ¡ = 0.

Then the Lagrangian density

Lψ = i TrΨ†K(Ξ“Β΅βˆ‚Β΅Ξ¨)Jβˆ’1+ Ψ†K(Γ¡ΨAΒ΅)Jβˆ’1+ Ψ†KM Ξ¨Jβˆ’1 , (2.21)

for Ξ¨ : RN β†’ CrΓ—c satisfies L βˆ’ L = βˆ‚

Β΅w and hence the condition of Theorem (2.4).

It leads to the ’matter-field equation’

Ξ“Β΅βˆ‚Β΅Ξ¨ + Γ¡ΨAΒ΅+ M Ξ¨ = 0 (2.22)

Indeed. Taking suitable combinations we find respectively TrΨ† KΓ¡(βˆ‚ ¡Ψ)Jβˆ’1+ Jβˆ’1(βˆ‚Β΅Ξ¨)†(KΓ¡)†Ψ) = TrJβˆ’1βˆ‚ Β΅[Ψ†KΓ¡Ψ)] + TrJβˆ’1[Ψ† βˆ‚Β΅(KΓ¡)Ξ¨)] , TrΨ† K(Γ¡ΨA Β΅)Jβˆ’1+ Jβˆ’1A†¡Ψ † (KΓ¡)†Ψ = TrAΒ΅Jβˆ’1+ Jβˆ’1A†¡Ξ¨ † (KΓ¡)Ξ¨ = 0, TrΨ† KM Ξ¨Jβˆ’1+ Jβˆ’1Ψ†M†K†Ψ = TrJβˆ’1Ψ† KM Ξ¨ + Jβˆ’1Ψ†M†K†Ψ = = TrJβˆ’1Ψ† (KM + M†K†)Ξ¨ . Ultimately we find LΟˆβˆ’Lψ = βˆ‚Β΅TrJβˆ’1[Ψ†KΓ¡Ψ)] = βˆ‚Β΅Tr[Ψ†KΓ¡Ψ)]Jβˆ’1 . (2.23)

The Euler-Lagrange equations are

K Ξ“Β΅βˆ‚Β΅Ξ¨ + Γ¡ΨAΒ΅+ M Ξ¨Jβˆ’1 = 0, (2.24)

from which K and Jβˆ’1 can be cancelled. c) The Lagrangian density

Lψ = Tr[βˆ‚Β΅Ξ¨]β€ Ξ˜Β΅Ξ½[βˆ‚Ξ½Ξ¨] + Ψ†RΞ¨ , (2.25)

with Θ¡ν, R : RN β†’ CrΓ—r and [Θ¡ν]† = Θν¡, R†

= R, is R -valued. It leads to the 2nd order equation X Β΅,Ξ½ βˆ‚ βˆ‚x¡Θ ¡ν βˆ‚ βˆ‚xΞ½Ξ¨ βˆ’ R Ξ¨ = 0 . (2.26)

d. The Lagrangian density for functions Ξ¨ = col[ ψ1 ψ2 ] : R N +1 β†’ C2, Lψ = Tr h Ψ†( iβˆ‚tΞ¨ + βˆ†Ξ¨ + V Ξ¨) i , with x 7β†’ V (x) ∈ C2Γ—2, V†= V , (2.27) leads to a R -valued Lagrangian functional L. Indeed

LΟˆβˆ’Lψ = iβˆ‚tTr h Ψ†Ψi+βˆ‚x1Tr h Ψ†(βˆ‚x1)Ξ¨βˆ’(βˆ‚x1Ξ¨) †Ψi+. . .+βˆ‚ xNTr h Ψ†(βˆ‚xN)Ξ¨βˆ’(βˆ‚xNΞ¨) †Ψi.

(16)

3

Free Gauge Fields

The ’field variables’ to be considered in this section are smooth functions A : RN β†’ CcΓ—c Γ— Β· Β· Β· Γ— CcΓ—c | {z } N times : x 7β†’ A(x) = col[A1(x), . . . , AΒ΅(x), . . . , AN(x)] , (3.1)

with AΒ΅(x) ∈ g, with g βŠ‚ CcΓ—c some fixed real Lie algebra. 2 This means that g is a

R -linear subspace in CcΓ—c which is not necessarily a C-linear subspace. On g we impose the usual ’commutator’-Lie product

{AΒ΅, AΞ½} = AΒ΅AΞ½ βˆ’ AΞ½AΒ΅ .

Important examples are matrix Lie Algebras of type gJ = { X ∈ CrΓ—r

X

†

J + J X = 0 } , with fixed invertible J ∈ CrΓ—r. Note that gJ is always a R -linear subspace in CrΓ—r, but not necessarily C-linear.

However: {Jβˆ’1 = J†} β‡’ {X ∈ gJ β‡’ Xβ€ βˆˆ gJ}.

Next, byPg: CcΓ—c β†’ g, we denote the real orthogonal projection with respect to the real

inner product X, Y 7β†’ Re Tr[X†Y ]. Remarks 3.1

Consider CcΓ—cas a real vector space with standard real inner product X, Y 7β†’ Re Tr[X†Y ]. ByPg : CcΓ—cβ†’ g, we denote the real orthogonal projection with respect this inner product.

β€’ The Hermitean conjugation map X 7β†’ X†

is R -linear symmetric and orthogonal. β€’ If βˆ€ X ∈ g : Xβ€ βˆˆ g, in short g†

= g, it follows that βˆ€X ∈ CcΓ—c :P

g(X†) = (PgX)†.

β€’ For fixed K, L ∈ CcΓ—c the mapping X 7β†’ KX†

L is R -linear. Its R -adjoint is Y 7β†’ LY†K.

β€’ For any fixed invertble J ∈ CcΓ—c the mapping

QJ : Cc×c→ Cc×c : X 7→QJX =

1

2(X βˆ’ J

βˆ’1X†J ) ,

(3.2) is a R -linear mapping which reduces to the identity map when restricted to gJ.

β€’ QJ is a R -linear projection on gJ iff J = J†.

β€’ QJ is a R -linear orthogonal projection on gJ if J = Jβˆ’1 = J†.

In this special case QJ =Pg, with g = gJ. 2In physics textbooks one often denotes iA

Β΅, instead of AΒ΅, cf. [DM]. For resemblance with

Electro-magnetism, I suppose. Because of u(1) = iR ? To this author the factor i is not convenient in all other cases.

(17)

β€’ If we modify the standard real inner product on CcΓ—c to X, Y 7β†’ Re Tr[X†J2Y ], the

projection QJ is orthogonal iff J = J†.

Proof

β€’ Re Tr[(X†)†Y ] = Re Tr[XY ] = Re Tr[X†(Y†)]. Also Re Tr[(X†)†(Y†)] = Re Tr[(X)†(Y )].

β€’ Since g is supposed to be an invariant subspace for X 7β†’ X† and the latter is symmetric,

also gβŠ₯ is invariant.

β€’ Re Tr[(KX†L)†Y ] = Re Tr[KX†LY†] = Re Tr[X†(LY†K)] .

β€’ For X ∈ g holds (I βˆ’QJ)X = 0 , iff X ∈ g .

β€’ Q2 J = QJ iff J = J†. β€’β€’ 1 2Re Tr[(X βˆ’ J βˆ’1X†J )†J2Y ] = 1 2Re Tr[X †J2Y ] βˆ’ 1 2Re Tr[X †J2(Jβˆ’1Y†J†2Jβˆ’1)] .

The 2nd term equals βˆ’12Re Tr[X†J2(Jβˆ’1Y†J ] , for all X, Y , iff J = J†.  Associated with A, cf. (3.1), we introduce covariant-type partial derivatives

βˆ‡A

Β΅, 1 ≀ Β΅ ≀ N of functions U ∈C ∞

(RN: CcΓ—c) by

βˆ‡AΒ΅U = βˆ‚Β΅U βˆ’ {AΒ΅, U } = βˆ‚Β΅U βˆ’ adAΒ΅U . (3.3)

One has the Leibniz-type rules βˆ‡A Β΅(U V ) = (βˆ‡AΒ΅U )V + U (βˆ‡AΒ΅V ) , TrU (βˆ‡A Β΅V )  = βˆ‚Β΅TrUV  βˆ’ Tr(βˆ‡AΒ΅U )V . (3.4) Note that if U ∈C∞(RN: g) then also βˆ‡A

¡U ∈C ∞

(RN: g).

Next, as in section 1, for given AΒ΅, AΞ½ ∈C∞(RN: g) , 1 ≀ Β΅, Ξ½ ≀ N , define

F¡ν = βˆ‚Β΅AΞ½ βˆ’ βˆ‚Ξ½AΒ΅βˆ’ {AΒ΅, AΞ½} ∈ C∞(RN: g) , (3.5)

to which Theorem 1.2 applies.

For the construction of a R -valued Lagrangian density GAfor the Gauge field(s) A we again

employ a proto Lagrangian G , which is now an analytic function of N(N βˆ’ 1) complex-matrix variables and just smooth in N real variables:

G : CcΓ—c Γ— Β· Β· Β· Γ— CcΓ—c | {z } 1 2N (N βˆ’1) times Γ— CcΓ—c Γ— Β· Β· Β· Γ— CcΓ—c | {z } 1 2N (N βˆ’1) times Γ— RN β†’ C . (3.6) The 1st set of entries to this function is labeled by the ordered pairs (¡ν) , 1 ≀ Β΅ < Ξ½ ≀ N . The 2nd set of entries is labelled by the ordered triple (θρ?) , 1 ≀ ΞΈ < ρ ≀ N . We denote

{ . . . , P¡ν, . . . ; . . . , Qθρ?, . . . ; x} 7β†’ G ( . . . P¡ν, . . . ; . . . Qθρ?, . . . ; x) ∈ C ,

with 1 ≀ Β΅ < Ξ½ ≀ N and 1 ≀ ΞΈ < ρ ≀ N . The 3 bunches of variables get their corresponding partial derivatives denoted by, respectively, cf. (2.4),

G(¡ν)(. . . , P

(18)

Let the Lie algebra g be fixed. On G we put the condition, take Qθρ? = P † θρ,

βˆ€ {P¡ν}1≀¡<ν≀N βŠ‚ g βˆ€x ∈ RN : G (. . . , P¡ν, . . . ; . . . , Pθρ†, . . . ; x) ∈ R . (3.7)

The Lagrangian density we want to consider is found by replacing P¡ν β†’ F¡ν, Qθρ? β†’ F † θρ,

x 7β†’ GA(x) =G ( . . . , F¡ν(x), . . . ; . . . , F †

θρ(x), . . . ; x ) ∈ R . (3.8)

Note that if g = gJ, for some fixed J ∈ CcΓ—c, we have F †

θρ= βˆ’J FθρJβˆ’1, ΞΈ < ρ.

As in the previous section, a corresponding useful notation is

x 7β†’ GA(¡ν)(x) =G(¡ν)( . . . , F¡ν(x), . . . ; . . . , Fθρ†(x), . . . ; x ) ∈ CcΓ—c. (3.9)

The Lagrangian density GA depends on the field variables x 7β†’ AΒ΅(x) , 1 ≀ Β΅ ≀ N , and

their derivatives. All being functions in a vectorspace over R . In the important special case g = gJ the hermitean conjugate notation of the field variables AΒ΅need not even occur.

Finally, note that, because of (2.11) and (3.8), we have G(θρ?) A (x) = (G (θρ) A ) † (x) , 1 ≀ ΞΈ < ρ ≀ N . (3.10) Notation 3.2 In order to visually simplify the formulae to come, it is useful to extend the set of functions GA(¡ν), cf.(3.9), to ’full’ labels 1 ≀ Β΅, Ξ½ ≀ N in the following way,

Λ† G(¡ν) A = ο£±  ο£²  ο£³ G(¡ν) A if 0 ≀ Β΅ < Ξ½ ≀ N , as before, 0 if Β΅ = Ξ½ , βˆ’GA(Ξ½Β΅) if 0 ≀ Ξ½ < Β΅ ≀ N . (3.11) Theorem 3.3

Fix a matrix Lie algebra g βŠ‚ CcΓ—c. Consider the Lagrangian density G

A of (3.8).

A. The Euler-Lagrange equations for the free gauge fields AΒ΅, 1 ≀ Β΅ ≀ N , with values in

the Lie algebra g βŠ‚ CcΓ—c, read

N X Β΅=1 Pg  βˆ‡A Β΅ [PgGΛ† (¡κ?) A ] †† = 0 , 1 ≀ ΞΊ ≀ N , (3.12) with βˆ‡A Β΅ as in (3.3).

B. In the special case g†= g the Euler-Lagrange equations simplify to

N X Β΅=1  βˆ‡A Β΅PgGΛ† (¡κ) A  = 0 , 1 ≀ ΞΊ ≀ N . (3.13) C. If we take g = gJ, with J = J†= Jβˆ’1, the latter becomes

N X Β΅=1 βˆ‡AΒ΅QJ[ Λ†GA(¡κ)]  = 0 , 1 ≀ ΞΊ ≀ N , (3.14) where QJZ = 12Z βˆ’ 12J Z†J , Z ∈ CcΓ—c.

(19)

Proof

A. In order to calculate the (directional) derivatives of the Lagrangian functional G = R

GA dx with respect to the free gauge fields AΞΊ, 1 ≀ ΞΊ ≀ N , we first expand a perturbation

of x 7β†’ F¡ν(x) by substitution of the gauge fields x 7β†’ AΒ΅(x) + Ρδ¡κH(x) , Ξ΅ ∈ R ,

F¡ν;Ξ΅,ΞΊ = h βˆ‚Β΅(AΞ½+ ΡδνκH) βˆ’ βˆ‚Ξ½(AΒ΅+ Ρδ¡κH) βˆ’ {AΒ΅+ Ρδ¡κH , AΞ½+ ΡδνκH} i = = h βˆ‚Β΅AΞ½ βˆ’ βˆ‚Ξ½AΒ΅βˆ’ {AΒ΅, AΞ½} i + Ξ΅ δνκ h βˆ‚Β΅H βˆ’ {AΒ΅, H} i βˆ’ Ξ΅ δ¡κ h βˆ‚Ξ½H βˆ’ {AΞ½, H} i = = F¡ν+ Ξ΅Ξ΄Ξ½ΞΊβˆ‡AΒ΅H βˆ’ Ξ΅Ξ΄Β΅ΞΊβˆ‡AΞ½H .

Consider the expansion G (. . . , F¡ν;Ξ΅,ΞΊ, . . . ; . . . , F † θρ;Ξ΅,ΞΊ, . . . ; x) βˆ’ G (. . . , F¡ν, . . . ; . . . , F † θρ, . . . ; x) = = Ξ΅ X 1≀¡<ν≀N Trh[GA(¡ν)][Ξ΄Ξ½ΞΊβˆ‡AΒ΅H βˆ’ Ξ΄Β΅ΞΊβˆ‡AΞ½H ] + + Ξ΅ X 1≀θ<ρ≀N Trh[GA(θρ?)][Ξ΄ΟΞΊβˆ‡ΞΈAH βˆ’ Ξ΄ΞΈΞΊβˆ‡AρHΞΊ]† i +O(Ξ΅2) = = Ξ΅ 2 N X Β΅, Ξ½=1 Trh[ Λ†GA(¡ν)][Ξ΄Ξ½ΞΊβˆ‡AΒ΅H βˆ’ Ξ΄Β΅ΞΊβˆ‡AΞ½H ] + +Ξ΅ 2 N X ΞΈ, ρ=1 Tr h [ Λ†GA(θρ?)][Ξ΄ΟΞΊβˆ‡AΞΈH βˆ’ Ξ΄ΞΈΞΊβˆ‡AρH ] †i +O(Ξ΅2) = = Ξ΅ 2 N X Β΅=1 Trh[ Λ†GA(¡κ)][βˆ‡AΒ΅Hiβˆ’ Ξ΅ 2 N X Ξ½=1 Trh[ Λ†GA(ΞΊΞ½)][βˆ‡AΞ½H ]i+ +Ξ΅ 2 N X ΞΈ=1 Trh[ Λ†GA(ΞΈΞΊ?)][βˆ‡AΞΈHi βˆ’ Ξ΅ 2 N X ρ=1 Trh[ Λ†GA(κρ?)][βˆ‡AρH ]†i +O(Ξ΅2) = = Ξ΅ N X Β΅=1 Tr h [ Λ†GA(¡κ)][βˆ‡AΒ΅Hi + Ξ΅ N X Β΅=1 Tr h [ Λ†GA(¡κ?)][βˆ‡AΒ΅H ]†i +O(Ξ΅2) = = 2Ξ΅Re N X Β΅=1 Trh[ Λ†GA(¡κ?)]†[βˆ‡AΒ΅H]i + O(Ξ΅2) = 2Ξ΅Re N X Β΅=1 Trh[PgGΛ† (¡κ?) A ] † [βˆ‡AΒ΅H]i + O(Ξ΅2) = = βˆ’2Ξ΅Re N X Β΅=1 Trhβˆ‡A Β΅ [PgGΛ† (¡κ?) A ] †Hi + N X Β΅=1 βˆ‚Β΅(. . .) +O(Ξ΅2) =

(20)

= βˆ’2Ξ΅Re N X Β΅=1 Trh Pg  βˆ‡A Β΅ [PgGΛ† (¡κ?) A ] ††† Hi + N X Β΅=1 βˆ‚Β΅(. . .) +O(Ξ΅2) . (3.15)

In this derivation we used, respectively, the antisymmetry Β΅ ↔ Ξ½ of [ Λ†GA(¡ν)] and [Ξ΄Ξ½ΞΊβˆ‡AΒ΅H βˆ’

Ξ΄Β΅ΞΊβˆ‡AΞ½H ], the Leibniz rule(3.4), the fact that Re Tr

h

. . .†Hi expresses the real inner product on CcΓ—c and P

g the real orthogonal projection on g.

Also properties like Tr[AB] = Tr[BA] , Tr[A{B , C}] = Tr[{A , B}C] play a crucial role. The result now follows by the usual variational practices.

B. If g† = g the real linear mappings {.}† and Pg commute, which greatly simplifies the

result of A.

C. Use Remarks 3.1. 

Example 3.4

A. For convenience we restrict to Lie-algebras with property g† = g. We will consider general Lagrangians which are (real) quadratic in F¡ν. Here, in our summation expressions,

we write Β΅ < Ξ½ instead of 1 ≀ Β΅ < Ξ½ ≀ N . Start from the proto Lagrangian G = X Β΅<Ξ½ , ΞΈ<ρ h(¡ν)(θρ)Tr[P¡νQθρ?] with h(¡ν)(θρ) = h(θρ)(¡ν) ∈ C . (3.16) Note X Β΅<Ξ½,ΞΈ<ρ h(¡ν)(θρ)Tr[P¡νP † θρ] ∈ R .

For the derivatives of G we find, G(¡ν)(. . . , P ¡ν, . . . ; . . . , Qθρ?, . . . ) = X Ξ±<Ξ² h(¡ν)(Ξ±Ξ²)QΞ±Ξ²? G(θρ?)(. . . , P ¡ν, . . . ; . . . , Qθρ?, . . . ) = X Ξ±<Ξ² h(Ξ±Ξ²)(θρ)PΞ±Ξ² If we take Qθρ? = P †

θρ, one easily checks (3.8),

G(¡ν)†(. . . , P ¡ν, . . . ; . . . , P † θρ, . . . ) = X Ξ±<Ξ² h(¡ν)(Ξ±Ξ²)PΞ±Ξ² = X Ξ±<Ξ² h(Ξ±Ξ²)(¡ν)PΞ±Ξ² =G(¡ν?).

The Lagrangian density

GA= X Β΅<Ξ½, ΞΈ<ρ h(¡ν)(θρ)Tr[F¡νF † θρ] , (3.17)

can now be put in (3.13) to find the Euler-Lagrange equations. Note however, that Pg

(21)

So, let us restrict to g† = g Γ nd h(¡ν)(θρ) ∈ R . Anti-symmetrize h(¡ν)(θρ) to full labels: Λ† h(¡ν)(θρ) = ο£±    ο£²    ο£³ h(¡ν)(θρ) if Β΅ < Ξ½ , ΞΈ < ρ or Β΅ > Ξ½ , ΞΈ > ρ 0 if Β΅ = Ξ½ and/or ΞΈ = ρ βˆ’h(Ξ½Β΅)(θρ) if Β΅ > Ξ½ , ΞΈ < ρ βˆ’h(¡ν)(ρθ) if Β΅ < Ξ½ , ΞΈ > ρ

In this special case

Λ† G(¡ν) A = 1 2 N X Ξ±,Ξ²=1 Λ† h(¡ν)(Ξ±Ξ²)Fαβ† ,

and, since Fαβ† ∈ g, the E-L-equations (3.13) become 1 2 N X Ξ±,Ξ²=1 N X Β΅=1 Λ† h(¡κ)(Ξ±Ξ²)  βˆ‚Β΅F † Ξ±Ξ²βˆ’ {AΒ΅, F † Ξ±Ξ²}  = 0 , 1 ≀ ΞΊ ≀ N . (3.18)

B. For gauge fields on Minkowski space, with coordinates x0, x1, x2, x3 and

metric [g¡ν] = diag(1, βˆ’1, βˆ’1, βˆ’1), one usually takes, cf. [DM],

h(¡ν)(Ξ±Ξ²) = g¡αgΞ½Ξ² = (βˆ’1)1+δ¡0δ¡α(βˆ’1)1+δν0δνβ = (βˆ’1)δ¡0+δν0δ¡αδνβ.

Hence

Λ†

h(¡κ)(Ξ±Ξ²) = sgn(ΞΊ βˆ’ Β΅) sgn(Ξ² βˆ’ Ξ±) (βˆ’1)δ¡0+δκ0δ¡αδκβ.

In this special case the Lagrangian density (3.17) reads GA=

X

0≀¡<ν≀3

(βˆ’1)δ¡0+δν0TrF

¡νF¡ν†  . (3.19)

The corresponding Euler-Lagrange equations are

3 X Β΅=0 (βˆ’1)δ¡0+δκ0βˆ‡A Β΅F † ¡κ= 0 , 0 ≀ ΞΊ ≀ 3 . (3.20)

For dim g = 1 the term adAΒ΅F

†

¡κ vanishes. This simplification, viz. βˆ‡AΒ΅ = βˆ‚Β΅ , leads

to standard electromagnetism in Minkowski space. Indeed, if we put A†0 = βˆ’Ξ¦ and col[A†1, A†2, A†3] = A, then (3.20) turns into Maxwell’s equations ’in potential form’

ο£±  ο£²  ο£³ βˆ‚ βˆ‚tdivA + βˆ†Ξ¦ = 0 βˆ‚2 βˆ‚t2A βˆ’ βˆ†A + grad βˆ‚ βˆ‚tΞ¦ + divA  = 0 (3.21)

(22)

If the pair A, B satisfies (3.21), then the pair E = βˆ’βˆ‚ A

βˆ‚t βˆ’ gradΞ¦ , B = rotA , satisfies the classical Maxwell equations.

Finally, imposing the ’Lorenz-Gauge’ βˆ‚

βˆ‚tΞ¦ + divA = 0, we find the usual wave equations βˆ‚2

tΞ¦ βˆ’ βˆ†Ξ¦ = 0 , βˆ‚t2Aβˆ’ βˆ†A = 0 . For more details see Appendix B.

4

Noether Fluxes

’Infinitesimal symmetries’ of the Lagrangian densityL lead to local conservation laws for the solutions of the Euler Lagrange equations. So we are told by Emmy Noether’s famous theorem. First we have a short look at the needed concepts as formulated within our special (simple) context.

Definition 4.1 A Conservation Law or Noether Flux is a vectorfield on RN, with

com-ponents Vψ¡, 1 ≀ Β΅ ≀ N , which arise from a set of functions of Proto-Lagrangian type, VΒ΅, 1 ≀ Β΅ ≀ N , cf. (2.13), such that for all solutions Ξ¨ of the Euler Lagrangian system,

cf. Th 2.4, we have N X Β΅=1 βˆ‚ βˆ‚xΒ΅V Β΅ ψ(x) = 0 , where V Β΅ ψ(x) = V Β΅(Ξ¨(x), Ψ† (x), Ξ¨,Β΅(x), Ψ†,Β΅(x), x) . (4.1)

A conservation law can be named ’trivial’ for several reasons: It may happen that for all solutions Ξ¨ the fluxes Vψ¡ = 0. Another reason for triviality occurs if for all functions Ξ¨, whether they are solutions or not, the identity (4.1) is satisfied. For example if the components Vψ¡ arise from the curl of an arbitrary vector field depending on Ξ¨.

Two types of symmetries will be considered here: ’Internal symmetries’ and ’External symmetries’. They can be formulated in terms of the proto-Lagrangian only.

External symmetries regard transformations of the spatial variables x. We restrict to affine transforms.

Definition 4.2 (Internal symmetries) A set of linear mappings K , LΞ»

Β΅ : CrΓ—c β†’ CrΓ—c, 1 ≀ Ξ», Β΅ ≀ N , is said to generate an

internal (local) symmetry of the proto-Lagrangian L if for all P, QΒ΅ ∈ CrΓ—c, all x ∈ RN,

and s ∈ R , |s| small, one has L (esKP; (esKP)† ; . . . esLλ¡Q Ξ». . . ; . . . (esL Ξ» Β΅Q Ξ»)†. . . ; x) = =L (P; P†; . . . QΒ΅. . . ; . . . Q†¡. . . ; x) +O(s 2) , (4.2)

In many cases the K , LΞ»

Β΅ are realized by left and/or right multiplication with some fixed

(23)

Many times there is a special type of internal symmetry which is related to a linear mapping A : RN β†’ RN in the ’outside world’,

L (P; P†

; . . . (esA)λ¡QΞ». . . ; . . . ((esA)λ¡QΞ»)†. . . ; x) =

=L (P; P†; . . . QΒ΅. . . ; . . . Q†¡. . . ; x) +O(s

2) , (4.3)

Definition 4.3 (External symmetries)

The affine mapping x 7β†’ βˆ’sa + esAx on RN, where a ∈ RN and A : RN β†’ RN, a linear mapping, is said to generate an external (local) symmetry of the proto-Lagrangian L if for all P, Q¡∈ CrΓ—c, all x ∈ RN, and s ∈ R , |s| small, one has

L (P; P†

; . . . QΒ΅. . . ; . . . (QΒ΅)†. . . ; βˆ’sa + esAx) =

=L (P; P†; . . . QΒ΅. . . ; . . . Q†¡. . . ; x) +O(s

2) . (4.4)

Remarks 4.4

β€’ The order constant in O(s2) may depend on all independent variables of L .

β€’ If in (4.2)-(4.4) exponents like esK are replaced by I + sK we get equivalent

conditi-ons. However in many practical applications the terms O(s2) are identically zero if exponentials are used.

β€’ Local symmetry (4.4) implies L(βˆ‡)(P; P†

; . . . QΒ΅. . . ; . . . Q†¡. . . ; x) Β· (Ax βˆ’ a) = 0 .

We now first consider two types of conservation laws in connection with affine transforma-tions in space.

For any vector a ∈ RN we define the Translation operator Ta by

TaΞ¨(x) = Ξ¨(x βˆ’ a).

For any matrix A ∈ RN Γ—N we define the dilation operator R A by

RAΨ(x) = Ψ(eAx).

Theorem 4.5

Suppose that, for some K : CrΓ—c β†’ CrΓ—c

and some a ∈ RN, the proto-Lagrangian L has internal local symmetry (4.2) with Lλ¡ = δλ

Β΅K and external local symmetry (4.4) with

A = O. Then for any solution Ξ¨ of the Euler-Lagrange system one has the conservation law N X Β΅=1 βˆ‚ βˆ‚xΒ΅ n Trh[Lψ(Β΅)] Β· (KΞ¨ βˆ’ aΞ»βˆ‚Ξ»Ξ¨) + [L (Β΅?) ψ ] Β· (KΞ¨ βˆ’ a Ξ»βˆ‚ λΨ)† i + aΒ΅Lψ o = 0 . (4.5)

(24)

Proof: By ∼= we mean equality up to a term O(s2). We study L esK TsaΞ¨, TsaΨ†esK † , βˆ‚Β΅[esKTsaΞ¨], βˆ‚Β΅[TsaΨ†esK † ], x βˆ’ sa . With our conditions it can be written

L (esKΞ¨(xβˆ’sa); (esKΞ¨(xβˆ’sa))†

; . . . βˆ‚Β΅esKΞ¨(xβˆ’sa) . . . ; . . . βˆ‚Β΅(esKΞ¨(xβˆ’sa))†. . . ; xβˆ’sa) ∼=

∼

=L (Ξ¨(x βˆ’ sa); Ξ¨(x βˆ’ sa)†; . . . Ξ¨,Β΅(x βˆ’ sa) . . . ; . . . Ξ¨,Β΅(x βˆ’ sa)†. . . ; x βˆ’ sa) =

=Lψ(x βˆ’ sa) = (TsaLψ)(x) . (4.6)

Differentiate the first line of this at s = 0 and useL(βˆ‡)Β·a = 0 , Tr[L(o) ψ ](KΞ¨ βˆ’ a Ξ»βˆ‚ λΨ) + [L (o?) ψ ](Ξ¨ † Kβ€ βˆ’ aΞ»βˆ‚ λΨ†)+ +[Lψ(Β΅)](Kβˆ‚Β΅Ξ¨ βˆ’ aΞ»βˆ‚Ξ»βˆ‚Β΅Ξ¨) + [L (Β΅?) ψ ](βˆ‚Β΅Ξ¨β€ Kβ€ βˆ’ aΞ»βˆ‚Ξ»βˆ‚Β΅Ξ¨β€ ) . (4.7)

If Ξ¨ is a solution we use (2.16) and replace [Lψ(o)] by βˆ‚xβˆ‚Β΅[L

(Β΅)

ψ ], etc. Now (4.7) can be

written as a divergence, which constitutes the left hand side of (4.5), apart from the last term inside { }. Together with the derivative aΞ»βˆ‚

Ξ»Lψ = βˆ‚Β΅(aΒ΅Lψ) at s = 0 of the final

line of (4.6) we arrive at the wanted conserved current (4.5).  Example 4.6 Let Γ¡and M be constant complex matrices with Γ¡† = Γ¡and M = βˆ’M†. Then the Lagrangian density

Lψ = Tr iΞ¨β€ Ξ“Β΅βˆ‚Β΅Ξ¨ + Ψ†M Ξ¨ , (4.8)

for Ξ¨ : RN β†’ CrΓ—c

satisfies the condition of Theorem 4.1 for K = O and all a ∈ RN. The conservation law reads

βˆ‚ βˆ‚xΒ΅Tr βˆ’a λΨ† Ξ“Β΅βˆ‚Ξ»Ξ¨ + aΒ΅Ξ¨β€ Ξ“Ξ»βˆ‚Ξ»Ξ¨ + a¡Ψ†M Ξ¨ = βˆ‚ βˆ‚xΒ΅Tr βˆ’a λΨ† Ξ“Β΅βˆ‚Ξ»Ξ¨ = 0. (4.9) This can be checked directly for solutions of the PDE: Ξ“Β΅βˆ‚Β΅Ξ¨ + M Ξ¨ = 0. Observe that

in this special case Lψ = 0 for solutions.

Also the Lagrangian of Example (2.5b), with constant matrices K, M, Γ¡, A

Β΅ leads to

conservation laws of this type. Theorem 4.7

Suppose that, for some K : CrΓ—c β†’ CrΓ—c

and some A ∈ RN Γ—N with TrA = 0, the proto-Lagrangian L has internal local symmetry (4.2) with LΞ»

¡ = K + [A]λ¡I and external local

symmetry (4.4) with a = 0. Then for any solution Ξ¨ of the Euler-Lagrange system one has the conservation law

N X Β΅=1 βˆ‚ βˆ‚xΒ΅ n Trh[Lψ(Β΅)](KΞ¨(x) + AΞ±Ξ²xΞ²Ξ¨,Ξ±(x)) + + [Lψ(Β΅?)](KΞ¨(x) + AΞ±Ξ²xΞ²Ξ¨,Ξ±(x))† i βˆ’ A¡βxΞ²Lψ o = 0 . (4.10)

(25)

Proof: We study L esKR sAΞ¨ ; RsAΨ†esK † ; . . . βˆ‚Β΅[esKRsAΞ¨] . . . ; . . . βˆ‚Β΅[RsAΨ†esK † ] . . . ; esAx . With our conditions it can be written,

L (Ξ¨(esA

x); Ξ¨(esAx)†; . . . βˆ‚Β΅Ξ¨(esAx) . . . ; . . . βˆ‚Β΅Ξ¨(esAx)†. . . ; esAx) ∼=

∼ =L (Ξ¨(esAx); Ξ¨(esAx)†; . . . (esA)λ¡Ψ,Ξ»(esAx) . . . ; . . . (esA)λ¡Ψ,Ξ»(esAx)†. . . ; esAx) ∼= ∼ =L (Ξ¨(esAx); Ξ¨(esAx)†; . . . Ξ¨,Β΅(esAx) . . . ; . . . Ξ¨,Β΅(esAx)†. . . ; esAx) ∼= ∼ =L (Ξ¨(esAx); Ξ¨(esAx)†; . . . Ξ¨,Β΅(esAx) . . . ; . . . Ξ¨,Β΅(esAx)†. . . ; esAx) = =Lψ(esAx) = (RsALψ)(x). (4.11)

Differentiate the first line of this at s = 0 and use L(βˆ‡)Β·Ax = 0 :

Tr[L(o) ψ ](KΞ¨(x)+A Ξ± Ξ²x Ξ²Ξ¨ ,Ξ±(x))+[L (Β΅) ψ ]βˆ‚Β΅(KΞ¨(x)+AΞ±Ξ²x Ξ²Ξ¨ ,Ξ±(x)) + + [Lψ(o?)](KΞ¨(x) + AΞ±Ξ²xΞ²Ξ¨,Ξ±(x))†+ [L (Β΅?) ψ ]βˆ‚Β΅(KΞ¨(x) + AΞ±Ξ²x Ξ²Ξ¨ ,Ξ±(x))† . (4.12)

If Ξ¨ is a solution we use (2.16) and replace [Lψ(o)] by βˆ‚xβˆ‚Β΅[L

(Β΅)

ψ ], etc. Now (4.12) can

be written as a divergence, which constitutes the left hand side of (4.10), apart from the last term between { }. Together with the derivative at s = 0 of the final line in (4.11): AΒ΅Ξ²βˆ‚Β΅Lψ = βˆ‚Β΅(A

Β΅ Ξ²x

Ξ²L

ψ), use TrA = 0, we arrive at the conserved current (4.10). 

Next we deal with internal symmetries only. They play a crucial role in Gauge theories. A simple case first.

Theorem 4.8

Suppose that, for some linear K : CrΓ—c β†’ CrΓ—c the proto-Lagrangian L satisfies (4.2) with

Lλ¡= δλ¡K. Then for any solution Ξ¨ of the Euler-Lagrange system one has the conservation law N X Β΅=1 βˆ‚ βˆ‚xΒ΅Tr[L (Β΅) ψ ]KΞ¨ + [L (Β΅?) ψ ](KΞ¨) † = 0 , (4.13) Proof: Calculate the derivative

βˆ‚ βˆ‚sL e

sKΞ¨, (esKΞ¨)†

, βˆ‚Β΅[esKΞ¨], βˆ‚Β΅[esKΞ¨]†, x, at s = 0 .

With the notation of (2.5) one finds Tr[L(o) ψ ][KΞ¨] + [L (o?) ψ ][KΞ¨] † + [Lψ(Β΅)][KΞ¨,Β΅] + [L (Β΅?) ψ ][KΞ¨,Β΅]† = 0.

(26)

If Ξ¨ happens to be a solution of the Lagrangian system, then with (2.16) this becomes Tr[ βˆ‚ βˆ‚xΒ΅L (Β΅) ψ ][KΞ¨] + [ βˆ‚ βˆ‚xΒ΅L (Β΅?) ψ ][KΞ¨] † + [Lψ(Β΅)][KΞ¨], Β΅+ [L (Β΅?) ψ ][KΞ¨] † , Β΅ = 0,

which leads to the wanted ’conserved current’, since K is supposedly constant.  In gauge applications K is often realized by a right multiplication by some A ∈ CcΓ—c. In

such cases KΨ in (4.13) should be replaced by ΨA.

All previous considerations can be applied to matrix gauge fields as well if we replace Ξ¨ by A = col[. . . , AΒ΅, . . .]. Some subtleties occur however because the range of the functions

AΒ΅ is not the whole of CcΓ—c but some real linear subspace g of it. See Appendix A for more

details.

This section is concluded with conservation laws for non-commutative free gauge fields which come from the special Lagrangian density (3.8).

Theorem 4.9

Consider the proto-Lagrangian G of (3.6) with property (3.7) and Lagrange density as denoted in (3.8). For convenience restrict to g = g† only.

a. Suppose GA(βˆ‡)Β·a = 0, for some a ∈ RN then we have the conservation law N X Β΅=1 βˆ‚ βˆ‚xΒ΅ XN ΞΊ=1 Re TrhPgGΛ† (¡κ) A : (a Β·βˆ‡)AΞΊ i βˆ’ aΒ΅G A  = 0 . (4.14) b. If for some S = [S¡λ] ∈ RN Γ—N, with TrS = 0, the assumptions

G(βˆ‡) A Β·Sx = 0 and Re N X Β΅, Ξ½=1 TrhGΛ†A(¡ν): N X Ξ±=1 SΒ΅Ξ±βˆ‚Ξ±AΞ½ i = 0 , (4.15) hold, then we have the conservation law

N X Β΅=1 βˆ‚ βˆ‚xΒ΅ XN ΞΊ=1 2Re TrhPgGΛ† (¡κ) A (Sx Β· βˆ‡)AΞΊ i βˆ’ (Sx Β· eΒ΅)GA  = 0 . (4.16) Proof a. Start from d dsG ( . . . , F¡ν(x βˆ’ sa), . . . ; . . . , F † θρ(x βˆ’ sa), . . . ; x βˆ’ sa ) s=0 = d dsGA(x βˆ’ sa) s=0. Calculate the left hand side with the chain rule and use the assumptions

βˆ’X Β΅<Ξ½ TrhGA(¡ν) : (a Β· βˆ‡)F¡ν i βˆ’ X Β΅<Ξ½ TrhGA(¡ν?) : (a Β· βˆ‡)F¡ν† i βˆ’ a Β·GAβˆ‡ =

(27)

= βˆ’2Re X Β΅<Ξ½ TrhGA(¡ν) : (a Β· βˆ‡)F¡ν i . (4.17) With

(aΒ· βˆ‡)F¡ν = βˆ‚Β΅(a Β· βˆ‡AΞ½) βˆ’ βˆ‚Ξ½(a Β· βˆ‡AΒ΅) βˆ’ {AΒ΅, a Β· βˆ‡AΞ½} + {AΞ½, a Β· βˆ‡AΒ΅} ,

and the antisymmetries Β΅ ↔ Ξ½, the expression (4.17) becomes, (mind the hatΛ†), βˆ’Re N X Β΅,Ξ½=1 Trh Λ†GA(¡ν) : βˆ‚Β΅(a Β· βˆ‡AΞ½) βˆ’ {AΒ΅, a Β· βˆ‡AΞ½} i = βˆ’Re N X Β΅,Ξ½=1 βˆ‚ βˆ‚xΒ΅Trh Λ†G (¡ν) A : (aΒ·βˆ‡AΞ½) i + Re N X Β΅,Ξ½=1 Trhβˆ‚Β΅GΛ† (¡ν) A : (aΒ·βˆ‡AΞ½) + Λ†G (¡ν) A : {AΒ΅, aΒ·βˆ‡AΞ½} i . The 2nd term is equal to

Re N X Ξ½=1 N X Β΅=1 Tr h βˆ‡AΒ΅PgGΛ†A(¡ν): (aΒ· βˆ‡AΞ½) i = 0 , because of the E-L-equations (3.13).

The right hand side of the 1st formula of this proof equals βˆ’βˆ‚Β΅(aΒ΅LA). Hence (4.14).

b. Start from d dsG ( . . . , F¡ν(e sS x), . . . ; . . . , Fθρ†(esSx), . . . ; esSx ) s=0 = d dsGA(e sS x) s=0.

Calculate the left hand side with the chain rule and use GA(βˆ‡)Β·Sx = 0, 2Re X Β΅<Ξ½ TrhGA(¡ν) : (Sx Β· βˆ‡)F¡ν i = = Re N X Β΅, Ξ½=1 Trh Λ†GA(¡ν) : βˆ‚Β΅ (Sx Β· βˆ‡)AΞ½ βˆ’ {AΒ΅ , (Sx Β· βˆ‡)AΞ½} βˆ’ SΒ΅Ξ±βˆ‚Ξ±AΞ½ i .

Because of the assumption the very final contribution vanishes. Then we proceed as in

part a. 

Note The orthogonality condition (4.15) is inspired by combining Thm 4.7 with Appendix A. Indeed, another way to obtain the preceding Theorem is to rewrite Thms 4.5, 4.7 in terms of A with the aid of the table in Appendix A.

Theorem 4.10

Consider the proto-Lagrangian G of (3.6) with property (3.7) and Lagrange density as denoted in (3.8). For convenience consider g = g† only. Suppose G satisfies

G ( . . . , esBP ¡νeβˆ’sB, . . . ; . . . , eβˆ’sB † Pθρ†esB†, . . . ; x) =G ( . . . , P¡ν, . . . ; . . . , P † θρ, . . . ; x) , (4.18)

(28)

for all P¡ν ∈ g βŠ‚ CcΓ—c, 1 ≀ Β΅ < Ξ½ ≀ N , some fixed B ∈ g and (small) s ∈ R .

Then, for any solution x7β†’ . . . AΒ΅(x) . . . of the Lagrangian system of Theorem 3.3 one has

the conservation law

N X Β΅=1 βˆ‚ βˆ‚xΒ΅Re XN Ξ½=1 Tr h [ Λ†GA(¡ν)] : {B , AΞ½} i = 0 . (4.19) Proof In (4.18) replace P¡ν β†’ F¡ν and Qθρ β†’ F

†

θρ and put the derivative to s equal to 0

at s = 0, X 1≀¡<ν≀N Trh[GA(¡ν)] : (BFΒ΅Ξ½βˆ’ F¡νB)] i + X 1≀θ<ρ≀N Trh[GA(θρ?)] : (βˆ’B†Fθρ† + Fθρ† B†)]i = 0 . (4.20) Due to the anti-symmetry in Β΅ ↔ Ξ½ of

BF¡ν βˆ’ F¡νB = βˆ‚Β΅{B , AΞ½} βˆ’ βˆ‚Ξ½{B , AΒ΅} βˆ’ {B , {AΒ΅, AΞ½}} ,

applying convention (3.11), together with GA(¡ν?) = [GA(¡ν)]†, the 1st term of (4.20) equals the Re -part of N X Β΅=1 N X Ξ½=1 Trh[ Λ†GA(¡ν)] : (BFΒ΅Ξ½βˆ’ F¡νB) i = = N X Β΅=1 N X Ξ½=1 βˆ‚ βˆ‚xΒ΅Tr h [ Λ†GA(¡ν)]{B , AΞ½} i βˆ’ N X Ξ½=1 N X Β΅=1 βˆ‚ βˆ‚xΞ½Tr h [ Λ†GA(¡ν)]{B , AΒ΅} i + βˆ’ N X Ξ½=1 N X Β΅=1 Tr h [βˆ‚Β΅GΛ†A(¡ν)]{B , AΞ½} i + N X Β΅=1 N X Ξ½=1 Tr h [βˆ‚Ξ½GΛ†A(¡ν)]{B , AΒ΅} i + βˆ’ N X Β΅=1 N X Ξ½=1 Trh[ Λ†GA(¡ν)]{B , {AΒ΅, AΞ½}} i . (4.21) On the 2nd line we apply the E-L-equations (3.13) together with βˆ‚Ξ½GΛ†

(¡ν)

A = βˆ’βˆ‚Ξ½GΛ† (Ξ½Β΅)

A .

This together with the 3rd line leads to βˆ’ N X Ξ½=1 N X Β΅=1 Tr h {AΒ΅, Λ†GA(¡ν)}{B , AΞ½} i + N X Β΅=1 N X Ξ½=1 Tr h {AΞ½, Λ†GA(¡ν)}{B , AΒ΅} i + βˆ’ N X Β΅=1 N X Ξ½=1 Trh[ Λ†GA(¡ν)]{B , {AΒ΅, AΞ½}} i .

These 3 terms add up to 0 because for each pair Β΅, Ξ½ separately we can apply the identity βˆ’Trh{M , G} : {B , N}i + Trh{N , G} : {B , M}i = TrhG : {B , {M , N}}i, (4.22)

(29)

for matrices G, B, M, N ∈ CrΓ—r.

(Of course the two terms on the 3rd line of (4.21) are equal. But then, using that equality, the latter trick no longer works for each index pair Β΅, Ξ½ separately!)

Thus we found out that (4.20) corresponds to (4.19). 

5

Static/Dynamic Gauge Extensions of Lagrangians

A basic ingredient for this section is a (fixed) Lie-group G βŠ‚ CcΓ—cof invertible cΓ—c-matrices.

Its Lie-algebra g is a R -linear subspace of CcΓ—c. Important examples are (subgroups of) GJ, for some fixed invertible matrix J ∈ CcΓ—c. The relevant definitions are as in section 3,

GJ =  U ∈ CcΓ—c

U†J U = J , gJ =  A ∈ CcΓ—c

A†J + J A = 0 . (5.1) In the discussion to follow suitable subspaces of

the group Gloc =C∞(RN: G) and the R -linear space C∞(RN: g)

will be used. It will be tacitly assumed that the behaviour at ∞ of the considered subspaces is such that our formulae make sense. TheC∞-smoothness condition can often be relaxed. Neither of those assumptions will bother us.

The group action from the right of C∞(RN: G) on C∞

(RN: CrΓ—c) is naturally defined by

C∞

(RN: CrΓ—c) Γ—C∞(RN: G) β†’ C∞(RN: CrΓ—c) : (Ξ¨U )(x) = Ξ¨(x)U (x). For each 1 ≀ Β΅ ≀ N , a group action from the right of C∞(RN : G) on C∞

(RN : g) is

defined by C∞

(RN: g)Γ—C∞(RN: G) β†’ C∞(RN: g) : (AΒ΅C U)(x) = Uβˆ’1(x)AΒ΅(x)U (x)βˆ’Uβˆ’1(x)(βˆ‚Β΅U )(x) .

In the proof of Thm 1.2 it has been shown that this action (’gauge transform’)is indeed a (inhomogeneous) group action. This means

[AΒ΅C U] C V = AΒ΅C (UV) . (5.2)

As before, for given AΒ΅, AΞ½ ∈C∞(RN: g) , 1 ≀ Β΅, Ξ½ ≀ N , define

F¡ν = βˆ‚Β΅AΞ½ βˆ’ βˆ‚Ξ½AΒ΅βˆ’ {AΒ΅, AΞ½} ∈ C∞(RN: g) . (5.3)

Then

Uβˆ’1F¡νU = βˆ‚Β΅(AΞ½C U) βˆ’ βˆ‚Ξ½(AΒ΅C U) βˆ’ {(AΒ΅C U) , (AΞ½C U)} . (5.4)

Theorem 5.1

Fix a matrix Lie-Group G βŠ‚ CcΓ—c. Suppose a proto-Lagrangian L , cf. (2.13), to be

G-invariant, i.e. 3

βˆ€ U ∈ G βˆ€ P ∈ CrΓ—c

βˆ€ R ∈ CN rΓ—c

βˆ€ x ∈ RN :

3Property (5.5) is named Global Gauge Invariance by physicists. The conclusion of Theorem 5.1 is

named, in physicists’ vernacular, the property of Local Gauge Invariance. In mathematicians’ jargon however, the usage of ’global’, as opposed to ’local’, usually refers to a more involved (more difficult) notion.

(30)

L (PU ; U†

P†; RU ; U†R†; x) =L (P ; P†; R ; R†; x) (5.5) Then, for all x∈ RN, the statically gauge extended Lagrangian density

Lψ, A(x) = L (Ξ¨ ; Ψ†; . . . , βˆ‚Β΅Ξ¨ + Ξ¨AΒ΅, . . . ; . . . , βˆ‚Β΅Ξ¨β€ + A†¡Ψ †

, . . . ; x) , (5.6) with any Ξ¨ ∈C∞(RN: CrΓ—c) , A¡∈C∞(RN: g) , 1 ≀ Β΅ ≀ N ,

equals the statically gauge extended Lagrangian density

LψU , AC U(x) = (5.7)

=L (Ξ¨U ; U†Ψ†; . . . , βˆ‚Β΅(Ξ¨U )+(Ξ¨U )(AΒ΅C U) , . . . ; . . . , βˆ‚Β΅(Ξ¨U )†+(AΒ΅C U)†(Ξ¨U )†, . . . ; x) ,

with any U ∈C∞

(RN: G) . In (5.6),(5.7) we wrote Ξ¨ instead of Ξ¨(x), etc.

Proof Straightforward calculation.  Example 5.2 Consider the proto-Lagrangian, cf. (2.13),

L (P; Q>

; R ; S>; x) = i Tr[Q>(X

Β΅

Γ¡RΒ΅+ M P)]

with fixed Γ¡, M ∈ CrΓ—r and [Γ¡]† = Γ¡, M† = βˆ’M . Put G = U(c) βŠ‚ CcΓ—c, that is the unitary group GI, with I the identity matrix. Our proto-Lagrangian is U(c)-invariant

i Tr[U†P†(Γ¡RΒ΅U + M PU)] = i Tr[P†(Γ¡RΒ΅+ M P)] , U ∈ U(c) ,

because U†= Uβˆ’1 and the properties of Tr. Then the statically extended Lagrangian density

Lψ, A(x) = i Tr[Ψ† Γ¡(βˆ‚Β΅Ξ¨ + Ξ¨AΒ΅) + M Ξ¨] , (5.8)

with any Ξ¨ ∈C∞(RN: CrΓ—c) , A¡∈C∞(RN: u(c)) , 1 ≀ Β΅ ≀ N ,

equals the statically extended Lagrangian density

LψU , ACU(x) = i Tr[U†Ψ† Γ¡(βˆ‚Β΅(Ξ¨U ) + Ξ¨U (Uβˆ’1AΒ΅U βˆ’ Uβˆ’1βˆ‚Β΅U )) + M Ξ¨U] , (5.9)

with any U ∈C∞

(RN: U(c)) .

(31)

Theorem 5.3

β€’ Suppose that the statically gauge extended Lagrange density Lψ, A, cf. (5.6) leads to an

R -valued Langrangian functional Lψ, A. The E-L-equations are

L(o) ψ,Aβˆ’ N X Β΅=1  βˆ‚ βˆ‚xΒ΅[L (Β΅) ψ,A] βˆ’ [AΒ΅L (Β΅) ψ,A]  = 0 , Pg  Ψ†[Lψ,A(ΞΊ)†+Lψ,A(ΞΊ?)]= 0 , Pg Ψ†[Lψ,A(ΞΊ)β€ βˆ’Lψ,A(ΞΊ?)] i  = 0 , 1 ≀ ΞΊ ≀ N . (5.10) Here Pg : CcΓ—cβ†’ CcΓ—c denotes the R -orthogonal projection on g.

β€’ If it happens that Pg( iZ) = iPgβŠ₯Z , Z ∈ CcΓ—c, the 2nd line in (5.10) reduces to

Ψ†Lψ,A(ΞΊ)†+ (Pgβˆ’PgβŠ₯)Ξ¨

†L(ΞΊ?)

ψ,A = 0 , 1 ≀ ΞΊ ≀ N . (5.11)

β€’ In the important special case g = gJ, with J = J†= Jβˆ’1, (5.11) can be written

L(ΞΊ)

ψ,AΞ¨ βˆ’ J Ξ¨

†L(ΞΊ?)

ψ,A J = 0 , 1 ≀ ΞΊ ≀ N . (5.12)

Proof β€’ The perturbed statically extended LagrangianLψ, A reads

L (Ξ¨ + Ξ΅H ; Ψ† + Ξ΅?K ; . . . , βˆ‚Β΅(Ξ¨ + Ξ΅H) + (Ξ¨ + Ξ΅H)(AΒ΅+ Ρκδ¡κH) , . . . ; ; . . . , βˆ‚Β΅(Ψ†+ Ξ΅?K) + (A†¡+ Ρκδ¡κH†)(Ψ†+ Ξ΅?K) , . . . ; x) The results of d dΞ΅ Ξ΅=0, d dΞ΅? Ξ΅?=0, d dΡκ

Ρκ=0, 1 ≀ ΞΊ ≀ N , being put to 0 are,

for all functions H , K , H , TrL(o): H + X Β΅ TrL(Β΅): βˆ‚Β΅H + X Β΅ TrL(Β΅): HAΒ΅  = 0 , TrL(o?): K + X Β΅ TrL(Β΅?): βˆ‚Β΅K + X Β΅ TrL(Β΅?): A†¡K = 0 , X Β΅ TrL(Β΅): Ψδ¡κH + X Β΅ TrL(Β΅?): δ¡κH†Ψ†  = 0 , 1 ≀ ΞΊ ≀ N .

The usual partial integration techniques applied to the first two lines lead to the E-L-equations for Ξ¨. Also use Theorem 2.4.

From the final line we arrive at (5.10) because of the trace identity TrhXZ + YZ†i = Re TrhX†+ Y † Zi βˆ’ i Re TrhX β€ βˆ’ Y i † Zi. (5.13) β€’ If for X, Y ∈ CcΓ—c one has P

g(X + Y) = 0 and PgβŠ₯(X βˆ’ Y) = 0, it follows that

X + (Pgβˆ’PgβŠ₯)Y = 0 and also Y + (Pgβˆ’PgβŠ₯)X = 0.

β€’ In this special case (Pgβˆ’PgβŠ₯)Y = βˆ’J Y †

(32)

Examples 5.4

Note that in the E-L-equations (5.10) the AΒ΅ occur only ’algebraically’.

The βˆ‚Β΅A are not involved!

a. For the Lagrangian densities from examples 2.5a and 5.2 the 2nd set of E-L-equations (5.12) does not depend on A. If we choose g = gJ, the 2nd line reads

Ψ†ΓκΨ = 0 , 1 ≀ ΞΊ ≀ N .

It means that Ξ¨ can only take values in a cone in CrΓ—c. If one of the Γκ = Γκ† is strictly

positive, the only solutions are Ξ¨ = 0, the trivial ones. If a nontrivial choice for Ξ¨ is possible it can be substituted in the 1st E-L-equation and we are left with an algebraic equation for the AΞΊ.

b. For the Lagrangian densities from example 2.5c, again with g = gJ , the 2nd set of

E-L-equations becomes N X Β΅=1 [βˆ‚Β΅Ξ¨ + Ξ¨AΒ΅]β€ Ξ˜Β΅ΞΊΞ¨ βˆ’ J XN Β΅=1 [Ξ¨β€ Ξ˜ΞΊΒ΅[βˆ‚Β΅Ξ¨ + Ξ¨AΒ΅]  J = 0 , 1 ≀ ΞΊ ≀ N , which is algebraic in the AΞΊ. 

Finally we want to consider the dynamically gauge extended Lagrangian density or Gauge field extended Lagrangian density of typeLψ, A(x) +GA(x) .

Theorem 5.5

Fix a matrix Liegroup G βŠ‚ CcΓ—c with Lie algebra g βŠ‚ CcΓ—c and property g†= g. Fix a proto Lagrangian of type (2.13)

(P; Q>; R ; S>; x) 7β†’ L (P; Q>; R ; S>; x) ,

leading to a R -valued Lagrangian functional L. Require the special property βˆ€ P βˆ€ R βˆ€ x : Pg

P†L(ΞΊ)†(P; P†; R ; R†; x) βˆ’ L(ΞΊ?)(P; P†; R ; R†; x) i



= 0 . (5.14) Fix a second proto Lagrangian of type (3.6) and such that

βˆ€ R¡ν ∈ g : G (. . . , R¡ν, . . . ; . . . , R †

θρ, . . . ; x) ∈ R .

Consider the dynamically extended Lagrangian density

Lψ, A(x) +GA(x) = L (Ξ¨ ; Ψ†; . . . , βˆ‚Β΅Ξ¨ + Ξ¨AΒ΅, . . . ; . . . , βˆ‚Β΅Ξ¨β€ + A†¡Ψ † , . . . ; x) + +G ( . . . , F¡ν(x), . . . ; . . . , F † θρ(x), . . . ; x ) (5.15)

(33)

with any Ξ¨ ∈C∞(RN: CrΓ—c) , A¡∈C∞(RN: g) , 1 ≀ Β΅ ≀ N .

β€’ The Euler-Lagrange equations are, with Lψ,A(o) instead of Lψ,A(o)(x), etc., [Lψ,A(o)] βˆ’ N X Β΅=1  βˆ‚ βˆ‚xΒ΅[L (Β΅) ψ,A] βˆ’ [AΒ΅L (Β΅) ψ,A]  = 0 , Pg  Ψ†[Lψ,A(ΞΊ)†+Lψ,A(ΞΊ?)]  βˆ’ 2PN Β΅=1  βˆ‚Β΅Pg[ Λ†GA(¡κ)] βˆ’ {AΒ΅,Pg[ Λ†GA(¡κ)]} † = 0 , 1 ≀ ΞΊ ≀ N . (5.16) Here Pg : CcΓ—cβ†’ CcΓ—c denotes the R -orthogonal projection on g.

β€’ In the special case g = gJ, with J = J† = Jβˆ’1, the 2nd line in (5.16) can be rewritten

L(ΞΊ) ψ,AΞ¨ βˆ’ J Ξ¨ †L(ΞΊ?) ψ,A J βˆ’ 2 N X Β΅=1  βˆ‚Β΅Pg[ Λ†G (¡κ) A ] βˆ’ {AΒ΅,Pg[ Λ†G (¡κ) A ]}  = 0 , 1 ≀ ΞΊ ≀ N . (5.17) Proof β€’ The perturbed gauge supplemented Lagrangian reads

L (Ξ¨+Ξ΅H ; Ψ† +Ξ΅?K ; . . . , βˆ‚Β΅(Ξ¨+Ξ΅H)+(Ξ¨+Ξ΅H)(AΒ΅+Ρκδ¡κH) , . . . ; ; . . . , βˆ‚Β΅(Ψ†+Ξ΅?K)+(A†¡+Ρκδ¡κH†)(Ψ†+Ξ΅?K) , . . . ; x) + +G (. . . , F¡ν,Ρκ, . . . ; . . . , F † θρ,Ρκ, . . . ; x) , 1 ≀ ΞΊ ≀ N , where F¡ν;Ξ΅,ΞΊ= F¡ν+ Ρκδνκ h βˆ‚Β΅H βˆ’ {AΒ΅, H} i βˆ’ Ρκδ¡κ h βˆ‚Ξ½H βˆ’ {AΞ½, H} i , The results of d dΞ΅ Ξ΅=0, d dΞ΅? Ξ΅?=0 d dΡκ

Ρκ=0, being put to 0 are, respectively,

TrL(o): H + X Β΅ TrL(Β΅): βˆ‚Β΅H + X Β΅ TrL(Β΅): HAΒ΅  = 0 , TrL(o?): K + X Β΅ TrL(Β΅?): βˆ‚Β΅K + X Β΅ TrL(Β΅?): A†¡K = 0 , X Β΅ Tr L(Β΅): Ψδ ¡κH + X Β΅ Tr L(Β΅?): Ξ΄ ¡κH†Ψ† + βˆ’ 2X Β΅ Re TrhPgβˆ‚Β΅GΛ† (¡κ?) A +Pg{A†¡ ,PgGΛ† (¡κ?) A } † [H]i = 0 , 1 ≀ ΞΊ ≀ N . With (5.13) the 3rd set of equations can be rewritten

Re Trh Ψ†([L(ΞΊ)]†+ [L(ΞΊ?)]†Hi + iRe Trh iΨ†([L(ΞΊ)]β€ βˆ’ [L(ΞΊ?)]† Hi+

(34)

βˆ’ 2X Β΅ Re TrhPgβˆ‚Β΅GΛ† (¡κ) A βˆ’ {AΒ΅ ,PgGΛ† (¡κ) A } † † [H]i = 0 , 1 ≀ ΞΊ ≀ N . Because of assumption (5.14) the iRe Tr-term cancels. The assumption g†= g enables us to interchange † and Pg.

β€’ Finally (5.17) follows as in the proof of Thm (5.3).  Finally we want to find the conservation law of ’conserved currents’.

Theorem 5.6

Consider proto-Lagrangians L and G as in Theorem 5.5. Suppose for some B ∈ g they both have the invariance properties

L (PesB; (PesB)† ; . . . QΞ»esB. . . ; . . . (QΞ»esB)†. . . ; x) = =L (P; P†; . . . QΞ». . . ; . . . Q † Ξ». . . ; x) +O(s 2) , (5.18) G ( . . . , eβˆ’sB R¡νesB, . . . ; . . . , esB † R†θρeβˆ’sB†, . . . ; x ) = = G ( . . . , R¡ν, . . . ; . . . , R † θρ, . . . ; x ) +O(s 2) . (5.19)

Then, the solutions to the E-L-system (5.16) satisfy the conservation law

N X Β΅=1 βˆ‚ βˆ‚xΒ΅ n TrhLψ,A(Β΅): Ξ¨Bi + TrhLψ,A(Β΅?): B†Ψ†i+ N X ΞΊ=1 2Re TrhPgGΛ† (¡κ) A : {AΞΊ, B} i o = 0. (5.20) Proof Add the Lagrange densitiesLψ,A and GA and put to 0 the

d ds of the expression L (Ξ¨esB; esB†Ψ† ; . . . , βˆ‚Β΅Ξ¨esB+ Ξ¨AΒ΅esB, . . . ; . . . , esB † βˆ‚Β΅Ξ¨β€ + esB † A†¡Ψ†, . . . ; x) + +G ( . . . , eβˆ’sBF¡νesB, . . . ; . . . , esB † Fθρ† eβˆ’sB†, . . . ; x ) One finds, TrhLψ,A(o): Ξ¨Bi+X Β΅ TrhLψ,A(Β΅): βˆ‚Β΅Ξ¨B i +X Β΅ TrhLψ,A(Β΅): Ξ¨AΒ΅B i + + TrhLψ,A(o?): B†Ψ† i +X Β΅ TrhLψ,A(Β΅?): Bβ€ βˆ‚Β΅Ξ¨β€  i +X Β΅ TrhLψ,A(Β΅?): B†A†¡Ψ† i + + X Β΅<Ξ½ TrhGA(¡ν): {F¡ν, B} i + X ΞΈ<ρ TrhGA(θρ?): {B†, Fθρ†}i = 0 . (5.21)

(35)

Rewrite the 3rd term and the 6th term: X Β΅ TrhLψ,A(Β΅): Ξ¨AΒ΅B i = X ΞΊ TrhLψ,A(ΞΊ): Ξ¨{AΞΊ, B} i +X Β΅ TrhAΒ΅L (Β΅) ψ,A: Ξ¨B i , X Β΅ TrhLψ,A(Β΅?): (Ξ¨AΒ΅B)† i = X ΞΊ TrhLψ,A(ΞΊ?): (Ξ¨{AΞΊ, B})† i +X Β΅ TrhA†¡Lψ,A(Β΅?): (Ξ¨B)†i. These identities, together with the 1st E-L-equation of (5.16) turn the first 6 terms of (5.21) into X Β΅ βˆ‚Β΅TrhL (Β΅) ψ,A: Ξ¨B i +X Β΅ βˆ‚Β΅TrhL (Β΅?) ψ,A : B † Ψ†i+ +X ΞΊ TrhLψ,A(ΞΊ): Ξ¨{AΞΊ, B} i +X ΞΊ TrhLψ,A(ΞΊ?): (Ξ¨{AΞΊ, B})† i With Trace identity (5.13) and condition (5.14) the latter becomes

X Β΅ βˆ‚Β΅TrhL (Β΅) ψ,A: Ξ¨B i +X Β΅ βˆ‚Β΅TrhL (Β΅?) ψ,A : B † Ψ†i+ + 2 N X ΞΊ, Β΅=1 Re TrhPgβˆ‚Β΅GΛ† (¡κ) A βˆ’ {AΒ΅ ,PgGΛ† (¡κ) A }  : {AΞΊ, B} i . (5.22) Next, because of (anti)symmetry, B ∈ g being constant and the definition of F¡ν, the final

2 terms of (5.21) equal to Re N X Β΅,Ξ½=1 Trh Λ†GA(¡ν): {F¡ν, B} i = Re N X Β΅,Ξ½=1 Trh Λ†GA(¡ν) : βˆ‚Β΅{AΞ½, B} i + βˆ’ Re N X Β΅, Ξ½=1 Trh Λ†GA(¡ν): βˆ‚Ξ½{AΒ΅, B} i βˆ’ Re N X Β΅, Ξ½=1 TrhGA(¡ν): {{AΒ΅, AΞ½} , B} i = = 2Re N X Β΅,Ξ½=1 Trh Λ†GA(¡ν) : βˆ‚Β΅{AΞ½, B} i βˆ’ Re N X Β΅, Ξ½=1 TrhGA(¡ν): {{AΒ΅, AΞ½} , B} i . (5.23) If we add (5.22), (5.23), we arrive at (5.20), up to a term

βˆ’ Re N X ΞΊ, Β΅=1  2 Trh{AΒ΅ ,PgGΛ† (¡κ) A } : {AΞΊ, B} i + TrhPgG (¡κ) A : {{AΒ΅, AΞΊ} , B} i  .

(36)

Split the first term in this summation. It becomes, βˆ’ Re N X ΞΊ, Β΅=1  Trh{AΒ΅ ,PgGΛ† (¡κ) A } : {AΞΊ, B} i βˆ’ Trh{AΞΊ ,PgGΛ† (¡κ) A } : {AΒ΅, B} i + + TrhPgG (¡κ) A : {{AΒ΅, AΞΊ} , B} i  . Each term in this sum equals 0 because of the trace identity

Tr h {M , G} : {K , B}i βˆ’ Trh{K , G} : {M , B}i + Tr h G : {{M , K} , B} i = 0. Indeed, note that for any M, G, K, B ∈ CcΓ—c,

Trh MGKB βˆ’ GMKB βˆ’ MGBK + GMBK βˆ’ KGMB + GKMB +

+ KGBM βˆ’ GKBM + GMKB βˆ’ GKMB βˆ’ GBMK + GBKM i

= 0 . 

(37)

A

Addendum on Free Gauge Fields

If we put GA(x) = G ( . . . , F¡ν(x), . . . ; . . . , F † θρ(x), . . . ; x ) = =G (. . . , βˆ‚Β΅AΞ½βˆ’βˆ‚Ξ½AΒ΅βˆ’{AΒ΅, AΞ½}, . . . ; . . . , βˆ‚Β΅Aβ€ Ξ½βˆ’βˆ‚Ξ½A†¡+{A † Β΅, A † Ξ½}, . . . ; x ) =

= L (A(x) ; A†(x) ; . . . , βˆ‚Β΅A(x), . . . ; . . . , βˆ‚Β΅A†(x), . . . ; x) , (A.1)

with A= col[. . . , AΒ΅, . . .], which now plays the role of Ξ¨ in section 2, we get, in accordance

with our notation in section 2, L(o) A = row [ . . . βˆ’ PN Β΅=1{ Λ†G (¡κ) A , AΒ΅} . . . ] L(1) A = row [ 0 G (12) A G (13) A . . . G (1ΞΊ) A . . . G (1N ) A ] L(2) A = row [ βˆ’G (12) A 0 G (23) A . . . G (2ΞΊ) A . . . G (2N ) A ] L(3) A = row [ βˆ’G (13) A βˆ’G (23) A 0 . . . G (3ΞΊ) A . . . G (3N ) A ] . . . = row [ . . . ] L(ΞΊ) A = row [ βˆ’G (1ΞΊ) A βˆ’G (2ΞΊ) A βˆ’G (3ΞΊ) A . . . 0 . . . G (ΞΊN ) A ] . . . = row [ . . . ] L(N ) A = row [ βˆ’G (1N ) A βˆ’G (2N ) A βˆ’G (3N ) A . . . βˆ’G (ΞΊN ) A . . . 0 ] (A.2) With convention (3.15) the lower N rows of this table simplify to

L(Β΅)

A = row [. . . , Λ†G (¡κ)

A , . . .] , 1 ≀ Β΅, ΞΊ ≀ N . (A.3)

Table (A.2) enables to reduce the proof of Theorem 3.2 to an application of Theorem 2.4. Because of property (3.7) it is obvious that all ’components’ ofLA(Β΅?), 0 ≀ Β΅ ≀ N, are the hermitean transposed of the components of LA(Β΅), 0 ≀ Β΅ ≀ N . Only for LA(o?) this is not immediately obvious. Let us check it in an ad hoc way by calculating the ΞΊ-th component of LA(o?). In (A.1) replace {A†¡, A†ν} by the perturbation {A†

Β΅ + Ρδ¡κH , A†ν + ΡδνκH}.

Now differentiate the result to Ξ΅. At Ξ΅ = 0 it becomes X 1≀¡<ν≀N TrhGA(¡ν?) : {δ¡κH , A†ν} + {A † Β΅, δνκH} i = = X ΞΊ<ν≀N TrhGA(ΞΊΞ½?) : {H , A†ν}i + X 1≀¡<ΞΊ TrhGA(¡κ?) : {A†¡, H} i = = X ΞΊ<ν≀N Trh{A†ν,GA(ΞΊΞ½?)} : Hi+ X 1≀¡<ΞΊ Trh{GA(¡κ?), A†¡} : Hi = Trh N X Β΅=1 { Λ†GA(¡κ?), A†¡} : Hi.

(38)

Finally one finds hXN Β΅=1 { Λ†GA(¡κ?), A†¡}i† = βˆ’ N X Β΅=1 { Λ†GA(¡κ), AΒ΅} .

Remark on Thm 4.9-b: If it happens that G (. . . , esSΞ» Β΅βˆ‚ Ξ»AΞ½βˆ’esS ΞΈ Ξ½βˆ‚ ΞΈAΒ΅βˆ’{AΒ΅, AΞ½}, . . . ; . . . , esS Ξ» Β΅βˆ‚ Ξ»Aβ€ Ξ½βˆ’e sSΞΈ Ξ½βˆ‚ ΞΈA†¡+{A † Β΅, A † Ξ½}, . . . ; x ) = =G (. . . , βˆ‚Β΅AΞ½βˆ’βˆ‚Ξ½AΒ΅βˆ’{AΒ΅, AΞ½}, . . . ; . . . , βˆ‚Β΅Aβ€ Ξ½βˆ’βˆ‚Ξ½A†¡+{A † Β΅, A † Ξ½}, . . . ; x ) +O(s 2) , it follows that Re X Β΅<Ξ½ TrhGA(¡ν) : SΒ΅Ξ»βˆ‚Ξ»AΞ½ βˆ’ SΞ½ΞΈβˆ‚ΞΈAΒ΅ i = 0 .

B

Electromagnetism

Some more details on Example 3.4B: GA= X 0≀¡<ν≀3 (βˆ’1)δ¡0+δν0TrF† ¡νF¡ν  G(01) A = βˆ’F † 01 G (02) A = βˆ’F † 02 G (03) A = βˆ’F † 03 G (12) A = F † 12 G (13) A = F † 13 G (23) A = F † 23

Now (3.19) reads, for 0 ≀ ΞΊ ≀ 3, ΞΊ = 0 : βˆ‚1G (01) A + βˆ‚2G (02) A + βˆ‚3G (03) A = = βˆ’βˆ‚1(βˆ‚0A † 1βˆ’ βˆ‚1A † 0) βˆ’ βˆ‚2(βˆ‚0A † 2βˆ’ βˆ‚2A † 0) βˆ’ βˆ‚3(βˆ‚0A † 3βˆ’ βˆ‚3A † 0) = βˆ’βˆ‚0(βˆ‚1A†1+ βˆ‚2A†2+ βˆ‚3A†3) + βˆ‚1βˆ‚1A†0+ βˆ‚2βˆ‚2A†0+ βˆ‚3βˆ‚3A†0 ΞΊ = 1 : βˆ’βˆ‚0G (01) A + βˆ‚2G (12) A + βˆ‚3G (13) A = = βˆ‚0(βˆ‚0A † 1βˆ’ βˆ‚1A † 0) + βˆ‚2(βˆ‚1A † 2βˆ’ βˆ‚2A † 1) + βˆ‚3(βˆ‚1A † 3 βˆ’ βˆ‚3A † 1) = βˆ‚0βˆ‚0A † 1+ βˆ‚1(βˆ’βˆ‚0A † 0+ βˆ‚1A † 1+ βˆ‚2A † 2+ βˆ‚3A † 3) βˆ’ (βˆ‚1βˆ‚1 + βˆ‚2βˆ‚2+ βˆ‚3βˆ‚3)A † 1 ΞΊ = 2 : βˆ’βˆ‚0G (02) A βˆ’ βˆ‚1G (12) A + βˆ‚3G (23) A = = βˆ‚0(βˆ‚0A † 2βˆ’ βˆ‚2A † 0) βˆ’ βˆ‚1(βˆ‚1A † 2βˆ’ βˆ‚2A † 1) + βˆ‚3(βˆ‚2A † 3βˆ’ βˆ‚3A † 2) = βˆ‚0βˆ‚0A † 2+ βˆ‚2(βˆ’βˆ‚0A † 0+ βˆ‚1A † 1+ βˆ‚2A † 2+ βˆ‚3A † 3) βˆ’ (βˆ‚1βˆ‚1 + βˆ‚2βˆ‚2+ βˆ‚3βˆ‚3)A † 2 ΞΊ = 3 : βˆ’βˆ‚0G (03) A βˆ’ βˆ‚1G (13) A βˆ’ βˆ‚2G (23) A = = βˆ‚0(βˆ‚0A†3βˆ’ βˆ‚3A†0) βˆ’ βˆ‚1(βˆ‚1A3β€ βˆ’ βˆ‚3A†1) βˆ’ βˆ‚2(βˆ‚2A†3βˆ’ βˆ‚3A†2) = βˆ‚0βˆ‚0A † 3+ βˆ‚3(βˆ’βˆ‚0A † 0+ βˆ‚1A † 1+ βˆ‚2A † 2+ βˆ‚3A † 3) βˆ’ (βˆ‚1βˆ‚1 + βˆ‚2βˆ‚2+ βˆ‚3βˆ‚3)A † 3

Referenties

GERELATEERDE DOCUMENTEN

Zou de chirurg belangstelling voor de oncologie gehad hebben, dan zou hij wel oog gehad hebben voor hèt herstel van de balans tussen Yin en Yang bij onze

Hierbij staat prijs zeker niet alleen voor geld maar ook voor intensive care behandeling en nabehandeling met alle nadelen ervan voor de pasgeborenen en de

In de inleiding werd de vraag gesteld β€œKunnen we een wetenschappelijk goed onderbouwd programma ontwikkelen om Nederlandse verloskundigen te helpen met het effectief bevorderen

Van de competenties die door meer dan de helft van de oud-studenten op een hoog niveau dienen te worden beheerst, zijn drie competenties door tenminste 20% van de

32 Door de Commissie Farjon wordt hierover opgemerkt, dat getracht is β€˜het nuttige van de instelling van vrederegters algemeen te maken, zonder echter daarvoor eene

Deze grens wordt overschreden door een vergaande mutilatie waartoe amputatie van een extremiteit zeker gerekend m m t worden.. Dit mens-machine-milieu systeem wordt dan in

Er zijn inderdaad aanwijzingen dat patiΓ«nten met chronische pijn met sterkere en langdurigere aan- spanning van de spieren in het pijnlijke gebied reageren op stressoren,

In het derde en vierde scenario word veronderstelt dat de overheid de mate waarin zij risico’s loopt door de garantstellingen in een PPS kan verkleinen, door het