• No results found

Magnetotransport and magnetocaloric effects in intermetallic compounds - Appendix A

N/A
N/A
Protected

Academic year: 2021

Share "Magnetotransport and magnetocaloric effects in intermetallic compounds - Appendix A"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Magnetotransport and magnetocaloric effects in intermetallic compounds

Duijn, H.G.M.

Publication date

2000

Link to publication

Citation for published version (APA):

Duijn, H. G. M. (2000). Magnetotransport and magnetocaloric effects in intermetallic

compounds.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)

and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open

content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please

let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material

inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter

to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You

will be contacted as soon as possible.

(2)

Appendixx A

Tabless belonging to section 4.6; application of the theory of group representations to the

systemm (Hf,Ta)Fe2.

Pi:: x, y, z P2:: -y, x-y, z P3:: -x+y, -x, z P4:: -x, -y, Z+V2 P5:: y, -x+y, z+'/2

P

6

:: x-y, x, z+Vi

P7:: x-y, -y, -z Pg:: -x, -x+y, -z P9:: y, x, -z Pi0:: -x+y, y, -z+Vi

Pn:: x, x-y,-z+

l

/2

P12:: -y, -x, -z+Vi P13 3 Pl4 4 Pl5 5 Pl6 6 P|7 7 Pl8 8 x-y,, -y, Z+V2 -x,, -x+y, z+'/2

y,, x, z+Vi

-x+y,, y, z

x,, x-y, z

-y,, -x, z

Pi9:: x, y, -z+'/z P20:: -y, x-y, -z+'/2 P21:: -x+y, -x, -z+'/2 P22:: -x,-y,-z P23:: y, -x+y, -z P24:: x-y, x, -z

Tablee A.1. The 24 symmetry operations P

g

(g = 1 to 24) of space group P 63/mmc (No. 194) obtained

fromm ref. 4.20.

P. .

P2 2 P3 3 P4 4

p

5 5

Pe e

P

7 7 Pg g P9 9 P10 0 P11 1 P.2 2 Pl3 3 P.4 4 Pl5 5 P.6 6 P.7 7 P.8 8 P.9 9 P20 0 P21 1 P22 2 P23 3 P24 4

11 (1,0,0)

11 (1,0,0)

11 (0, 1, 0)

11 (-1,-1,0)

22 (-1,0,0)

22 (0, -1, 0)

2 ( 1 ,, 1,0)

11 (1,0,0)

11 (-1,-1,0)

11 (0, 1, 0)

22 (-1, 0, 0)

2 ( 1 ,, 1,0)

2(0,-1,0) )

22 (-1,0,0)

2 ( 1 ,, 1,0)

2(0,-1,0) )

1(1,0,0) )

11 (-1,-1,0)

11 (0, 1, 0)

22 (-1,0,0)

2(0,-1,0) )

2 ( 1 ,, 1,0)

1(1,0,0) )

1(0,, 1,0)

11 (-1,-1,0)

11 (0, 1, 0)

11 (0, 1, 0)

11 (-1,-1,0)

1(1,0,0) )

22 (0, -1, 0)

2 ( 1 ,, 1,0)

22 (-1,0,0)

11 (-1,-1,0)

11 (0, 1,0)

1(1,0,0) )

2 ( 1 ,, 1,0)

22 (0, -1, 0)

22 (-1,0,0)

2 ( 1 ,, 1,0)

2(0,-1,0) )

22 (-1, 0, 0)

11 (-1,-1,0)

1(0,, 1,0)

1(1,0,0) )

2(0,-1,0) )

2(1,, 1,0)

22 (-1,0,0)

11 (0, 1, 0)

11 (-1,-1,0)

1(1,0,0) )

11 (0, 0, 1)

1(0,0,, 1)

11 (0, 0, 1)

11 (0, 0, 1)

22 (0, 0, 1)

2(0,0,1) )

2(0,0,1) )

11 (0, 0, -1)

1(0,0,-1) )

11 (0,0,-1)

2(0,0,-1) )

2(0,0,-1) )

2(0,0,-1) )

22 (0, 0, -1)

22 (0, 0, -1)

22 (0, 0, -1)

1(0,0,-1) )

1(0,0,-1) )

1(0,0,-1) )

22 (0, 0, 1)

2(0,0,, 1)

22 (0, 0, 1)

11 (0, 0, 1)

11 (0, 0, 1)

1(0,0,, 1)

2 ( 1 , 0 , 0 ) )

2 ( 1 , 0 , 0 ) )

2(0,, 1,0)

22 (-1,-1,0)

11 (-1, 0, 0)

11 (0, -1, 0)

1(1,1,0) )

2 ( 1 , 0 , 0 ) )

22 (-1,-1,0)

2 ( 0 , 1 , 0 ) )

11 (-1,0,0)

1(1,1,0) )

11 (0,-1,0)

11 (-1, 0, 0)

1(1,1,0) )

11 (0,-1,0)

2 ( 1 , 0 , 0 ) )

22 (-1,-1,0)

22 (0, 1, 0)

11 (-1,0,0)

1(0,-1,0) )

1(1,1,0) )

2 ( 1 , 0 , 0 ) )

2(0,, 1,0)

22 (-1,-1,0)

22 (0, 1, 0)

2(0,, 1,0)

22 (-1,-1,0)

2 ( 1 , 0 , 0 ) )

11 (0, -1, 0)

1(1,1,0) )

11 (-1,0,0)

22 (-1,-1,0)

2(0,, 1,0)

2 ( 1 , 0 , 0 ) )

1(1,1,0) )

11 (0,-1,0)

11 (-1, 0, 0)

1(1,1,0) )

1(0,-1,0) )

11 (-1,0,0)

22 (-1,-1,0)

2(0,, 1,0)

2 ( 1 , 0 , 0 ) )

1(0,-1,0) )

1(1,1,0) )

11 (-1, 0, 0)

2(0,, 1,0)

22 (-1,-1,0)

2 ( 1 , 0 , 0 ) )

2 ( 0 , 0 , 1 ) )

2 ( 0 , 0 , 1 ) )

22 (0, 0, 1)

22 (0, 0, 1)

11 (0, 0, 1)

11 (0, 0, 1)

11 (0, 0, 1)

22 (0, 0, -1)

22 (0, 0, -1)

22 (0, 0, -1)

11 (0, 0, -1)

11 (0, 0, -1)

1(0,0,-1) )

1(0,0,-1) )

1(0,0,-1) )

11 (0, 0, -1)

22 (0, 0, -1)

2(0,0,-1) )

2(0,0,-1) )

1(0,0,1) )

11 (0,0,1)

11 (0, 0, 1)

2(0,0,1) )

2(0,0,1) )

22 (0, 0, 1)

Tablee A 3 . Symmetry operations P

g

(g = 1 to 24) on the magnetic moment components at the 2a site.

Positionn atom 1: (0, 0, 0); atom 2: (0, 0, 1/2). 1 (1, 0, 0) stands for a magnetic moment at atom 1 in the

(3)

D(l) ) D(2) ) D(3) ) D(4) ) D(5) ) D(6) ) D(7) ) D(8) ) D(9) ) D(10) ) D ( l l ) ) D(12) ) D(13) ) D(14) ) D(15) ) D(16) ) D(17) ) D(18) ) D(19) ) D(20) ) D{21) ) D(22) ) D(23) ) D(24) ) Tablee A spacee | .2.. T 'roup p -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i h ee m -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i atrix x -l l -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i elem m cc (I

(;?) )

/ww 0 \ [W** 0 I

II °

w

/

(if) )

/ww 0 \ \o\o w*/ [w** 0 | \\ 0 w /

(fi) )

(00 w ' ] \ww 0 / ( oo w\

\

w

** ° /

(fi) )

[ 00 W*| \ww 0 / // o w\ \w** o)

(fi) )

[oo w*)

\

ww

° /

// o w \

(fi) )

|| 0 w * |

\

ww

° /

// o w\ \w"" o)

(if) )

Avv 0 \ ^00 w * j (w** 0 1 \\ 0 w /

(if) )

/ww 0 \ ^00 w*/ [w** 0 | \\ 0 w / entss D(g) ( vfo.. 194) fc

(if) )

Cw-) )

(U) )

f-.

1

-

0

,) )

/-ww o \ \ oo -W /

('»'' -t)

(fi) )

/oo w*\ \ww o ;

?)

(VoO O

// 0 -w*\ // 0 -w^

(Vo') )

(i-v) )

) )

(fi) )

(r,') )

) )

(o'°.) )

\\ o w 1

( VV 0 \

\\ 0 -w/

(if) )

ftw°-) ftw°-)

\o\o v/)

II = 1 to 24) )rr q = 0 0 ol '1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 aff th« jtaine e -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 ;; twe dd fi -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i -i i Ivee ii m m -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 r e d u c c ref. .

(if) )

/ww 0 \

\°°

w

/

\\

°

w

/

(if) )

/ww 0 \ \\ o w /

(fi) )

(00 w*l \WW 0 / // o w\ \W** 0 /

(fi) )

(o(o w*\

\

ww

° /

// 0 w\ \W"" 0 / (o(o -w"\ ^-WW 0 /

(( ° '

w

\

\-W** 0 /

\-\\-\ o)

(( 0 -w*\ \-WW 0 /

(( ° "

w

^

v

w

"" ° /

(-10) (-10) \o\o -l) ((WW 0 \ ^00 -w*^ /-W'' 0 | \\ o -w/ (-10) (-10) /-WW 0 \ ^ 00 -w*/ /-W"" 0 \ lblee represen 4.20.. W =

(if) )

(»» w°-)

(YA) )

(o'°,) )

WW 0 \

(TT

.t)

(fi) )

/ oo W'\ \WW 0 /

(.' Ï)

(V„') )

(ww r )

// 0< -w\ \-WW 0 /

(fi) )

/ oo w ' \ \ww 0 / (w-- » )

(V.') )

) ) ) )

(if) )

\ oo w /

(

W

o'' i)

(ö'-°,) )

( o . w " ) ) tationss T ' of exp(m22 / 3 ) ;

WW = exp(-m2 / 3).

(4)

Pi Pi p? ? p? ? P4 4 p5 5 p6 6 P7 7 p? ? P9 9 P19 9 Pll l p.? ?

Pn n

P.4 4 P.5 5

P

16 6

Pn n

P.? ? P,9 9 P?9 9 P?i i PK K P?? ? P24 4 1 ( 1 , 0 , 0 ) ) 1 ( 1 , 0 , 0 ) ) 2 ( 0 , 1 , 0 ) ) 33 (-1,-1,0) 44 (-1,0,0) 5 ( 0 , - 1 , 0 ) ) 6 ( 1 , 1 , 0 ) ) 4 ( 1 , 0 , 0 ) ) 66 (-1,-1,0) 5 ( 0 , 1 , 0 ) ) 11 (-1,0,0) 3 ( 1 , 1 , 0 ) ) 22 (0, -1, 0) 44 (-1,0,0) 6 ( 1 , 1 , 0 ) ) 5 ( 0 , - 1 , 0 ) ) 1 ( 1 , 0 , 0 ) ) 33 (-1,-1,0) 2(0,, 1,0) 11 (-1, 0, 0) 2 ( 0 , - 1 , 0 ) ) 3 ( 1 , 1 , 0 ) ) 4 ( 1 , 0 , 0 ) ) 55 (0, 1, 0) 66 (-1,-1,0) 1(0,, 1,0) 1(0,, 1,0) 22 (-1,-1,0) 3 ( 1 , 0 , 0 ) ) 4 ( 0 , - 1 , 0 ) ) 5 ( 1 , 1 , 0 ) ) 66 (-1,0,0) 44 (-1,-1,0) 66 (0, 1, 0) 5 ( 1 , 0 , 0 ) ) 1 ( 1 , 1 , 0 ) ) 3 ( 0 , - 1 , 0 ) ) 22 (-1,0,0) 4 ( 1 , 1 , 0 ) ) 6 ( 0 , - 1 , 0 ) ) 55 (-1,0,0) 11 (-1,-1,0) 3 ( 0 , 1 , 0 ) ) 2 ( 1 , 0 , 0 ) ) 1(0,-1,0) ) 2 ( 1 , 1 , 0 ) ) 33 (-1,0,0) 4 ( 0 , 1 , 0 ) ) 55 (-1,-1,0) 6 ( 1 , 0 , 0 ) ) 1 ( 0 , 0 , 1 ) ) 1 ( 0 , 0 , 1 ) ) 2 ( 0 , 0 , 1 ) ) 33 (0, 0, 1) 4 ( 0 , 0 ,, 1) 5 ( 0 , 0 ,, 1) 6 ( 0 , 0 ,, 1) 4 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 , - 1 ) ) 1(0,0,-1) ) 3 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 , - 1 ) ) 1(0,0,-1) ) 3 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 1(0,0,, 1) 2 ( 0 , 0 , 1 ) ) 3 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) 5 ( 0 , 0 , 1 ) ) 6 ( 0 , 0 , 1 ) ) 2 ( 1 , 0 , 0 ) ) 2 ( 1 , 0 , 0 ) ) 3(0,, 1,0) 11 (-1,-1,0) 55 (-1,0,0) 6 ( 0 , - 1 , 0 ) ) 4 ( 1 ,, 1,0) 6 ( 1 , 0 , 0 ) ) 55 (-1,-1,0) 4 ( 0 , 1 , 0 ) ) 33 (-1, 0, 0) 2 ( 1 ,, 1,0) 1(0,-1,0) ) 66 (-1,0,0) 5 ( 1 , 1 , 0 ) ) 4 ( 0 , - 1 , 0 ) ) 3 ( 1 , 0 , 0 ) ) 22 (-1,-1,0) 11 (0, 1, 0) 22 (-1,0,0) 3 ( 0 , - 1 , 0 ) ) 1 ( 1 , 1 , 0 ) ) 5 ( 1 , 0 , 0 ) ) 6 ( 0 , 1 , 0 ) ) 44 (-1,-1,0) 2 ( 0 , 1 , 0 ) ) 2 ( 0 , 1 , 0 ) ) 33 (-1,-1,0) 1 ( 1 , 0 , 0 ) ) 5 ( 0 , - 1 , 0 ) ) 6 ( 1 , 1 , 0 ) ) 44 (-1,0,0) 66 (-1,-1,0) 55 (0, 1, 0) 4 ( 1 , 0 , 0 ) ) 3 ( 1 ,, 1,0) 2 ( 0 , - 1 , 0 ) ) 11 (-1,0,0) 6 ( 1 ,, 1,0) 5 ( 0 , - 1 , 0 ) ) 44 (-1,0,0) 33 (-1,-1,0) 2 ( 0 , 1 , 0 ) ) 1 ( 1 , 0 , 0 ) ) 2 ( 0 , - 1 , 0 ) ) 3 ( 1 ,, 1,0) 11 (-1,0,0) 5 ( 0 , 1 , 0 ) ) 66 (-1,-1,0) 4 ( 1 , 0 , 0 ) ) 2 ( 0 , 0 , 1 ) ) 2 ( 0 , 0 , 1 ) ) 33 (0, 0, 1) 11 (0, 0, 1) 5 ( 0 , 0 ,, 1) 6 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) 6 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 3 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 1(0,0,-1) ) 6 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 3 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 1(0,0,-1) ) 2 ( 0 , 0 , 1 ) ) 3 ( 0 , 0 ,, 1) 11 (0, 0, 1) 55 (0, 0, 1) 6 ( 0 , 0 ,, 1) 44 (0, 0, 1) 3 ( 1 , 0 , 0 ) ) 3 ( 1 , 0 , 0 ) ) 1 ( 0 , 1 , 0 ) ) 22 (-1,-1,0) 66 (-1,0,0) 4 ( 0 , - 1 , 0 ) ) 5 ( 1 , 1 , 0 ) ) 55 (1, 0, 0) 44 (-1,-1,0) 6(0,, 1,0) 22 (-1,0,0) 1 ( 1 , 1 , 0 ) ) 3 ( 0 , - 1 , 0 ) ) 55 (-1,0,0) 4 ( 1 ,, 1,0) 6 ( 0 , - 1 , 0 ) ) 2 ( 1 , 0 , 0 ) ) 11 (-1,-1,0) 3(0,, 1,0) 33 (-1,0,0) 11 (0, -1, 0) 2 ( 1 ,, 1,0) 6 ( 1 , 0 , 0 ) ) 4 ( 0 ,, 1,0) 55 (-1,-1,0) 3 ( 0 , 1 , 0 ) ) 3 ( 0 , 1 , 0 ) ) 11 (-1,-1,0) 2 ( 1 , 0 , 0 ) ) 66 (0, -1, 0) 4 ( 1 , 1 , 0 ) ) 55 (-1,0,0) 55 (-1.-1,0) 4 ( 0 , 1 , 0 ) ) 6 ( 1 , 0 , 0 ) ) 2 ( 1 , 1 , 0 ) ) 11 (0, -1, 0) 33 (-1,0,0) 5 ( 1 ,, 1,0) 4 ( 0 , - 1 , 0 ) ) 66 (-1, 0, 0) 22 (-1,-1,0) 1(0,, 1,0) 3 ( 1 , 0 , 0 ) ) 3 ( 0 , - 1 , 0 ) ) 1 ( 1 , 1 , 0 ) ) 22 (-1,0,0) 66 (0, 1,0) 44 (-1,-1,0) 5 ( 1 , 0 , 0 ) ) 3 ( 0 , 0 , 1 ) ) 3 ( 0 , 0 , 1 ) ) 11 (0,0, 1) 2 ( 0 , 0 , 1 ) ) 6 ( 0 , 0 , 1 ) ) 4 ( 0 , 0 , 1 ) ) 5 ( 0 , 0 , 1 ) ) 5 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 1(0,0,-1) ) 3 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 1 ( 0 , 0 , - 1 ) ) 3 ( 0 , 0 , - 1 ) ) 3 ( 0 , 0 ,, 1) 11 (0,0, 1) 22 (0,0, 1) 6 ( 0 , 0 ,, 1) 44 (0,0, 1) 55 (0,0, 1) P. . P? ? P? ? P4 4 P? ? P6 6 P7 7 P8 8 P9 9 P10 0 Pn n Pi? ? P|? ? P|4 4 P|5 5 p.* * Pl7 7 P)? ? Pl9 9 P?P P P2l l P2? ? P» » P?4 4 4 ( 1 , 0 , 0 ) ) 4 ( 1 , 0 , 0 ) ) 55 (0, 1, 0) 66 (-1,-1,0) 11 (-1,0,0) 2 ( 0 , - 1 , 0 ) ) 3 ( 1 ,, 1,0) 11 (1,0,0) 33 (-1,-1,0) 2 ( 0 , 1 , 0 ) ) 44 (-1,0,0) 6 ( 1 ,, 1,0) 5 ( 0 , - 1 , 0 ) ) 11 (-1,0,0) 3 ( 1 ,, 1,0) 22 (0, -1, 0) 4 ( 1 , 0 , 0 ) ) 66 (-1,-1,0) 55 (0, 1, 0) 44 (-1,0,0) 55 (0, -1, 0) 6 ( 1 ,, 1,0) 1 ( 1 , 0 , 0 ) ) 22 (0, 1, 0) 33 (-1,-1,0) 4(0,, 1,0) 4 ( 0 , 1 , 0 ) ) 55 (-1,-1,0) 6 ( 1 , 0 , 0 ) ) 1(0,-1,0) ) 2 ( 1 , 1 , 0 ) ) 33 (-1,0,0) 11 (-1,-1,0) 33 (0, 1, 0) 2 ( 1 , 0 , 0 ) ) 4 ( 1 ,, 1,0) 6 ( 0 , - 1 , 0 ) ) 55 (-1,0,0) 1 ( 1 , 1 , 0 ) ) 3 ( 0 , - 1 , 0 ) ) 22 (-1,0,0) 44 (-1,-1,0) 6(0,, 1,0) 5 ( 1 , 0 , 0 ) ) 4 ( 0 , - 1 , 0 ) ) 5 ( 1 , 1 , 0 ) ) 66 (-1,0,0) 1(0,, 1,0) 22 (-1,-1,0) 3 ( 1 , 0 , 0 ) ) 4 ( 0 , 0 , 1 ) ) 4 ( 0 , 0 , 1 ) ) 5 ( 0 , 0 , 1 ) ) 6 ( 0 , 0 ,, 1) 1 ( 0 , 0 ,, 1) 2 ( 0 , 0 , 1 ) ) 3 ( 0 , 0 , 1 ) ) 1(0,0,-1) ) 3 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 , - 1 ) ) 1(0,0,-1) ) 3 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 , - 1 ) ) 55 (0, 0, -1) 4 ( 0 , 0 ,, 1) 55 (0, 0, 1) 66 (0, 0, 1) 1 ( 0 , 0 ,, 1) 2 ( 0 , 0 ,, 1) 3 ( 0 , 0 , 1 ) ) 5 ( 1 , 0 , 0 ) ) 5 ( 1 , 0 , 0 ) ) 6(0,, 1,0) 44 (-1,-1,0) 22 (-1,0,0) 3 ( 0 , - 1 , 0 ) ) 1 ( 1 , 1 , 0 ) ) 3 ( 1 , 0 , 0 ) ) 22 (-1,-1,0) 1(0,, 1,0) 66 (-1,0,0) 5 ( 1 ,, 1,0) 4 ( 0 , - 1 , 0 ) ) 33 (-1,0,0) 2 ( 1 ,, 1,0) 1(0,-1,0) ) 6 ( 1 , 0 , 0 ) ) 55 (-1,-1,0) 4 ( 0 , 1 , 0 ) ) 55 (-1,0,0) 6 ( 0 , - 1 , 0 ) ) 4 ( 1 ,, 1,0) 2 ( 1 , 0 , 0 ) ) 33 (0, 1, 0) 11 (-1,-1,0) 55 (0, 1, 0) 5(0,, 1,0) 66 (-1,-1,0) 44 (1, 0, 0) 2 ( 0 , - 1 , 0 ) ) 3 ( 1 ,, 1,0) 11 (-1,0,0) 33 (-1,-1,0) 22 (0, 1, 0) 1 ( 1 , 0 , 0 ) ) 6 ( 1 ,, 1,0) 5 ( 0 , - 1 , 0 ) ) 44 (-1,0,0) 3 ( 1 , 1 , 0 ) ) 2 ( 0 , - 1 , 0 ) ) 11 (-1,0,0) 66 (-1,-1,0) 5(0,, 1,0) 4 ( 1 , 0 , 0 ) ) 5 ( 0 , - 1 , 0 ) ) 6 ( 1 ,, 1,0) 44 (-1,0,0) 2(0,, 1,0) 33 (-1,-1,0) 1 ( 1 , 0 , 0 ) ) 5 ( 0 , 0 ,, 1) 5 ( 0 , 0 , 1 ) ) 6 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) 22 (0, 0, 1) 3 ( 0 , 0 ,, 1) 1 ( 0 , 0 , 1 ) ) 3 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 1(0,0,-1) ) 6 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 3 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 1 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 ,, 1) 66 (0, 0, 1) 4 ( 0 , 0 ,, 1) 2 ( 0 , 0 ,, 1) 3 ( 0 , 0 ,, 1) 1 ( 0 , 0 ,, 1) 6 ( 1 , 0 , 0 ) ) 6 ( 1 , 0 , 0 ) ) 4 ( 0 , 1 , 0 ) ) 55 (-1,-1,0) 33 (-1,0,0) 1 ( 0 , - 1 , 0 ) ) 2 ( 1 ,, 1,0) 2 ( 1 , 0 , 0 ) ) 11 (-1,-1,0) 3(0,, 1,0) 55 (-1,0,0) 4 ( 1 ,, 1,0) 6 ( 0 , - 1 , 0 ) ) 22 (-1, 0, 0) 1 ( 1 , 1 , 0 ) ) 3 ( 0 , - 1 , 0 ) ) 5 ( 1 , 0 , 0 ) ) 44 (-1,-1,0) 66 (0, 1, 0) 66 (-1,0,0) 4 ( 0 , - 1 , 0 ) ) 5 ( 1 ,, 1,0) 33 (1, 0,0) 1(0,, 1,0) 22 (-1,-1,0) 6 ( 0 , 1 , 0 ) ) 6(0,, 1,0) 44 (-1,-1,0) 5 ( 1 , 0 , 0 ) ) 3 ( 0 , - 1 , 0 ) ) 1 ( 1 , 1 , 0 ) ) 22 (-1,0,0) 22 (-1,-1,0) 11 (0, 1, 0) 3 ( 1 , 0 , 0 ) ) 5 ( 1 , 1 , 0 ) ) 4 ( 0 , - 1 , 0 ) ) 66 (-1,0,0) 2 ( 1 , 1 , 0 ) ) 11 (0, -1, 0) 33 (-1,0,0) 55 (-1,-1,0) 4 ( 0 , 1 , 0 ) ) 6 ( 1 , 0 , 0 ) ) 6 ( 0 , - 1 , 0 ) ) 4 ( 1 , 1 , 0 ) ) 55 (-1,0,0) 3 ( 0 , 1 , 0 ) ) 11 (-1,-1,0) 2 ( 1 , 0 , 0 ) ) 66 (0,0, 1) 66 (0,0, 1) 4 ( 0 , 0 ,, 1) 5 ( 0 , 0 ,, 1) 3 ( 0 , 0 ,, 1) 11 (0, 0, 1) 22 (0, 0, 1) 2 ( 0 , 0 , - 1 ) ) 1 ( 0 , 0 , - 1 ) ) 3 ( 0 , 0 , - 1 ) ) 5 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 1(0,0,-1) ) 33 (0, 0, -1) 5 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 , - 1 ) ) 6 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) 55 (0, 0, 1) 33 (0, 0, 1) 11 (0, 0, 1) 2 ( 0 , 0 ,, 1)

Tablee A.4. Symmetry operations P

g

(g = 1 to 24) on the magnetic moment components at the 6h site.

Positionn atom I: (x, 2JC, 1/4); atom 2: (-2JC, -X, 1/4); atom 3: (*, -x, 1/4); atom 4: (-*, -2x, 3/4); atom 5:

(5)

p3 3 P4 4 p5 5 P6 6 P7 7 P8 8 P9 9 P.o o P.. . P.2 2 Pl3 3 Pl4 4 P15 5 P.6 6 P>7 7 P.8 8 P,9 9 P20 0 P21 1 P22 2 P23 3 P24 4 11 (-1,-1,0) 22 (-1,0,0) 2 ( 0 , - 1 , 0 ) ) 2 ( 1 ,, 1,0) 3 ( 1 , 0 , 0 ) ) 33 (-1,-1,0) 3 ( 0 , 1 , 0 ) ) 44 (-1,0,0) 4 ( 1 , 1 , 0 ) ) 4 ( 0 , - 1 , 0 ) ) 22 (-1,0,0) 2 ( 1 ,, 1,0) 2 ( 0 , - 1 , 0 ) ) 11 (1,0,0) 11 (-1,-1,0) 11 (0,1,0) 44 (-1,0,0) 4 ( 0 , - 1 , 0 ) ) 4 ( 1 , 1 , 0 ) ) 3 ( 1 , 0 , 0 ) ) 3 ( 0 , 1 , 0 ) ) 33 (-1,-1,0) 11 (1,0,0) 2 ( 0 , - 1 , 0 ) ) 2 ( 1 ,, 1,0) 22 (-1,0,0) 33 (-1,-1,0) 3(0,, 1,0) 3 ( 1 , 0 , 0 ) ) 4 ( 1 ,, 1,0) 4 ( 0 , - 1 , 0 ) ) 44 (-1,0,0) 2 ( 1 ,, 1,0) 2 ( 0 , - 1 , 0 ) ) 22 (-1,0,0) 11 (-1,-1,0) 1 ( 0 , 1 , 0 ) ) 11 (1,0,0) 4 ( 0 , - 1 , 0 ) ) 4 ( 1 ,, 1,0) 44 (-1,0,0) 33 (0, 1, 0) 33 (-1,-1,0) 3 ( 1 , 0 , 0 ) ) 1(0,0,, 1) 2(0,0,, 1) 2(0,0,, 1) 2(0,0,, 1) 3(0,0,-1) ) 3(0,0,-1) ) 3(0,0,-1) ) 4(0,0,-1) ) 4(0,0,-1) ) 4(0,0,-1) ) 2(0,0,-1) ) 2(0,0,-1) ) 2(0,0,-1) ) 11 (0,0,-1) 13(0,0,-1) ) 11 (0,0,-1) 44 (0,0, 1) 4 ( 0 , 0 , 1 ) ) 4 ( 0 , 0 , 1 ) ) 3(0,0,1) ) 3(0,0,1) ) 3(0,0,1) ) 22 (-1,-1,0) 11 (-1,0,0) 1(0,-1,0) ) 1(1,1,0) ) 4 ( 1 , 0 , 0 ) ) 44 (-1,-1,0) 4 ( 0 , 1 , 0 ) ) 33 (-1,0,0) 3 ( 1 ,, 1,0) 3 ( 0 , - 1 , 0 ) ) 11 (-1,0,0) 1(1,1,0) ) 1(0,-1,0) ) 2 ( 1 , 0 , 0 ) ) 22 (-1,-1,0) 2 ( 0 , 1 , 0 ) ) 33 (-1,0,0) 3(0,-1,0) ) 3 ( 1 ,, 1,0) 4 ( 1 , 0 , 0 ) ) 4 ( 0 ,, 1,0) 44 (-1, -1,0) 2 ( 1 , 0 , 0 ) ) 1(0,-1,0) ) 1 ( 1 , 1 , 0 ) ) 11 (-1,0,0) 44 (-1,-1,0) 4(0,, 1,0) 4 ( 1 , 0 , 0 ) ) 3 ( 1 ,, 1,0) 3 ( 0 , - 1 , 0 ) ) 33 (-1,0,0) 1 ( 1 , 1 , 0 ) ) 11 (0,-1,0) 11 (-1,0,0) 22 (-1,-1,0) 2(0,, 1,0) 2 ( 1 , 0 , 0 ) ) 3 ( 0 , - 1 , 0 ) ) 3 ( 1 ,, 1,0) 33 (-1,0,0) 4 ( 0 ,, 1,0) 4 ( - l ,, -1,0) 4 ( 1 , 0 , 0 ) ) 22 (0, 0, 1) 11 (0,0, 1) 11 (0, 0, 1) 11 (0,0, 1) 4 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 3 ( 0 , 0 , - 1 ) ) 3(0,0,-1) ) 3(0,0,-1) ) 11 (0,0,-1) 11 (0,0,-1) 1(0,0,-1) ) 2 ( 0 , 0 , - 1 ) ) 2(0,0,-1) ) 2(0,0,-1) ) 3 ( 0 , 0 ,, 1) 3 ( 0 , 0 ,, 1) 3 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) P. . P2 2 P3 3 P4 4 P5 5 P6 6 P7 7 P« « P9 9 P . 0 0 P i . . Pl2 2 P13 3 Pl4 4 P i s s P l 6 6 Pl7 7 Pl8 8 P» » P20 0 P21 1 P22 2 P23 3 P24 4 3 ( 1 , 0 , 0 ) ) 3 ( 1 , 0 , 0 ) ) 3(0,, 1,0) 33 (-1,-1,0) 44 (-1,0,0) 4 ( 0 , - 1 , 0 ) ) 4 ( 1 ,, 1,0) 11 (1,0,0) 11 (-1,-1,0) 11 (0, 1,0) 22 (-1,0,0) 2 ( 1 ,, 1,0) 2 ( 0 , - 1 , 0 ) ) 44 (-1,0,0) 4 ( 1 ,, 1,0) 4 ( 0 , - 1 , 0 ) ) 3 ( 1 , 0 , 0 ) ) 33 (-1,-1,0) 33 (0, 1, 0) 22 (-1,0,0) 2 ( 0 , - 1 , 0 ) ) 2 ( 1 ,, 1,0) 1 ( 1 , 0 , 0 ) ) 1(0,, 1,0) 11 (-1,-1,0) 33 (0, 1, 0) 33 (0, 1, 0) 33 (-1,-1,0) 3 ( 1 , 0 , 0 ) ) 4 ( 0 , - 1 , 0 ) ) 4 ( 1 ,, 1,0) 44 (-1,0,0) 11 (-1,-1,0) 11 (0, 1, 0) 1 ( 1 , 0 , 0 ) ) 2 ( 1 ,, 1,0) 2 ( 0 , - 1 , 0 ) ) 22 (-1,0,0) 4 ( 1 ,, 1,0) 4 ( 0 , - 1 , 0 ) ) 44 (-1,0,0) 33 (-1,-1,0) 3(0,, 1,0) 3 ( 1 , 0 , 0 ) ) 2 ( 0 , - 1 , 0 ) ) 2 ( 1 ,, 1,0) 22 (-1,0,0) 1(0,, 1,0) 11 (-1,-1,0) 11 (1,0,0) 3(0,0,1) ) 3(0,0,1) ) 3(0,0,1) ) 3(0,0,1) ) 4(0,0,1) ) 4(0,0,1) ) 4(0,0,1) ) 11 (0,0,-1) II (0,0,-1) 11 (0,0,-1) 2(0,0,-1) ) 2(0,0,-1) ) 2(0,0,-1) ) 4(0,0,-1) ) 4(0,0,-1) ) 4(0,0,-1) ) 3(0,0,-1) ) 3(0,0,-1) ) 3(0,0,-1) ) 2(0,0,1) ) 22 (0,0,1) 2(0,0,1) ) 11 (0,0,1) 1(0,0,1) ) 1(0,0,1) ) 4 ( 1 , 0 , 0 ) ) 4 ( 1 , 0 , 0 ) ) 4 ( 0 ,, 1,0) 44 (-1,-1,0) 33 (-1,0,0) 3 ( 0 , - 1 , 0 ) ) 3 ( 1 ,, 1,0) 2 ( 1 , 0 , 0 ) ) 22 (-1,-1,0) 2(0,, 1,0) 11 (-1,0,0) 1(1,1,0) ) 11 (0,-1,0) 33 (-1,0,0) 3 ( 1 ,, 1,0) 3 ( 0 , - 1 , 0 ) ) 4 ( 1 , 0 , 0 ) ) 44 (-1,-1,0) 4(0,, 1,0) 11 (-1,0,0) 1(0,-1,0) ) 1 ( 1 , 1 , 0 ) ) 2 ( 1 , 0 , 0 ) ) 2(0,, 1,0) 22 (-1,-1,0) 4 ( 0 ,, 1,0) 4 ( 0 ,, 1,0) 44 (-1,-1,0) 4 ( 1 , 0 , 0 ) ) 3 ( 0 , - 1 , 0 ) ) 3 ( 1 ,, 1,0) 33 (-1,0,0) 22 (-1,-1,0) 2(0,, 1,0) 2 ( 1 , 0 , 0 ) ) 1 ( 1 , 1 , 0 ) ) 11 (0,-1,0) 11 (-1,0,0) 3 ( 1 , 1 , 0 ) ) 3 ( 0 , - 1 , 0 ) ) 33 (-1,0,0) 44 (-1,-1,0) 4(0,, 1,0) 4 ( 1 , 0 , 0 ) ) 11 (0,-1,0) 1 ( 1 , 1 , 0 ) ) 11 (-1,0,0) 2(0,, 1,0) 22 (-1,-1,0) 2 ( 1 , 0 , 0 ) ) 4 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) 4 ( 0 , 0 ,, 1) 3 ( 0 , 0 ,, 1) 3 ( 0 , 0 ,, 1) 3 ( 0 , 0 ,, 1) 2 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 2 ( 0 , 0 , - 1 ) ) 1(0,0,-1) ) 1(0,0,-1) ) 1(0,0,-1) ) 3 ( 0 , 0 , - 1 ) ) 3 ( 0 , 0 , - 1 ) ) 3 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 4 ( 0 , 0 , - 1 ) ) 11 (0, 0, 1) 1(0,0,, 1) 11 (0, 0, 1) 22 (0, 0, 1) 2(0,, 0, 1) 2 ( 0 , 0 ,, 1)

Tablee A.5. Symmetry operations P

g

(g = 1 to 24) on the magnetic moment components at the 4/site.

Positionn atom 1: (1/3,2/3, z); atom 2: (2/3, 1/3, z+1/2); atom 3: (2/3, 1/3,-z); atom 4:

(1/3,, 2/3, -z+l/2).

(6)

r r

r' '

r

2 2

r

3 3

r

4 4

r

5 5

r

6 6

r

7 7

r

8 8

r

9 9

pp 10

p l l l p l 2 2

Basiss function

ƒ// = {1(0,0,0); 2(0,0,0)}

tftf = i{l(0,0,B);2(0,0,B)}

/i

33

= {1(0,0,0); 2(0,0,0)}

/,

44

= i{l(0,0,B);2(0.0,-B)}

yj

55

= 11 i /(l. W)A, - ('V3A, 0); 2[(W-1)A, t'V3A, oj 1

/

255

= I { i^(i_w*)A, iV3A, 0); 2((W*-l)A,-iV3A,0) }

AA

55

=fl+fi==fl+fi= |{l(A,0,0);2(-A,0,0)}

/bb ='(f\ ~ fl) = \ { 1 (V3A, 2V3A, 0); 2(-V3A, -2V3A, o) }

/,

66

= - j 1 ((1-W)A, -/V3A, 0]; 2[(l-W)A, -/V3A, o]] }

/

266

= I ( 1 ((1-W*)A, /V3A, O) ; 2 [(1-W*)A, j'V3A, o) }

/a

6

=/l

6

+/2

6

={{l(A,0,0);2(A,0,0)} }

fbfb = Hff - fl) = | { I (V3A, 2V3A, 0); 2(V3A, 2V3A, o) }

/!

77

= {1(0,0,0); 2(0,0,0)}

/,

88

= {1(0,0,0); 2(0,0,0)}

/,

99

= {1(0,0,0); 2(0,0,0)}

/t

100

= {1(0,0,0); 2(0,0,0)}

ƒ,"" = {1(0,0,0); 2(0,0,0)}

/

2nn

= {1(0,0,0); 2(0,0,0)}

/t

122

= { 1(0,0,0); 2(0,0,0)}

flfl

22

= { 1(0,0,0); 2(0,0,0)}

Magneticc structure

— —

Ferroo // c axis

— —

Antiferroo // c axis

Antiferroo in

basall plane

Ferroo in

basall plane

— —

— —

— —

— —

— —

— —

Tablee A.6. Basis functions f'

K

belonging to irreducible representation T' for the 2a site. By taking

suitablee linear combinations of the basis functions of the irreducible representations T

5

and T

6

new

basiss functions f

la

, and f\ are obtained, that are real and remain orthogonal. The resulting magnetic

(7)

r r

r

1 1

r

2 2

r

3 3

r

4 4

r

5 5

r

6 6

r

7 7

r

8 8

r

9 9

PP 10 p l l l r1 2 2

ƒ// = { 1(0, 0,0); 2(0, 0,0); 3(0, 0, 0); 4(0, 0,0); 5(0, 0, 0); 6(0, 0,0) }

tftf = i {1(0, 0, B); 2(0, 0, B); 3(0, 0, B); 4(0, 0, B); 5(0, 0, B); 6(0,0, B)}

fifi = i { 1(A, 0, 0); 2(0, A, 0); 3(-A, -A, 0); 4(A, 0, 0); 5(0, A, 0); 6(-A, -A, 0)}

f\f\ = { % 0, 0); 2(0, 0, 0); 3(0,0, 0); 4(0,0,0); 5(0, 0,0); 6(0, 0, 0)}

/,

55

= | { 1(0, 0, B); 2(0,0, W*B); 3(0, 0, WB); 4(0, 0, B); 5(0, 0, W*B); 6(0, 0, WB)}

/255 = i J 1(0, 0, B); 2(0, 0, WB); 3(0, 0, W*BI 4(0, 0, B); 5(0, 0, WB); 6J0, 0, W*BJ}

/a

55

= A

5 +

fl=\{ 1(°'°.

2B

); 2(0,0,-B); 3(0,0 ,-B); 4(0,0,2B); 5(0,0,-B); 6(0,0,-B) }

fbfb ='"(f\ ~ fi) = i f { 1(0A0);

2

(°AB); 3(0,0,-B); 4(0,0,0); 5(0,0,B); 6(0,0,-B) }

/J

66

=11 l(A,0,0);2(0,w*A,0);3(-wA,-wA,0);4(A,0,0);5(0,w*A,0);6(-wA,-wA,0) J

/

266

= 1 1 l(A,0,0);2(0,wA,0);3(-w*A,-w*A,OJ;4(A,0,0);5(0,wA,0);6(-w*A,-w*A,o)]

/a

66

= f\ + /2

6

= \ { 1(2A,0,0); 2(0,-A,0); 3(A,A,0); 4{2A,0,0); 5(0,-A,0); 6(A,A,0) }

fbfb = ''(A

6

~ f2 ) = ^ {1(0,0,0); 2(0, A, 0); 3(A, A, 0); 4(0, 0, 0); 5(0, A, 0); 6(A, A, 0)}

ff 1 = { 1(0, 0, 0); 2(0, 0, 0); 3(0, 0, 0); 4(0, 0, 0); 5(0, 0, 0); 6(0, 0, 0) }

ƒ/** = I { 1(A, 0, 0); 2(0, A, 0); 3(-A, -A, 0); 4(-A, 0,0); 5(0, -A, 0); 6(A, A, 0) }

/

L99

= I { 1(0, 0, B); 2(0, 0, B); 3(0,0, B); 4(0,0, -B); 5(0,0, -B); 6(0, 0, -B) }

/,

100

= { 1(0, 0, 0); 2(0, 0, 0); 3(0, 0, 0); 4(0, 0,0); 5(0, 0, 0); 6(0, 0, 0) }

ƒ/

ll

= 111(A,0,0); 2(0,w*A,0); 3(-wA,-wA,0); 4(-A,0,0); 5JO,-w*A,o); 6(wA,wA,0)}

fjfj

ii

= 1 j l(A,0,0);2(0,wA,0);3(-w*A,-w*A,0\4(-A,0,0);5(0,-wA,0);6(w*A,w*A,o)}

fafa

l

= f\

l

+ / 2

l

= \ { 1(

2A

'°'°); 2(0,-A,0); 3(A,A,0); 4(-2A,0,0); 5(0,A,0); 6(-A,-A,0) }

/

buu

= ,(ƒ/' - /

2u

) = ^{l(0,0,0);2(0,A,0);3(-A,-A,0);4(0,0,0);5(0,-A,0);6(A,A,0)}

ff I

2

= I { 1(0,0, B); 2(0,0, w*B); 3(0,0, wB); 4(0,0, -B); 5(0,0, -W*BV 6(0,0, -wB) I

fjfj

22

= I J 1(0,0, B); 2(0,0, wB); 3(0,0, W*BV 4(0,0, -B); 5(0, 0, -wB); 6(0,0, -W*B) }

/a

122

= A

12

+ / 2

2

= { {1(0,0,2B); 2(0,0,-B); 3(0,0,-B); 4(0,0,-2B); 5(0,0,B); 6(0,0,B) }

fbfb

22

='(A

12

" /2

2

) = ^j- { 1(0,0,0); 2(0,0,B);3(0,0,-B);4(0,0,0); 5(0,0,-B);6(0,0,B) }

— —

Ferroo // c

Triangular r

antiferroo in

basall plane

— —

'Antiferro' '

lie lie

Non-collinear r

ferroo in basal

plane e

— —

Triangular r

antiferroo in

basall plane

Antiferroo // c

— —

'Antiferro'' in

basall plane

'Antiferro' '

He He

Tablee A.7. Basis functions f\. belonging to irreducible representation T

1

for the 6h site. By taking

suitablee linear combinations of the basis functions of the irreducible representations T

5

, T

6

, T

11

and

r

1 22

new basis functions f

la, and fb

are obtained, that are real and remain orthogonal. The resulting

magneticc structures are given in the third column.

(8)

r

1 1

r

l l

r

2 2

r

3 3

r

4 4

r

5 5

r

6 6

r

7 7

r

8 8

r

9 9

pp 10 p . 1 1 r. 2 2

Basiss function

flfl = { l ( 0 , 0 , 0 ) ; 2 ( 0 , 0 , 0 ) ; 3 { 0 , 0 , 0 ) ; 4 ( 0 , 0 , 0 ) } fifi = 6 { l ( 0 , 0 , B ) ; 2 ( 0 , 0 , B ) ; 3 ( 0 , 0 , B ) ; 4 ( 0 , 0 , B ) } flfl3,3, = { l ( 0 , 0 , 0 ) ; 2 { 0 , 0 , 0 ) ; 3 { 0 , 0 , 0 ) ; 4 ( 0 , 0 , 0 ) } f*f* = 6 { 1 (0, 0, B); 2 (0, 0, - B ) ; 3 (0, 0, B);4 (0, 0, -B) }

/ i55 = {l((i-w)A,-iV3A,0): 2((W-i)A,/V3A,0) 3((i-W)A,-i\/3A,0) 4((W-i)A,/'V3A,0)}

ƒ // = {l((i-w*)A,iV3A,0);2((W*-l)A,-iV3A,0)3{(l-W*)A1»V3A,0)4((W*-l)A,-/V3A,0)} fafa = fl + fl = 3 { 1 (A, 0, 0 ) ; 2 ( - A , 0, 0);3 (A, 0, 0 ) ; 4 ( - A , 0, 0) }

fbfb = «fl ~ fl) = ^3 { 1 (A, 2A, 0); 2 (-A, -2A, 0); 3 3 (A, 2A, 0); 4 4 {-A, -2A, 0) }

/ i66 = { l((i-W)A,-iV3A,0) 2((l-W)A

t-iV3A,0)s 3((l-W)A,-iV3A,0); 4((l-W)A,-iV3A,0)} ffff = { l((i-w*)A,/V3A,0) 2((1-W*)A,/V3A,0); 3((l-W*)A,iV3A,0); 4((l-W*)A,iV3A,0)} fa=flfa=fl6+6+flfl = 3 { 1 (A, 0, 0);2(A, 0,0);3 (A, 0, 0);4(A, 0, 0) } fbfb = «fl6 - /26) = V3 { 1 (A, 2A, 0); 2 (A, 2A, 0) -, 3 (A, 2A, 0); 4 (A, 2A, 0) } flfl = 6 { l ( 0 , 0 , B ) ; 2 ( 0 , 0 , B ) ; 3 { 0 , 0 , - B );4 ( 0 , 0 , - B ) }

fyfy = { l ( 0 , 0 , 0 ) ; 2 ( 0 , 0 , 0 ) ; 3 ( 0 , 0 , 0 ) ; 4 { 0 , 0 , 0 ) } fyfy = 6 { l ( 0 , 0 , B ) ; 2 ( 0 , 0 , - B ) ; 3 ( 0 , 0 , - B ) ; 4 ( 0 , 0 , B ) }

/i'°° = { l ( 0 , 0 , 0 ) ; 2 ( 0 , 0 , 0 ) ; 3 ( 0 , 0 , 0 ) ; 4 ( 0 , 0 , 0 ) }

/i1 11 = {l((i-W)A,-iV3A,0)t 2((W-1)A,/V3A,0); 3((W-1)A,/VJA,0) 4((1-W)A,-/V3A,0)} /2nn = {l((i-w")A,/V3A,0) 2((W*-!)A,-i73A,0) 3((W*-l)A,-/V3A,0) 4((l-w*)A,/V3A,0)} fafa11 = fl1 + fl[ - 3 { 1 (A, 0, 0 ) ; 2 ( - A , 0, 0);3 (-A, 0, 0);4(A, 0, 0) }

fbfb'' =«(fi l ~ fll) = V3 { 1 {A, 2A, 0), 2 (-A, -2A, 0); 3 (-A, -2A, 0); 4 (A, 2A, 0) }

flfl11 = { l((i-W)A,-iV3A,0) 2(ü-W)A,-iV3A,0);3((W-l)A,/V3A,0) 4(<w-l)A,iV3A,0)}

/2122 = { l((l-W*)A,;V3A,0); 2((l-W*)A,iV3A,0); 3((W*-l)A,-iV3A,0); 4((W*-1)A,-/V3A,0)} fafa22 = f\2 + fl2 = 3 { 1 (A, 0, 0); 2 (A, 0, 0); 3 (-A, 0, 0); 4 4 (-A, 0, 0) }

fbfb22 ='(fl2 - fl2) = VÏ { 1 (A, 2A, 0); 2 (A, 2A, 0)-, 3 3 (-A, -2A, 0); 4 (-A, -2A, 0 ) }

Magn.. struct.

— —

Ferroo // c

— —

Antiferroo // c

Antiferroo in

basall plane

Ferroo in

basall plane

Antiferroo // c

— —

Antiferroo // c

— —

Antiferroo in

basall plane

Antiferroo in

basall plane

Tablee A.8. Basis functions ƒ\. belonging to irreducible representation T' for the 4 / site. By taking suitablee linear combinations of the basis functions of the irreducible representations T5, T6, r " and

TT '2 new basis functions fa, and f\ are obtained, that are real and remain orthogonal. The resulting

Referenties

GERELATEERDE DOCUMENTEN

Topographic maps for LI (left) and HI (right), at Pz, for No-Go trials in the Go/No-Go task. Visual representation of one trial in the SSRT. a blue circle) on Go trials (75%

Stopping the “World’s Greatest Threat”: Canadian Policy and Rhetoric towards the Iranian Nuclear Program during Stephen Harper’s Conservative Government, 2006-2015.. by

I think joy, and like, you know, just taking care of yourself and the people around you is really important to this work because we’re in it for the long haul. we have to take care

German’s report, the Corporate Registration program plays a key role in GPEB’s regulatory framework, and is a principal mechanism through which GPEB maintains control over

Britton (1997) concluded that race and gender are contributing factors in stress and further identified the need for future researchers to explore how these intersections

These structural investigations into the mechanism for germ-line antibody recognition of carbohydrate antigens utilizing chlamydial-specific and anti-lipid A antibodies

Our structural analysis revealed that while the N- terminal region of TbFam50.360 adopted a three-helical structure similar to previously characterized trypanosome surface

I showed that data on the structural differences between the native and aggregated forms of the prion protein, obtained from multiple structural proteomics approaches